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This paper proposes a switched approach to robust stabilization of a collection of coupled networked controlled systems (NCSs)with
node devices acting over a limited communication channel. We suppose that the state information of every subsystem is split into
different packets and only one packet of the subsystem can be transmitted at a time. Multiple NCSs with norm-bounded parameter
uncertainties and multiple transmissions are modeled as a periodic switched system in this paper. State feedback controllers can be
constructed in terms of linear matrix inequalities. A numerical example is given to show that a collection of uncertain NCSs with
the problem of limited communication can be effectively stabilized via the designed controller.

1. Introduction

Networked control systems (NCSs) are feedback control
systems with network communication channels used for
the communications between spatially distributed system
components like sensors, actuators, and controllers. In recent
years, the studies of NCSs have received increasing attention
in control theory [1–4]. The use of the communication
channels can reduce the costs of cables and power, simplify
the installation and maintenance of the whole system, and
increase the reliability. The insertion of communication
network in the feedback control loop complicates the analysis
and design of an NCS because many ideal assumptions
made in the traditional control theory cannot be applied to
NCSs directly. The traditional control theory requires that
all the feedback information be obtained by the controller.
Meanwhile one major problem must be solved, the limited
bandwidth of the communication network. Sometimes, data
packets containing full plant measurements may not be
permitted to be transmitted because of limited bandwidth
and this may deteriorate the system performance and desta-
bilize the system. Examples include fleets of unmanned

autonomous vehicles, wide area power system, remote plan-
etary exploration with multiple coordinated robots, and the
control of microactuator arrays. In such systems, simultane-
ous communication with all subsystems may not be possible
because of physical or performance constraints. So how to
control the NCSs via a limited communication channel is a
big problem. Potential application can be found in [5–7].

The problem of stabilization with finite communication
bandwidth has received much attention; see, for example,
[2, 8–11]. In NCSs, communication capacity depends on the
topology of the network. In many cases, the communication
among the devices of the network is through one com-
munication channel as shown in Figure 1, where 𝑃

𝑖
is the

plant and 𝐶
𝑖
is the corresponding controller (𝑖 = 1, . . . , 𝑁).

The problem of stabilization with finite communication
bandwidth was introduced by [12, 13]. The switched system
approachwas introduced to studyNCSswithmultiple-packet
transmission in [14, 15] and further pursued by [16, 17].
The merit of the switched approach is that the controllers
can make full use of the previous information to stabilize
NCSs when the current state measurements are available
from the network. By switched approach, the stabilization
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Figure 1: A shared network.

of NCSs with multiple-packet transmissions over token-
passing bus networks was considered in Yu et al. [14, 15],
where sufficient conditions for stabilization and design of
controllers have been obtained through modeling NCSs as
periodically switched systems. Further results for single NCS
were presented in Yu et al. [18–21]. Zhang and Hristu-
Varsakelis [22] also studied stabilization problem of NCSs by
modeling these systems as switched systems. Reference [23]
studied the stability for a class of systems with time varying
delay subject to controller failure, where the delay systemwith
failed controller was modelled as a class of switched delay
systems. Unfortunately, all the above literatures focused on
studying NCSs without uncertainty.

Uncertainty is ubiquitous in control systems and it
inevitably exists in system model due to the complexity
of the system itself, exogenous disturbance, measurement
errors, and so on. Qiu et al. [24] dealt with mode and
parameter-dependent robust mixed 𝐻

2
/𝐻
∞

filtering design
for a class of discrete-time switched polytopic linear systems.
Furthermore, the problemof delay-dependent robust energy-
to-peak filtering design for a class of discrete-time switched
linear systems with a time-varying state delay and polytopic
uncertainties was revisited in [25]. Recently, [26] studied
exponential 𝐻

∞
filtering for discrete-time switched state-

delay systems under asynchronous switching. Reference [27]
considered the problem of robust stabilization of linear
uncertain discrete-time systems via limited capacity com-
munication channels. In [28], a class of networked control
systems was investigated where the plant had time-varying
norm-bounded parameter uncertainties. In [29], sufficient
conditions were given to ensure the stability of uncertain
NCSs using switched approach. Reference [30] studied the
stability of NCSs that were subject to time-varying transmis-
sion intervals, time-varying transmission delays, and com-
munication constraints. Reference [31] addressed the prob-
lem of stabilizing uncertain nonlinear plants over a shared
limited bandwidth packet-switching network. However, all
the above literatures consider performance or stabilization of
single NCS, which was not coupled with any other system.

Yu et al. [32] investigated stabilization of a collection
of linear systems with limited information. Reference [16]
further modeled multiple NCSs as a periodic switched sys-
tem, with only one subsystem able to access the network
to transmit all of its present state information at a time.

But they did not deal with the problem of multiple packet
transmission. Ding et al. [33] studied multiple networked
control systems with multiple transmissions, but they did not
consider uncertainties and they did not consider the two-
side channel transmission. In [34, 35], Dai et al. developed
a scheduling strategy for a collection of discrete-time NCSs
subjected to communication constraints, which were mod-
elled as a switched delay system.The systems they considered
were not coupled.

To the best of our knowledge, there is no result on the
robust stabilization of a collection of coupled NCSs with
multiple transmissions. Motivated by the references above,
this paper will model multiple coupled NCSs with norm-
bounded parameter uncertainties as switched system and
then we can apply the theory of the switched system to
NCSs [36, 37]. We consider the case that all the nodes
act over a limited bandwidth communication channel, state
information of every subsystem is split into different packets
and only one packet can be transmitted at a time. Applying
the toking bus protocol, the nodes are arranged logically into
a ring and transmit their packets in a predetermined order.
For multiple-packet transmitted NCSs with one-side channel
and with both S/C and C/A network channel, we model
suchmultiple coupled uncertain NCSs as a periodic switched
system. We consider the setup with a clock-driven sensor,
and both the controller and the actuator are event driven.
The controller is installed to use the old state measurement
if there is no new data updating. Then robust stability of
the NCSs with periodic transmission is considered. State
feedback controllers can be constructed in terms of linear
matrix inequalities (LMIs).

The remainder of this paper is structured as follows.
Section 2 models multiple NCSs with multipacket transmis-
sion and norm-bounded parameter uncertainties. Section 3
develops stabilization and stability results for state feedback
case. Section 4 presents a numerical simulation to illustrate
the efficiency and feasibility of our proposed approach.
Section 5 concludes this paper.

Notation. We use standard notations throughout this paper.
Denote by 𝐴

𝑇 the transpose of a matrix 𝐴. 𝐴 > 0 (𝐴 <

0) means that 𝐴 is positive definite (negative definite). 𝐼 is
the identifying matrix of appropriate dimension. 𝑅𝑛 and 𝑅

𝑛𝑚

denote, respectively, the 𝑛 dimensional Euclidean space and
the set of all 𝑛𝑚 real matrices. In symmetric block matrices,
the symbol ∗ is used as an ellipsis for terms induced by
symmetry. In token bus, the computers are connected so that
the signal travels around the network from one computer to
another in a logical ring. A single electronic token moves
around the ring from one computer to the next. If a computer
does not have information to transmit, it simply passes the
token on to the next workstation.

2. System Modelling

We consider a finite collection of linear systems that are
coupled together through their dynamics and feedback. We
consider the case that the state information is transmitted



Abstract and Applied Analysis 3

X11(k)

X1d(k)

S1

Fij
x(k)

Network

Sensor Sensor

Register

· · ·

...x1(k + 1) = ∑ n

j=1
A1jxj(k) +∑

n

j=1
B1juj(k)

Sd+1

Figure 2: The structure of an NCS with S/C channel.

over a limited bandwidth communication channel. State
information of every subsystem is split into different packets
and only one packet can be transmitted at a time. We first
consider multiple-packet transmission NCSs with only S/C
channel, illustrated in Figure 2. The 𝑛 coupled NCSs with
norm-bounded parameter uncertainties are described by

𝑥
𝑖 (𝑘 + 1) =

𝑛

∑

𝑗=1

(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) 𝑥
𝑗 (𝑘) +

𝑛

∑

𝑗=1

(𝐵
𝑖𝑗
+ Δ𝐵
𝑖𝑗
) 𝑢
𝑗 (𝑘) ,

𝑢
𝑖 (𝑘) =

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
𝑥
𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

(1)

where 𝑥
𝑖
(𝑘) ∈ R𝑛 and 𝑢

𝑖
(𝑘) ∈ R𝑝 are the plant state and the

plant input, respectively. 𝑥
𝑖
(𝑘) is the content of the register.𝐹

𝑖𝑗

is the feedback gain to be designed. 𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
are known real

constant matrices with appropriate dimensions. Δ𝐴
𝑖𝑗
, Δ𝐵
𝑖𝑗

characterize the uncertainties in the system and satisfy the
following assumption:

[Δ𝐴
𝑖𝑗

Δ𝐵
𝑖𝑗] = 𝐸

𝑖𝑗
Γ
𝑗 (𝑘) [𝐺𝑗 𝐻

𝑗] , (2)

where 𝐸
𝑖𝑗
, 𝐺
𝑗
, and 𝐻

𝑗
are known real constant matrices

of appropriate dimensions, and Γ
𝑗
(𝑘) are unknown matrix

functions with Lebesgue-measurable elements which satisfies

Γ
𝑗(𝑘)
𝑇
Γ
𝑗 (𝑘) ≤ 𝐼, ∀𝑘. (3)

Define 𝐴
𝑖𝑗

= 𝐴
𝑖𝑗

+ Δ𝐴
𝑖𝑗
, 𝐵
𝑖𝑗

= 𝐵
𝑖𝑗

+ Δ𝐵
𝑖𝑗
; then the

networked control systems with norm-bounded parameter
uncertainties are described as

𝑥
𝑖 (𝑘 + 1) =

𝑛

∑

𝑗=1

𝐴
𝑖𝑗
𝑥
𝑗 (𝑘) +

𝑛

∑

𝑗=1

𝐵
𝑖𝑗
𝑢
𝑗 (𝑘) ,

𝑢
𝑗 (𝑘) =

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
𝑥
𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑘 = 1, 2, . . . .

(4)

Suppose the state is split into 𝑑 packets

𝑥
𝑖 (𝑘) = [𝑋

𝑇

𝑖1
(𝑘) , . . . , 𝑋

𝑇

𝑖𝑑
(𝑘)]
𝑇

, (5)

where 𝑋
𝑖𝑡
(𝑘) = [𝑥

𝑖𝑟
𝑡−1
+1
(𝑘) ⋅ ⋅ ⋅ 𝑥

𝑖𝑟
𝑡

(𝑘)]
𝑇 and 1 ≤ 𝑡 ≤ 𝑑, 0 =

𝑟
0
< 𝑟
1
< ⋅ ⋅ ⋅ < 𝑟

𝑑
= 𝑛. The controller is installed to use the

old state measurement if there is no new data updating. That
is,

𝑥
𝑖 (𝑘) = [𝑋

𝑇

𝑖1
(𝑘) , . . . , 𝑋

𝑇

𝑖𝑑
(𝑘)]

𝑇

, (6)

where

𝑋
𝑖𝑡 (𝑘) =

{{

{{

{

𝑋
𝑖𝑡 (𝑘) if the packet containing

𝑋
𝑖𝑡 (𝑘) is transmitted;

𝑋
𝑖𝑡 (𝑘 − 1) otherwise.

(7)

2.1. An Example of Two Subsystems. For simplicity, we first
consider an example of two subsystems and the plant states
of each subsystem are split into two packets. Consider

𝑥
1 (𝑘 + 1) = 𝐴

11
𝑥
1 (𝑘) + 𝐴

12
𝑥
2 (𝑘) + 𝐵

11
𝑢
1 (𝑘) + 𝐵

12
𝑢
2 (𝑘) ,

𝑥
2 (𝑘 + 1) = 𝐴

21
𝑥
1 (𝑘) + 𝐴

22
𝑥
2 (𝑘) + 𝐵

21
𝑢
1 (𝑘) + 𝐵

22
𝑢
2 (𝑘) ,

(8)

where 𝑥
1
(𝑘) = [𝑋

𝑇

11
(𝑘), 𝑋

𝑇

12
(𝑘)]
𝑇

, 𝑥
2
(𝑘) = [𝑋

𝑇

21
(𝑘), 𝑋

𝑇

22
(𝑘)]
𝑇.

In the standard token-passing bus protocol, the token is
repeatedly transmitted in a fixed order in the network, that
is, [1, 1, 2, 2] in turn. Here, we regard different packets as
different nodes for the network protocol, and this means the
packets would be transmitted in a periodic manner via the
network channel. With the given four-step communication
cycle, the system equations will evolve according to

𝑥
1 (𝑘 + 1) = 𝐴

11
𝑥
1 (𝑘) + 𝐴

12
𝑥
2 (𝑘)

+ 𝐵
11
𝐹
11
[𝑋
𝑇

11
(𝑘) , 𝑋

𝑇

12
(𝑘 − 1)]

𝑇

+ 𝐵
12
𝐹
12
[𝑋
𝑇

21
(𝑘 − 1), 𝑋

𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
1 (𝑘 + 2) = 𝐴

11
𝑥
1 (𝑘 + 1) + 𝐴

12
𝑥
2 (𝑘 + 1)

+ 𝐵
11
𝐹
11
[𝑋
𝑇

11
(𝑘), 𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
𝐹
12
[𝑋
𝑇

21
(𝑘 − 1) , 𝑋

𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
1 (𝑘 + 3) = 𝐴

11
𝑥
1 (𝑘 + 2) + 𝐴

12
𝑥
2 (𝑘 + 2)

+ 𝐵
11
𝐹
11
[𝑋
𝑇

11
(𝑘), 𝑋

𝑇

12
(𝑘 + 1)]

𝑇
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+ 𝐵
12
𝐹
12
[𝑋
𝑇

21
(𝑘 + 2), 𝑋

𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
1 (𝑘 + 4) = 𝐴

11
𝑥
1 (𝑘 + 3) + 𝐴

12
𝑥
2 (𝑘 + 3)

+ 𝐵
11
𝐹
11
[𝑋
𝑇

11
(𝑘), 𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
𝐹
12
[𝑋
𝑇

21
(𝑘 + 2), 𝑋

𝑇

22
(𝑘 + 3)]

𝑇

,

𝑥
1 (𝑘 + 5) = 𝐴

11
𝑥
1 (𝑘 + 4) + 𝐴

12
𝑥
2 (𝑘 + 4)

+ 𝐵
11
𝐹
11
[𝑋
𝑇

11
(𝑘 + 4), 𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
𝐹
12
[𝑋
𝑇

21
(𝑘 + 2) , 𝑋

𝑇

22
(𝑘 + 3)]

𝑇

,

...

𝑥
2 (𝑘 + 1) = 𝐴

21
𝑥
1 (𝑘) + 𝐴

22
𝑥
2 (𝑘)

+ 𝐵
21
𝐹
21
[𝑋
𝑇

11
(𝑘), 𝑋

𝑇

12
(𝑘 − 1)]

𝑇

+ 𝐵
22
𝐹
22
[𝑋
𝑇

21
(𝑘 − 1), 𝑋

𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
2 (𝑘 + 2) = 𝐴

21
𝑥
1 (𝑘 + 1) + 𝐴

22
𝑥
2 (𝑘 + 1)

+ 𝐵
21
𝐹
21
[𝑋
𝑇

11
(𝑘) , 𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
𝐹
22
[𝑋
𝑇

21
(𝑘 − 1) , 𝑋

𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
2 (𝑘 + 3) = 𝐴

21
𝑥
1 (𝑘 + 2) + 𝐴

22
𝑥
2 (𝑘 + 2)

+ 𝐵
21
𝐹
21
[𝑋
𝑇

11
(𝑘), 𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
𝐹
22
[𝑋
𝑇

21
(𝑘 + 2), 𝑋

𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
2 (𝑘 + 4) = 𝐴

21
𝑥
1 (𝑘 + 3) + 𝐴

22
𝑥
2 (𝑘 + 3)

+ 𝐵
21
𝐹
21
[𝑋
𝑇

11
(𝑘), 𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
𝐹
22
[𝑋
𝑇

21
(𝑘 + 2), 𝑋

𝑇

22
(𝑘 + 3)]

𝑇

,

𝑥
2 (𝑘 + 5) = 𝐴

21
𝑥
1 (𝑘 + 4) + 𝐴

22
𝑥
2 (𝑘 + 4)

+ 𝐵
21
𝐹
21
[𝑋
𝑇

11
(𝑘 + 4), 𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
𝐹
22
[𝑋
𝑇

21
(𝑘 + 2) , 𝑋

𝑇

22
(𝑘 + 3)]

𝑇

.

(9)

In this case, the two subsystems 𝑥
1
and 𝑥

2
are coupled and

their dynamics have a periodicity of four steps. Similar to [10],
define the buffered states as

𝑥
1 (𝑘) =

[
[
[

[

𝑥
1 (𝑘 − 3)

𝑥
1 (𝑘 − 2)

𝑥
1 (𝑘 − 1)

𝑥
1 (𝑘)

]
]
]

]

,

𝑥
2 (𝑘) =

[
[
[

[

𝑥
2 (𝑘 − 3)

𝑥
2 (𝑘 − 2)

𝑥
2 (𝑘 − 1)

𝑥
2 (𝑘)

]
]
]

]

, 𝑥 = [
𝑥
1

𝑥
2

] .

(10)

Then the corresponding drift dynamics are

𝑥
1 (𝑘 + 1) =

[
[
[

[

0 𝐼 0 0

0 0 𝐼 0

0 0 0 𝐼

𝐵
11
𝐹
11
𝐷
10

0 0 𝐴
11

+ 𝐵
11
𝐹
11
𝐷
11

]
]
]

]

𝑥
1 (𝑘)

+

[
[
[

[

0 0 0 0

0 0 0 0

0 0 0 0

0 𝐵
12
𝐹
12
𝐷
21

𝐵
12
𝐹
12
𝐷
20

𝐴
12

]
]
]

]

𝑥
2 (𝑘) ,

𝑥
2 (𝑘 + 1) =

[
[
[

[

0 𝐼 0 0

0 0 𝐼 0

0 0 0 𝐼

𝐵
21
𝐹
21
𝐷
10

0 0 𝐴
21

+ 𝐵
21
𝐹
21
𝐷
11

]
]
]

]

𝑥
1 (𝑘)

+

[
[
[

[

0 0 0 0

0 0 0 0

0 0 0 0

0 𝐵
22
𝐹
22
𝐷
21

𝐵
22
𝐹
22
𝐷
20

𝐴
22

]
]
]

]

𝑥
2 (𝑘) ,

(11)

where

𝐷
11

= [
𝐼 0

0 0
] , 𝐷

10
= [

0 𝐼

0 0
] ,

𝐷
21

= [
0 0

𝐼 0
] , 𝐷

20
= [

0 0

0 𝐼
] .

(12)

The combined drift dynamics at each of the four steps of
the communication sequence are

𝑥 (𝑘 + 1) = 𝑀
𝑞
𝑥 (𝑘) , (13)
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where

𝑀
1
=

[
[
[
[
[
[
[
[
[
[
[

[

0 𝐼 0 0 0

0 0 𝐼 0 0

0 0 0 𝐼 0

𝐵
11
𝐹
11
𝐷
10

0 0 𝐴
11

+ 𝐵
11
𝐹
11
𝐷
11

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

𝐵
21
𝐹
21
𝐷
10

0 0 𝐴
21

+ 𝐵
21
𝐹
21
𝐷
11

0

0 0 0

0 0 0

0 0 0

𝐵
12
𝐹
12
𝐷
21

𝐵
12
𝐹
12
𝐷
20

𝐴
12

𝐼 0 0

0 𝐼 0

0 0 𝐼

𝐵
22
𝐹
22
𝐷
21

𝐵
22
𝐹
22
𝐷
20

𝐴
22

]
]
]
]
]
]
]
]
]
]
]

]

,

𝑀
2
=

[
[
[
[
[
[
[
[
[
[
[

[

0 𝐼 0 0 0

0 0 𝐼 0 0

0 0 0 𝐼 0

0 0 𝐵
11
𝐹
11
𝐷
11

𝐴
11

+ 𝐵
11
𝐹
11
𝐷
10

𝐵
12
𝐹
12
𝐷
21

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 𝐵
21
𝐹
21
𝐷
10

𝐴
21

+ 𝐵
21
𝐹
21
𝐷
11

𝐵
22
𝐹
22
𝐷
21

0 0 0

0 0 0

0 0 0

𝐵
12
𝐹
12
𝐷
20

0 𝐴
12

𝐼 0 0

0 𝐼 0

0 0 𝐼

𝐵
22
𝐹
22
𝐷
20

0 𝐴
22

]
]
]
]
]
]
]
]
]
]
]

]

,

𝑀
3
=

[
[
[
[
[
[
[
[
[
[
[

[

0 𝐼 0 0 0

0 0 𝐼 0 0

0 0 0 𝐼 0

0 𝐵
11
𝐹
11
𝐷
11

𝐵
11
𝐹
11
𝐷
10

𝐴
11

𝐵
12
𝐹
12
𝐷
20

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 𝐵
21
𝐹
21
𝐷
11

𝐵
21
𝐹
21
𝐷
10

𝐴
21

𝐵
22
𝐹
22
𝐷
20

0 0 0

0 0 0

0 0 0

0 0 𝐴
12

+ 𝐵
12
𝐹
12
𝐷
21

𝐼 0 0

0 𝐼 0

0 0 𝐼

0 0 𝐴
22

+ 𝐵
22
𝐹
22
𝐷
21

]
]
]
]
]
]
]
]
]
]
]

]

,

𝑀
4
=

[
[
[
[
[
[
[
[
[
[
[

[

0 𝐼 0 0 0 0

0 0 𝐼 0 0 0

0 0 0 𝐼 0 0

𝐵
11
𝐹
11
𝐷
11

𝐵
11
𝐹
11
𝐷
10

0 𝐴
11

0 0

0 0 0 0 0 𝐼

0 0 0 0 0 0

0 0 0 0 0 0

𝐵
21
𝐹
21
𝐷
11

𝐵
21
𝐹
21
𝐷
10

0 𝐴
21

0 0

0 0

0 0

0 0

𝐵
12
𝐹
12
𝐷
21

𝐴
12

+ 𝐵
12
𝐹
12
𝐷
20

0 0

𝐼 0

0 𝐼

𝐵
22
𝐹
22
𝐷
21

𝐴
22

+ 𝐵
22
𝐹
22
𝐷
20

]
]
]
]
]
]
]
]
]
]
]

]

.

(14)

Remark 1. For data packets transmitted in both C/A and S/C
channels periodically, similar model can be obtained.

As shown in Figure 3, 𝑥(𝑘) is the received state informa-
tion by the controller over S/C channel, 𝑢(𝑘), which will be
sent to the system over C/A channel, is the output of the
controller, and 𝑢(𝑘) is the real system input. We assume that
plant output and controller output are divided into 𝑑 (𝑑 ≥ 1)

packets to be transmitted. The plant input is presented as (5)
and the controller output is described as

𝑢
𝑖 (𝑘) = [𝑈

𝑇

𝑖1
(𝑘), . . . , 𝑈

𝑇

𝑖𝑑
(𝑘)]

𝑇

, (15)

where

𝑈
𝑖𝑡 (𝑘) = [𝑢

𝑖𝑟
𝑡−1
+1 (𝑘) ⋅ ⋅ ⋅ 𝑢

𝑖𝑟
𝑡

(𝑘)]
𝑇

, (16)

where 1 ≤ 𝑡 ≤ 𝑑, 0 = 𝑟
0
< 𝑟
1
< ⋅ ⋅ ⋅ < 𝑟

𝑑
= 𝑛.

Consequently, denote

𝑢
𝑖 (𝑘) = [𝑈

𝑇

𝑖1
(𝑘), . . . , 𝑈

𝑇

𝑖𝑑
(𝑘)]
𝑇

, (17)

where

𝑈
𝑖𝑡 (𝑘) =

{{

{{

{

𝑈
𝑖𝑡 (𝑘) , if the packet containing

𝑈
𝑖𝑡 (𝑘) is transmitted;

𝑈
𝑖𝑡 (𝑘 − 1) , otherwise.

(18)

Then

𝑢
𝑖 (𝑘) =

𝑛

∑

𝑗=1

𝐹
𝑖𝑗
[𝑋
𝑇

𝑖1
(𝑘) ⋅ ⋅ ⋅ 𝑋

𝑇

𝑖𝑑
(𝑘)]

𝑇

, (19)

where 𝑥
𝑖
(𝑘) is defined in (6).

In the case that both C/A and S/C channels are standard
token-passing bus networks, the packets in the two channels
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x(k)

x1(k + 1) = ∑ n

j=1
A1jxj(k) +∑

n

j=1
B1juj(k)

X11(k)

X1d(k)

S1 Sd

T1 Td

U1 Ud

Fij

Network
Sensor Sensor

Register

· · ·

...

· · ·

u

Figure 3: The structure of an NCS with both S/C and C/A channel.

would be transmitted synchronously in a periodic manner.
We still study the following two subsystems and there is only
one packet that can be transmitted every time:

𝑥
1 (𝑘 + 1) = 𝐴

11
𝑥
1 (𝑘) + 𝐴

12
𝑥
2 (𝑘) + 𝐵

11
𝑢
1 (𝑘) + 𝐵

12
𝑢
2 (𝑘) ,

𝑥
2 (𝑘 + 1) = 𝐴

21
𝑥
1 (𝑘) + 𝐴

22
𝑥
2 (𝑘) + 𝐵

21
𝑢
1 (𝑘) + 𝐵

22
𝑢
2 (𝑘) ,

(20)

where

𝑥
1 (𝑘) = [𝑋

𝑇

11
(𝑘), 𝑋

𝑇

12
(𝑘)]
𝑇

,

𝑥
2 (𝑘) = [𝑋

𝑇

21
(𝑘), 𝑋

𝑇

22
(𝑘)]
𝑇

,

𝑢
1 (𝑘) = [𝑈

𝑇

11
(𝑘) , 𝑈

𝑇

12
(𝑘)]
𝑇

,

𝑢
2 (𝑘) = [𝑈

𝑇

21
(𝑘), 𝑈

𝑇

22
(𝑘)]
𝑇

.

(21)

Suppose the packets are transmitted over the communication
channel with a periodic communication sequence [1, 1, 2, 2]

in turn, the system equations will evolve according to

𝑥
1 (𝑘 + 1) = 𝐴

11
𝑥
1 (𝑘) + 𝐴

12
𝑥
2 (𝑘)

+ 𝐵
11
[𝑈
𝑇

11
(𝑘), 𝑈

𝑇

12
(𝑘 − 1)]

𝑇

+ 𝐵
12
[𝑈
𝑇

21
(𝑘 − 1), 𝑈

𝑇

22
(𝑘 − 1)]

𝑇

= 𝐴
11
𝑥
1 (𝑘) + 𝐴

12
𝑥
2 (𝑘)

+ 𝐵
11
[𝐹
11
𝑋
𝑇

11
(𝑘), 𝐹
11
𝑋
𝑇

12
(𝑘 − 1)]

𝑇

+ 𝐵
12
[𝐹
12
𝑋
𝑇

21
(𝑘 − 1), 𝐹

12
𝑋
𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
1 (𝑘 + 2) = 𝐴

11
𝑥
1 (𝑘 + 1) + 𝐴

12
𝑥
2 (𝑘 + 1)

+ 𝐵
11
[𝑈
𝑇

11
(𝑘), 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
[𝑈
𝑇

21
(𝑘 − 1), 𝑈

𝑇

22
(𝑘 − 1)]

𝑇

= 𝐴
11
𝑥
1 (𝑘 + 1) + 𝐴

12
𝑥
2 (𝑘 + 1)

+ 𝐵
11
[𝐹
11
𝑋
𝑇

11
(𝑘), 𝐹
11
𝑋
𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
[𝐹
12
𝑋
𝑇

21
(𝑘 − 1), 𝐹

12
𝑋
𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
1 (𝑘 + 3) = 𝐴

11
𝑥
1 (𝑘 + 2) + 𝐴

12
𝑥
2 (𝑘 + 2)

+ 𝐵
11
[𝑈
𝑇

11
(𝑘), 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
[𝑈
𝑇

21
(𝑘 + 2) , 𝑈

𝑇

22
(𝑘 − 1)]

𝑇

= 𝐴
11
𝑥
1 (𝑘 + 2) + 𝐴

12
𝑥
2 (𝑘 + 2)

+ 𝐵
11
[𝐹
11
𝑋
𝑇

11
(𝑘), 𝐹
11
𝑋
𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
[𝐹
12
𝑋
𝑇

21
(𝑘 + 2) , 𝐹12𝑋

𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
1 (𝑘 + 4) = 𝐴

11
𝑥
1 (𝑘 + 3) + 𝐴

12
𝑥
2 (𝑘 + 3)

+ 𝐵
11
[𝑈
𝑇

11
(𝑘), 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
[𝑈
𝑇

21
(𝑘 + 2) , 𝑈

𝑇

22
(𝑘 + 3)]

𝑇

= 𝐴
11
𝑥
1 (𝑘 + 3) + 𝐴

12
𝑥
2 (𝑘 + 3)

+ 𝐵
11
[𝐹
11
𝑋
𝑇

11
(𝑘) , 𝐹11𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
[𝐹
12
𝑋
𝑇

21
(𝑘 + 2) , 𝐹12𝑋

𝑇

22
(𝑘 + 3)]

𝑇

,

𝑥
1 (𝑘 + 5) = 𝐴

11
𝑥
1 (𝑘 + 4) + 𝐴

12
𝑥
2 (𝑘 + 4)

+ 𝐵
11
[𝑈
𝑇

11
(𝑘 + 4), 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
[𝑈
𝑇

21
(𝑘 + 2), 𝑈

𝑇

22
(𝑘 + 3)]

𝑇

= 𝐴
11
𝑥
1 (𝑘 + 4) + 𝐴

12
𝑥
2 (𝑘 + 4)

+ 𝐵
11
[𝐹
11
𝑋
𝑇

11
(𝑘 + 4), 𝐹

11
𝑋
𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
12
[𝐹
12
𝑋
𝑇

21
(𝑘 + 2) , 𝐹12𝑋

𝑇

22
(𝑘 + 3)]

𝑇

,

...

𝑥
2 (𝑘 + 1) = 𝐴

21
𝑥
1 (𝑘 + 1) + 𝐴

22
𝑥
2 (𝑘 + 1)

+ 𝐵
21
[𝑈
𝑇

11
(𝑘), 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝑈
𝑇

21
(𝑘 − 1) , 𝑈

𝑇

22
(𝑘 − 1)]

𝑇

,
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= 𝐴
21
𝑥
1 (𝑘) + 𝐴

22
𝑥
2 (𝑘)

+ 𝐵
21
[𝐹
21
𝑋
𝑇

11
(𝑘) , 𝐹21𝑋

𝑇

12
(𝑘 − 1)]

𝑇

+ 𝐵
22
[𝐹
22
𝑋
𝑇

21
(𝑘 − 1), 𝐹

22
𝑋
𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
2 (𝑘 + 2) = 𝐴

21
𝑥
1 (𝑘 + 1) + 𝐴

22
𝑥
2 (𝑘 + 1)

+ 𝐵
21
[𝑈
𝑇

11
(𝑘), 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝑈
𝑇

21
(𝑘 − 1), 𝑈

𝑇

22
(𝑘 − 1)]

𝑇

= 𝐴
21
𝑥
1 (𝑘 + 1) + 𝐴

22
𝑥
2 (𝑘 + 1)

+ 𝐵
21
[𝐹
21
𝑋
𝑇

11
(𝑘), 𝐹
21
𝑋
𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝐹
22
𝑋
𝑇

21
(𝑘 − 1), 𝐹

22
𝑋
𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
2 (𝑘 + 3) = 𝐴

21
𝑥
1 (𝑘 + 2) + 𝐴

22
𝑥
2 (𝑘 + 2)

+ 𝐵
21
[𝑈
𝑇

11
(𝑘), 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝑈
𝑇

21
(𝑘 + 2), 𝑈

𝑇

22
(𝑘 − 1)]

𝑇

= 𝐴
21
𝑥
1 (𝑘 + 2) + 𝐴

22
𝑥
2 (𝑘 + 2)

+ 𝐵
21
[𝐹
21
𝑋
𝑇

11
(𝑘) , 𝐹21𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝐹
22
𝑋
𝑇

21
(𝑘 + 2), 𝐹

22
𝑋
𝑇

22
(𝑘 − 1)]

𝑇

,

𝑥
2 (𝑘 + 4) = 𝐴

21
𝑥
1 (𝑘 + 3) + 𝐴

22
𝑥
2 (𝑘 + 3)

+ 𝐵
21
[𝑈
𝑇

11
(𝑘) , 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝑈
𝑇

21
(𝑘 + 2), 𝑈

𝑇

22
(𝑘 + 3)]

𝑇

= 𝐴
21
𝑥
1 (𝑘 + 3) + 𝐴

22
𝑥
2 (𝑘 + 3)

+ 𝐵
21
[𝐹
21
𝑋
𝑇

11
(𝑘) , 𝐹21𝑋

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝐹
22
𝑋
𝑇

21
(𝑘 + 2) , 𝐹22𝑋

𝑇

22
(𝑘 + 3)]

𝑇

,

𝑥
2 (𝑘 + 5) = 𝐴

21
𝑥
1 (𝑘 + 4) + 𝐴

22
𝑥
2 (𝑘 + 4)

+ 𝐵
21
[𝑈
𝑇

11
(𝑘 + 4), 𝑈

𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝑈
𝑇

21
(𝑘 + 2), 𝑈

𝑇

22
(𝑘 + 3)]

𝑇

= 𝐴
21
𝑥
1 (𝑘 + 4) + 𝐴

22
𝑥
2 (𝑘 + 4)

+ 𝐵
21
[𝐹
21
𝑋
𝑇

11
(𝑘 + 4), 𝐹

21
𝑋
𝑇

12
(𝑘 + 1)]

𝑇

+ 𝐵
22
[𝐹
22
𝑋
𝑇

21
(𝑘 + 2), 𝐹

22
𝑋
𝑇

22
(𝑘 + 3)]

𝑇

.

(22)

Using the definition of the buffered states (10), we still
obtain the evolution equation (13).

2.2. The General Case. Similarly, if the states of each subsys-
tem are split into 𝑑 packets and the packets are transmitted in
a periodic pattern, we can obtain the general case.

Suppose 𝑥 = [𝑥
𝑇

1
⋅ ⋅ ⋅ 𝑥
𝑇

𝑛
]
𝑇

, 𝑥
𝑖
contains past state values

for each step in the communication sequence and 𝑥
𝑖

=

[𝑥
𝑇

𝑖
(𝑘 − 𝑝 + 1) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑖
(𝑘)]
𝑇and 𝑝 is the length of communi-

cation sequence. To describe the general case, we define
an integer matrix, 𝑇, that contains an update sequence for
each subsystem’s packet. The matrix 𝑇 will have 𝑛 rows (one
for each subsystem) and 𝑝 columns. The (𝑖, 𝑗)th entry of 𝑇
will denote the number of steps from the 𝑗th step of the
communication sequence to the next communication with
the 𝑖th subsystem. Define 𝐴

𝑖𝑗
= 𝐽
𝑝
⊗ 𝐼 + ∑

𝑛

𝑗=1
(𝐸
𝑛,𝑛

⊗ 𝐴
𝑖𝑗
),

Δ𝐴
𝑖𝑗
= ∑
𝑛

𝑗=1
𝐸
𝑛,𝑛

⊗ Δ𝐴
𝑖𝑗
, where 𝐽

𝑝
is the 𝑝 × 𝑝 Jordan matrix

composed of all zeros except for ones on the superdiagonal;
𝐸
𝑖,𝑗

is a matrix of zeros with a one in the (𝑖, 𝑗)th position.
Define

𝐷
𝑗
𝑞 =

[
[
[
[
[

[

0

d 0

𝐼
(𝑟
𝑗
−𝑟
𝑗−1
)𝑞

0 d
0

]
]
]
]
]

]

, (23)

𝐹
𝑖𝑗𝑞

= 𝐸
𝑛,𝑇
𝑗𝑞

⊗ 𝐵
𝑖𝑗
𝐹
𝑖𝑗
𝐷
𝑗𝑞
, andΔ𝐹

𝑖𝑗𝑞
= 𝐸
𝑛,𝑇
𝑗𝑞

⊗ Δ𝐵
𝑖𝑗
𝐹
𝑖𝑗
𝐷
𝑗𝑞
, which

is related to the feedback gains for subsystem 𝑖 at the 𝑞th step
in the communication sequence. Now, at each sequence step,
𝑞 = 1, . . . , 𝑝, we can write the evolution of all subsystems as

𝑥 (𝑘 + 1) = 𝑀
𝑞
𝑥 (𝑘) , 𝑘 ∈ {𝑛𝑝 + 𝑞} , (24)

where

𝑀
𝑞
=

[
[

[

𝐴
11

⋅ ⋅ ⋅ 𝐴
1𝑛

... d
...

𝐴
𝑛1

⋅ ⋅ ⋅ 𝐴
𝑛𝑛

]
]

]

+
[
[

[

Δ𝐴
11

⋅ ⋅ ⋅ Δ𝐴
1𝑛

... d
...

Δ𝐴
𝑛1

⋅ ⋅ ⋅ Δ𝐴
𝑛𝑛

]
]

]

+

[
[
[

[

𝐹
11𝑞

⋅ ⋅ ⋅ 𝐹
1𝑛𝑞

... d
...

𝐹
𝑛1𝑞

⋅ ⋅ ⋅ 𝐹
𝑛𝑛𝑞

]
]
]

]

+

[
[
[

[

Δ𝐹
11𝑞

⋅ ⋅ ⋅ Δ𝐹
1𝑛𝑞

... d
...

Δ𝐹
𝑛1𝑞

⋅ ⋅ ⋅ Δ𝐹
𝑛𝑛𝑞

]
]
]

]

.

(25)

Remark 2. This paper models uncertain coupled NCSs with
multiple packet transmission as switched system. The trans-
mission pattern of the NCSs is closely related to the switching
law of the switched system. This switched model not only
enables us to design the controller for the NCSs, but also
makes it more convenient to deal with the uncertain part.

3. Stability Analysis and Stabilization Result

We consider the case that in which all nodes transmitted in a
toking-bus. With the toking bus protocol applied, the nodes
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are arranged logically into a ring and transmit their packets
in a predetermined order. It can be seen that system (24)
is a switched linear system switching among the following
subsystems:

{𝑀
1
, . . . ,𝑀

𝑝
} (26)

in a periodic manner. Clearly, the original system (1) is stable
if the switched system (24) is stable.

The following result gives a sufficient condition on the
stability of the NCS (1) with packets in different network
channels transmitted in a periodic manner.

Lemma 3 (see [19]). Let the states of multiple NCSs (1) be split
intomultiple data packets and suppose the transmission of these
data packets is in a periodic manner.ThenNCS (1) is uniformly
asymptotically stable if all the eigenvalues of Ψ are contained
within the unit circle; that is, |𝜆

𝑖
(Ψ)| < 1 for 𝑖 = 1, 2, . . . , 𝑛,

where Ψ = ∏
𝑖=𝑝

𝑖=1
𝑀
𝑖
.

The following lemma will play a key rule to design the
feedback gain for NCS (1).

Lemma 4 (see [38]). Let the matrices 𝑈, 𝑊, and Φ = Φ
∗ be

given. Then the following statements are equivalent.

(i) There exists a matrix 𝑉 satisfying

𝑈𝑉𝑊 + (𝑈𝑉𝑊)
∗
+ Φ < 0. (27)

(ii) The following two conditions hold:

𝑁
𝑢
Φ𝑁
∗

𝑢
< 0 𝑜𝑟 𝑈𝑈

∗
> 0,

𝑁
∗

𝑤
Φ𝑁
𝑤

< 0 𝑜𝑟 𝑊
∗
𝑊 > 0,

(28)

where𝑁
𝑢
and𝑁

∗

𝑤
are, respectively, orthogonal comple-

ments of 𝑁 and 𝑊
∗; that is,

𝑁
𝑢
𝑈 = 0, 𝑁

∗

𝑤
𝑊
∗
= 0. (29)

The following lemma will be used to deal with the
uncertain part of the NCSs.

Lemma 5 (see [17]). 𝑀, 𝑁, and Λ are real matrices with
proper dimensions which satisfyΛ

𝑇
Λ ≤ 𝐼; then for any positive

scalar 𝜖, we can get the following inequality:

𝑀Λ𝑁 + 𝑁
𝑇
Λ
𝑇
𝑀
𝑇
≤ 𝜀𝑀𝑀

𝑇
+ 𝜀
−1
𝑁
𝑇
𝑁. (30)

We give the stabilization result in the following.

Theorem 6. If there exist a positive definite matrix 𝑃, matrices
𝐾
𝑖𝑗
, 𝑌
𝑖𝑗
, and positive scalars 𝜖, 𝜀

𝑖
satisfying

𝑃𝐵
𝑖𝑗
= 𝐵
𝑖𝑗
𝐾
𝑖𝑗
, (31)

and the following LMI

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω 𝑀 𝑁

𝑇

𝑀
1

𝑁
1

𝑇

⋅ ⋅ ⋅ 𝑀
𝑛

𝑁
𝑛

𝑇

𝑀

𝑇

−Ω
0

0 0 0 ⋅ ⋅ ⋅ 0 0

𝑁 0 −Ω
0

0 0 ⋅ ⋅ ⋅ 0 0

𝑀
1

𝑇

0 0 −Ω
1

0 ⋅ ⋅ ⋅ 0 0

𝑁
1

0 0 0 −Ω
1

⋅ ⋅ ⋅ 0 0

...
...

...
...

... d
...

...

𝑀
𝑛

𝑇

0 0 0 0 ⋅ ⋅ ⋅ −Ω
𝑛

0

𝑁
𝑛

0 0 0 0 ⋅ ⋅ ⋅ 0 −Ω
𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (32)

where

Ω =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃

𝑇

⋀
𝑝

0 ⋅ ⋅ ⋅ 0 0

⋀
𝑝

−2𝑃

𝑇

⋀

𝑝−1

⋅ ⋅ ⋅ 0 0

0 ⋀

𝑝−1

−2𝑃 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...

0 0 0 ⋅ ⋅ ⋅ −2𝑃

𝑇

⋀

1

0 0 0 ⋅ ⋅ ⋅ ⋀

1

−𝑃

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑃 = [

[

𝑃 0

d
0 𝑃

]

]

,

⋀

𝑞

=
[
[

[

𝑃𝐴
11

⋅ ⋅ ⋅ 𝑃𝐴
1𝑛

... d
...

𝑃𝐴
𝑛1

⋅ ⋅ ⋅ 𝑃𝐴
𝑛𝑛

]
]

]

+

[
[
[

[

𝐸
𝑛𝑇
1𝑡𝑞

⊗ 𝐵
11
𝑌
11
𝐷
1𝑡
𝑞

⋅ ⋅ ⋅ 𝐸
𝑛𝑇
𝑛𝑡𝑞

⊗ 𝐵
1𝑛
𝑌
1𝑛
𝐷
𝑛𝑡
𝑞

... d
...

𝐸
𝑛𝑇
1𝑡𝑞

⊗ 𝐵
𝑛1
𝑌
𝑛1
𝐷
1𝑡
𝑞

⋅ ⋅ ⋅ 𝐸
𝑛𝑇
𝑛𝑡𝑞

⊗ 𝐵
𝑛𝑛
𝑌
𝑛𝑛
𝐷
𝑛𝑡
𝑞

]
]
]

]

,

𝑀 =

[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

0 𝑀 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝑀

]
]
]
]

]

,
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𝑀 =

[
[
[
[
[
[

[

𝑃𝐸
𝑛,𝑛

⊗ 𝐸
11

⋅ ⋅ ⋅ 𝑃𝐸
𝑛,𝑛

⊗ 𝐸
1𝑛

... d
...

𝑃𝐸
𝑛,𝑛

⊗ 𝐸
𝑛1

⋅ ⋅ ⋅ 𝑃𝐸
𝑛,𝑛

⊗ 𝐸
𝑛𝑛

]
]
]
]
]
]

]

,

𝑁 =

[
[
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0 0

𝜖𝑁 0 0 ⋅ ⋅ ⋅ 0 0

0 𝜖𝑁 0 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 𝜖𝑁 0

]
]
]
]
]
]
]
]

]

,

𝑁 =

[
[
[

[

𝐸
𝑛,𝑛

⊗ 𝐺
1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐸
𝑛,𝑛

⊗ 𝐺
𝑛

]
]
]

]

,

𝑀
𝑖
=

[
[
[
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0 0

0 𝜀
𝑖
𝑀
𝑖𝑝

0 ⋅ ⋅ ⋅ 0 0

0 0 𝜀
𝑖
𝑀
𝑖(𝑝−1)

⋅ ⋅ ⋅ 0 0

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ 𝜀

𝑖
𝑀
𝑖2

0

0 0 0 ⋅ ⋅ ⋅ 0 𝜀
𝑖
𝑀
𝑖1

]
]
]
]
]
]
]
]
]

]

,

𝑀
𝑖𝑞

=

[
[
[
[
[
[
[
[
[

[

0 ⋅ ⋅ ⋅ 0

...
...

𝐸
𝑛𝑇
1𝑡𝑞

⊗ 𝐸
𝑖1

⋅ ⋅ ⋅ 𝐸
𝑛𝑇
𝑛𝑡𝑞

⊗ 𝐸
𝑖𝑛

...
...

0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]

]

,

𝑁
𝑖
=

[
[
[
[
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0 0

𝑁
𝑖𝑝

0 0 ⋅ ⋅ ⋅ 0 0

0 𝑁
𝑖(𝑝−1)

0 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 𝑁
𝑖1

0

]
]
]
]
]
]
]
]
]
]

]

,

𝑁
𝑖𝑞

=

[
[
[

[

𝐸
𝑇
1𝑡𝑞
𝑇
1𝑡𝑞

⊗ 𝐻
1
𝑌
𝑖1
𝐷
1𝑡
𝑞

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐸
𝑇
𝑛𝑡𝑞
𝑇
𝑛𝑡𝑞

⊗ 𝐻
𝑛
𝑌
𝑖𝑛
𝐷
𝑛𝑡
𝑞

]
]
]

]

,

𝐸
𝑖𝑗
= [𝐸𝑖𝑗 0] , 𝐺

𝑗
= [

𝐺
𝑗

0
] , 𝐻

𝑗
= [

𝐻
𝑗

0
] ,

Ω
0
= diag {𝜖𝐼 ⋅ ⋅ ⋅ 𝜖𝐼} , Ω

𝑗
= diag {𝜖

𝑖
𝐼 ⋅ ⋅ ⋅ 𝜖

𝑖
𝐼} ,

(33)

where 𝑞 = 1, . . . , 𝑝, 𝑗 = 1, 2, . . . , 𝑛, and 𝑖 = 1, 2, . . . , 𝑛, then
multiple NCSs (1) can be robustly stabilized with the state
feedback gain

𝐹
𝑖𝑗
= 𝐾
−1

𝑖𝑗
𝑌
𝑖𝑗
. (34)

Proof. FromTheorem 6, the stabilization problem is to com-
pute the feedback gain 𝐹

𝑖𝑗
such that Ψ is Schur-stable. In the

Lyapunov framework, the Schur-stability of matrix Ψ can be
guaranteed by the existence of a symmetric positive definite
matrix 𝑃 such that the following inequality holds:

−𝑃 + Ψ
𝑇
𝑃Ψ < 0. (35)

Condition (35) can be written as

[𝐼 𝑀
𝑇

𝑝
] [

−𝑃 0

0 Π
𝑇

𝑝−1
𝑃Π
𝑝−1

] [
𝐼

𝑀
𝑝

] < 0, (36)

where

Π
𝑝−1

= 𝑀
1
𝑀
2
⋅ ⋅ ⋅𝑀
𝑝−1

. (37)

We define 𝑁
𝑢

= [𝐼 𝑀
𝑇

𝑝
], 𝑉 = 𝑃, and 𝑊 = [0 𝐼]. Using

Lemma 4, (36) is equivalent to the existence of symmetric
positive definite matrix 𝑃 such that the following inequality
holds:

[
−𝑃 0

0 Π
𝑇

𝑝−1
𝑃Π
𝑝−1

] + [
𝑀
𝑇

𝑝

−𝐼
]𝑃 [0 𝐼]

+ [
0

𝐼
] 𝑃 [𝑀𝑝 −𝐼] < 0.

(38)

Rearranging it, we obtain

[

[

−𝑃 𝑀
𝑇

𝑝
𝑃

𝑃𝑀
𝑝

−2𝑃 + Π
𝑇

𝑝−1
𝑃Π
𝑝−1

]

]

< 0, (39)

which can be written as

[
𝐼 0 0

0 𝐼 𝑀
𝑇

𝑝−1

]
[
[

[

−𝑃 𝑀
𝑇

𝑝
𝑃 0

𝑃𝑀
𝑝

−2𝑃 0

0 0 Π
𝑇

𝑝−2
𝑃Π
𝑝−2

]
]

]

×[

[

𝐼 0

0 𝐼

0 𝑀
𝑝−1

]

]

< 0,

(40)
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where

Π
𝑝−2

= 𝑀
1
𝑀
2
⋅ ⋅ ⋅𝑀
𝑝−2

. (41)

Repeating this procedure, we can show that (36) can be
guaranteed by the following inequality:

[
[
[
[
[
[
[
[
[

[

−𝑃 𝑀
𝑇

𝑝
𝑃 0 ⋅ ⋅ ⋅ 0 0

𝑃𝑀
𝑝

−2𝑃 𝑀
𝑇

𝑝−1
𝑃 ⋅ ⋅ ⋅ 0 0

0 𝑃𝑀
𝑝−1

−2𝑃 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ −2𝑃 𝑀

𝑇

1
𝑃

0 0 0 ⋅ ⋅ ⋅ 𝑃𝑀
1

−𝑃

]
]
]
]
]
]
]
]
]

]

< 0. (42)

Let 𝑌
𝑖𝑗
= 𝐾
𝑖𝑗
𝐹
𝑖𝑗
. Using the definition of𝑀

𝑞
(𝑖 = 1, . . . , 𝑝),

together with (31), we know (42) is equivalent to

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃

𝑇

⋀
𝑝

+ Δ

𝑇

⋀
𝑝

0 ⋅ ⋅ ⋅ 0 0

⋀
𝑝

+ Δ⋀
𝑝

−2𝑃

𝑇

⋀

𝑝−1

+ Δ

𝑇

⋀

𝑝−1

⋅ ⋅ ⋅ 0 0

0 ⋀

𝑝−1

+ Δ⋀

𝑝−1

−2𝑃 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...

0 0 0 ⋅ ⋅ ⋅ −2𝑃

𝑇

⋀

1

+ Δ

𝑇

⋀

1

0 0 0 ⋅ ⋅ ⋅ ⋀

1

+ Δ⋀

1

−𝑃

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(43)

which can be written as

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃

𝑇

⋀
𝑝

0 ⋅ ⋅ ⋅ 0 0

⋀
𝑝

−2𝑃

𝑇

⋀

𝑝−1

⋅ ⋅ ⋅ 0 0

0 ⋀

𝑝−1

−2𝑃 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...

0 0 0 ⋅ ⋅ ⋅ −2𝑃

𝑇

⋀

1

0 0 0 ⋅ ⋅ ⋅ ⋀

1

−𝑃

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 Δ

𝑇

⋀
𝑝

0 ⋅ ⋅ ⋅ 0 0

Δ⋀
𝑝

0 Δ

𝑇

⋀

𝑝−1

⋅ ⋅ ⋅ 0 0

0 Δ⋀

𝑝−1

0 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...

0 0 0 ⋅ ⋅ ⋅ 0 Δ

𝑇

⋀

1

0 0 0 ⋅ ⋅ ⋅ Δ⋀

1

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (44)

where

Δ⋀

𝑞

=

[
[
[

[

𝑃𝐸
𝑛,𝑛

⊗ 𝐸
11

⋅ ⋅ ⋅ 𝑃𝐸
𝑛,𝑛

⊗ 𝐸
1𝑛

... d
...

𝑃𝐸
𝑛,𝑛

⊗ 𝐸
𝑛1

⋅ ⋅ ⋅ 𝑃𝐸
𝑛,𝑛

⊗ 𝐸
𝑛𝑛

]
]
]

]

[
[
[

[

𝐸
𝑛,𝑛

⊗ Γ
1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐸
𝑛,𝑛

⊗ Γ
𝑛

]
]
]

]

[
[
[

[

𝐸
𝑛,𝑛

⊗ 𝐺
1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐸
𝑛,𝑛

⊗ 𝐺
𝑛

]
]
]

]

+

𝑛

∑

𝑖=1

[
[

[

0

𝐸
𝑛𝑇
1𝑡𝑞

⊗ 𝐸
𝑖1

⋅ ⋅ ⋅ 𝐸
𝑛𝑇
𝑛𝑡𝑞

⊗ 𝐸
𝑖𝑛

0

]
]

]

[
[
[

[

𝐸
𝑇
1𝑡𝑞
𝑇
1𝑡𝑞

⊗ Γ
1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐸
𝑇
𝑛𝑡𝑞
𝑇
𝑛𝑡𝑞

⊗ Γ
𝑛

]
]
]

]

×

[
[
[

[

𝐸
𝑇
1𝑡𝑞
𝑇
1𝑡𝑞

⊗ 𝐻
1
𝑌
𝑖1
𝐷
1𝑡
𝑞

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐸
𝑇
𝑛𝑡𝑞
𝑇
𝑛𝑡𝑞

⊗ 𝐻
𝑛
𝑌
𝑖𝑛
𝐷
𝑛𝑡
𝑞

]
]
]

]

.

(45)
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Define 𝑀 = 𝑀, 𝑁 = 𝜖𝑁, 𝑀
𝑖

= 𝜀
𝑖
𝑀
𝑖
, 𝑁
𝑖

= 𝑁
𝑖
, 𝑞 =

1, . . . , 𝑝. Then LMIs (44) can be rewritten as

Ω + 𝑀Γ
1 (𝑘)𝑁 + 𝑁

𝑇

Γ
1(𝑘)
𝑇
𝑀
𝑇

+

𝑛

∑

𝑖=1

𝑀
𝑖
Γ
𝑖 (𝑘)𝑁𝑖 + 𝑁

𝑖

𝑇

Γ
𝑖(𝑘)
𝑇
𝑀
𝑖

𝑇

< 0,

(46)

where

Γ
1 (𝑘) = diag {Γ

󸀠
, Γ
󸀠
, . . . , Γ

󸀠
} ,

Γ
󸀠
=

[
[
[

[

𝐸
𝑛,𝑛

⊗ Γ
1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐸
𝑛,𝑛

⊗ Γ
𝑛

]
]
]

]

,

Γ
𝑗
= diag {Γ (𝑘) , Γ (𝑘) , . . . , Γ (𝑘)} ,

Γ
2 (𝑘) = diag {0, Γ

󸀠

𝑝
(𝑘) , Γ

󸀠

𝑝−1
(𝑘) , . . . , Γ

󸀠

1
(𝑘)} ,

Γ
󸀠

𝑞
=

[
[
[

[

𝐸
𝑇
1𝑡𝑞
𝑇
1𝑡𝑞

⊗ Γ
1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐸
𝑇
𝑛𝑡𝑞
𝑇
𝑛𝑡𝑞

⊗ Γ
𝑛

]
]
]

]

.

(47)

It can be deduced fromLemma 4 that LMI (46) is satisfied
if there exist positive scalars 𝜀, 𝜀

𝑖
satisfying

Ω + 𝜀𝑀𝑀
𝑇

+ 𝜀
−1
𝑁
𝑇

𝑁 +

𝑛

∑

𝑖=1

𝜀
𝑖
𝑀
𝑖
𝑀
𝑖

𝑇

+

𝑛

∑

𝑖=1

𝜀
−1

𝑖
𝑁
𝑖

𝑇

𝑁
𝑖
< 0.

(48)

By Lemma 3, it is known inequality (48) is equivalent to
inequality (32), and NCS (1) can be robustly stabilized with
the state feedback gain

𝐹
𝑖𝑗
= 𝐾
−1

𝑖𝑗
𝑌
𝑖𝑗
. (49)

Remark 7. It is noted that special structured matrices 𝐷
𝑗𝑞

have been introduced into the closed-loop system to deal with
multiple packet transmission and this makes the feedback
controller design difficult. To solve this problem, equation
constraints have been introduced in Theorem 6 and this
brings the conservatism.

4. A Simulation Example

In this section, a numerical example is given to demonstrate
the effectiveness of our method. We consider the case in
which the state of the system is split into two parts and

the plant has time-varying norm-bounded parameter uncer-
tainties. The coupled system is given by

𝑥
1 (𝑘 + 1) = (𝐴

11
+ 𝐸
11
Γ
1 (𝑘) 𝐺1) 𝑥1 (𝑡)

+ (𝐴
12

+ 𝐸
12
Γ
2 (𝑘) 𝐺2) 𝑥2 (𝑡)

+ (𝐵
11

+ 𝐸
11
Γ
1 (𝑡)𝐻1) 𝑢1 (𝑡)

+ (𝐵
12

+ 𝐸
12
Γ
2 (𝑡)𝐻2) 𝑢2 (𝑡) ,

𝑥
2 (𝑘 + 1) = (𝐴

21
+ 𝐸
21
Γ
1 (𝑘) 𝐺1) 𝑥1 (𝑡)

+ (𝐴
22

+ 𝐸
22
Γ
2 (𝑘) 𝐺2) 𝑥2 (𝑡)

+ (𝐵
21

+ 𝐸
21
Γ
1 (𝑡)𝐻1) 𝑢1 (𝑡)

+ (𝐵
22

+ 𝐸
22
Γ
2 (𝑡)𝐻2) 𝑢2 (𝑡) ,

(50)

where

𝐴
11

= [
0.3 0

0.4 0.4
] , 𝐴

12
= [

0.2 0.01

0 0.2
] ,

𝐴
21

= [
0.05 0

0.3 0.3
] , 𝐴

22
= [

0 0.05

0.3 0.3
] ,

𝐵
11

= [
0.3

0.6
] , 𝐵

12
= [

0.2

0.5
] ,

𝐵
21

= [
0.3

1
] , 𝐵

22
= [

0.08

0.02
] ,

𝐸
11

= [
0.01

−0.001
] , 𝐸

12
= [

0.02

−0.002
] ,

𝐸
21

= [
0.002

−0.002
] , 𝐸

22
= [

0.001

−0.001
] ,

𝐺
1
= [0.001 0.001] , 𝐺

2
= [0.002 0.002] ,

𝐻
1
= 0.001, 𝐻

2
= 0.002,

Γ
1 (𝑘) = sin (20𝑘) , Γ

2 (𝑘) = sin (50𝑘) .

(51)

We will show that the NCSs can be stabilized with only a
quarter of the state information transmitted, even including
time-varying norm-bounded parameter uncertainties. Sup-
pose the controller pays equal attention to each of the two
subsystems and the communication sequence is [1, 1, 2, 2]. By
solving the LMI inTheorem 6with LMI toolbox [39], we have

𝑃 = [
18.0282 −0.2108

−0.2108 2.1266
] ,

𝜖 = 15.6610, 𝜀
1
= 15.6556, 𝜀

2
= 15.6592,

𝐹
11

= [−0.1137 0] , 𝐹
12

= [0 − 0.2026] ,

𝐹
21

= [−0.027 0] , 𝐹
22

= [0 − 0.5755] .

(52)
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Figure 4: The state trajectories of subsystem 1.

With the initial condition 𝑥
1
(1) = [1 −1]

𝑇,
𝑥
1
(2) = [0.75 −0.75]

𝑇, 𝑥
1
(3) = [0.5 −0.5]

𝑇, 𝑥
1
(4) =

[0.125 −0.125]
𝑇, 𝑥
2
(1) = [1 −1]

𝑇, 𝑥
2
(2) = [0.6 −0.6]

𝑇,
𝑥
2
(3) = [0.4 −0.4]

𝑇, 𝑥
2
(4) = [0.1 −0.1]

𝑇, the state
trajectories of two coupled second-order NCSs with multiple
packet transmission are shown in Figures 4 and 5. From
whichwe can see thatmultiple uncertainNCSs (50) with only
a quarter of state information transmitted every step can be
effectively stabilized with the designed feedback controller.
This is a remarkable result, which shows the efficiency of
our proposed method. This example illustrates that the
switched approach proposed in this paper leads to useful
results, because it only requires plant state measurements to
be transmitted sparsely. This reduces network traffic without
sacrificing stability.

5. Conclusion

In this paper, we dealt with robust stabilization of multi-
ple coupled uncertain NCSs with multipacket transmitted
over a shared channel. For NCSs acted over a toking-
bus, multiple NCSs with multipacket were modeled as a
periodically switched system, whose stability guaranteed that
of the original system. Sufficient conditions on stability and
stabilization of the NCSs with norm-bounded parameter
uncertainties were derived. The results obtained here suggest
that data packet can be transmitted sparsely to save network
bandwidth while preserving the stability of the NCS. This is
of practical interest in the application of NCSs.

Future work focuses on studying the case where the
communication sequence is stochastic, on one step time
delay, and on the real life application.
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[8] H. Chan and Ü. Özgüner, “Closed-loop control of systems over
a communications network with queues,” International Journal
of Control, vol. 62, no. 3, pp. 493–510, 1995.

[9] E. O. Elliott, “Estimates of error rates for codes on burst-noise
channels,” Bell System Technical Journal, vol. 42, no. 5, p. 1977,
1963.

[10] D.Hristu andK.Morgansen, “Limited communication control,”
Systems & Control Letters, vol. 37, no. 4, pp. 193–205, 1999.

[11] D. Hristu, “Stabilization of LTI systems with communication
constraints,” in Proceedings of the American Control Conference,
pp. 2342–2346, June 2000.

[12] W. S. Wong and R. W. Brockett, “Systems with finite commu-
nication bandwidth constraints. I. State estimation problems,”
IEEETransactions onAutomatic Control, vol. 42, no. 9, pp. 1294–
1299, 1997.

[13] W. S. Wong and R. W. Brockett, “Systems with finite commu-
nication bandwidth constraints. II. Stabilization with limited
information feedback,” IEEE Transactions on Automatic Con-
trol, vol. 44, no. 5, pp. 1049–1053, 1999.

[14] M. Yu, L.Wang, T. Chu, and G. Xie, “Stabilization of networked
control systems with data packet dropout and network delays
via switching system approach,” in Proceedings of the 43rd IEEE
Conference on Decision and Control (CDC ’04), pp. 3539–3544,
December 2004.

[15] M. Yu, L. Wang, T. Chu, and Q. Fu, “Stabilisation of networked
control systemswith communication constraints,” International
Journal of Hybrid Systems, vol. 4, pp. 99–112, 2004.

[16] J. Liu, M. Yu, W. Tan, and Z. Chai, “Controller design of multi-
subsystem with limited communication,” in Proceedings of the
29th Chinese Control Conference (CCC ’10), pp. 854–858, July
2010.

[17] W. Xiao, M. Yu, and W. Tan, “Controller design for networked
control systems with limited bandwidth,” in Proceedings of
the International Conference on Impulsive Dynamical System
Application, pp. 569–573, 2005.

[18] M. Yu, L. Wang, and G. Xie, “A switched system approach to
stabilization of networked control systems,” Journal of Control
Theory and Applications, vol. 4, no. 1, pp. 86–95, 2006.

[19] M. Yu andW. Xiao, “Stabilization of network controlled system
with multiple-packet transmission,” in Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pp.
5024–5029, October 2009.

[20] R. Wang, G. P. Liu, W. Wang, D. Rees, and Y. B. Zhao, “𝐻
1

control for networked predictive control systems based on the
switched Lyapunov function method,” IEEE Transactions on
Industrial Electronics, vol. 57, no. 10, pp. 3565–3571, 2010.

[21] J. Yu andM. Yu, “Multiple controller design for networked con-
trol systemswithmultiple-packet transmissions,” in Proceedings
of the 24th Chinese Control andDecision Conference (CCDC ’12),
pp. 1852–1857, 2012.

[22] L. Zhang and D. Hristu-Varsakelis, “Communication and con-
trol co-design for networked control systems,” Automatica, vol.
42, no. 6, pp. 953–958, 2006.

[23] X. M. Sun, G. P. Liu, D. Rees, and W. Wang, “Stability of
systems with controller failure and time-varying delay,” IEEE
Transactions on Automatic Control, vol. 53, no. 10, pp. 2391–
2396, 2008.

[24] J. Qiu, G. Feng, and J. Yang, “Robust mixed 𝐻
2
/𝐻
∞

filtering
design for discrete-time switched polytopic linear systems,” IET
Control Theory & Applications, vol. 2, no. 5, pp. 420–430, 2008.

[25] J. Qiu, G. Feng, and J. Yang, “New results on robust energy-
to-peak filtering for discrete-time switched polytopic linear
systems with time-varying delay,” IET Control Theory & Appli-
cations, vol. 2, no. 9, pp. 795–806, 2008.

[26] Y. Zheng and G. Feng, “Exponential H-∞ filtering for discrete-
time switched state-delay systems under asynchronous switch-
ing,” Asian Journal of Control, vol. 13, no. 1, pp. 1–10, 2013.

[27] V. N. Phat, J. Jiang, A. V. Savkin, and I. R. Petersen, “Robust
stabilization of linear uncertain discrete-time systems via a
limited capacity communication channel,” Systems & Control
Letters, vol. 53, no. 5, pp. 347–360, 2004.

[28] D. Wu, J. Wu, and S. Chen, “Robust 𝐻
∞
control for networked

control systems with uncertainties and multiple-packet trans-
mission,” IET Control Theory & Applications, vol. 4, no. 5, pp.
701–709, 2010.

[29] J. Yu, L. Wang, and M. Yu, “A new approach to controller
design for networked control systems with multiple-packet
transmissions,” International Journal on Systems, Control and
Communications, pp. 158–177, 2011.

[30] M. C. F. Donkers, W. P. M. H. Heemels, N. van de Wouw,
and L. Hetel, “Stability analysis of networked control systems
using a switched linear systems approach,” IEEE Transactions
on Automatic Control, vol. 56, no. 9, pp. 2101–2115, 2011.

[31] L. Greco, A. Chaillet, and A. Bicchi, “Exploiting packet size in
uncertain nonlinear networked control systems,” Automatica,
vol. 48, no. 11, pp. 2801–2811, 2012.

[32] M. Yu, L.Wang, T. Chu, andG. Xie, “Stabilization of a collection
of linear systems with limited information,” Asian Journal of
Control, vol. 9, no. 1, pp. 80–86, 2007.

[33] N. Ding, M. Yu, and W. Xiao, “A switched approach to
stabilization ofmultiple networked control systems,” inProceed-
ings of the 6th IEEE Conference on Industrial Electronics and
Applications (ICIEA ’11), pp. 1056–1061, June 2011.

[34] S.-L. Dai, H. Lin, and S. S. Ge, “Scheduling-and-control code-
sign for a collection of networked control systems with uncer-
tain delays,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 1, pp. 66–78, 2010.

[35] S.-L. Dai, H. Lin, and S. S. Ge, “A switched system approach to
scheduling of networked control systems with communication
constraints,” in Proceedings of the 28th Chinese Decision and
Control (CDC ’09), pp. 4991–4996, December 2009.

[36] Z. Ji, L.Wang, andX. Guo, “On controllability of switched linear
systems,” IEEE Transactions on Automatic Control, vol. 53, no. 3,
pp. 796–801, 2008.

[37] Z. Ji, H. Lin, G. Feng, and X. Guo, “Controllability structure
decomposition for switched linear systems,” Transactions of the
Institute ofMeasurement and Control, vol. 32, no. 6, pp. 736–755,
2010.

[38] R. E. Skelton, T. Iwasaki, andK. Grigoriadis,AUnifiedApproach
to Linear Control Design, Taylor and Francis series in Systems
and Control, 1997.

[39] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory, Society for
Industrial and Applied Mathematics, Philadelphia, Pa, USA,
1994.


