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We introduce the dominated farthest points problem inBanach lattices.Weprove that for two equivalent norms such thatX becomes
an STM and LLUM space the dominated farthest points problem has the same solution. We give some conditions such that under
these conditions the Fréchet differentiability of the farthest point map is equivalent to the continuity of metric antiprojection in
the dominated farthest points problem. Also we prove that these conditions are equivalent to strong solvability of the dominated
farthest points problem. We prove these results in STM, reflexive STM, and UM spaces. Moreover, we give some applications of
the stated results in Musielak-Orlicz spaces 𝐿𝜙(𝜇) and 𝐸𝜙(𝜇) over nonatomic measure spaces in terms of the function 𝜙. We will
prove that the Fréchet differentiability of the farthest point map and the conditions 𝜙 ∈ Δ 2 and 𝜙 > 0 in reflexive Musielak-Orlicz
function spaces are equivalent.

1. Introduction

The problem of farthest points in Banach spaces is studied
withmany authors (see [1–3]). An interesting question in this
field is, under what conditions on the set 𝐴 does the point
𝑥0 ∈ 𝐴 farthest from point 𝑥 in the spaces exist and is this
unique? We recall that the mapping

𝑓𝐴 (𝑥) = sup {󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝐴} (1)

is called farthest point map and the mapping

𝐹𝐴 (𝑥) = {𝑥0 ∈ 𝐴 :
󵄩󵄩󵄩󵄩𝑥 − 𝑥0

󵄩󵄩󵄩󵄩 = 𝑓𝐴 (𝑥)} (2)

is called a metric antiprojection. Fitzpatrick in [2] gives
some conditions such that farthest point map is Fréchet
differentiable and the metric antiprojection is continuous; in
fact he showed that these conditions are equivalent. Balashov
and Ivanov in [1] proved that in Hilbert spaces, the set
of conditions for the existence, uniqueness, and Lipschitz
dependence (on 𝑥) of the metric antiprojection of 𝑥 on the
set 𝐴 for points 𝑥 that are sufficiently far from the set 𝐴 is
equivalent to the strong convexity of the set 𝐴. Ivanov in [3]
showed that the results of [1] generalized to uniformly convex
Banach spaces with Fréchet differentiable norm.

Kurc in [4] introduces the dominated best approximation
problem and examines the relations between monotonicity
properties and the existence anduniqueness of the dominated
best approximation problem. Hudzik and Kurc proved that
strictly monotone and order continuity of the norm on 𝑋
is equivalent to unique solvability of the dominated best
approximation problem (e.g., [5]).

In this paper we introduce the dominated farthest point
problem in a Banach lattice and try to examine the relation
between the dominated farthest point problem and mono-
tonicity, Fréchet differentiability of farthest point map, and
the continuity of antiprojection map in Banach lattices.

In preliminaries section we recall main definitions and
some lemmas that will be used in this context. In Section 3,
we introduce the dominated farthest points problem and
state some conditions such that guaranteed, existence and
uniqueness of the dominated farthest points problem. We
give some criteria for strict monotonicity, lower locally
uniformlymonotone, upper locally uniformlymonotone and
uniformly monotone. Also we prove that for two equivalent
norms such that 𝑋 becomes an STM space and LLUM space
the dominated farthest point has the same solution.This note
will prove that the Fréchet differentiability of farthest point
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map is equivalent to continuity of antiprojection map under
some conditions. In fact these conditions are equivalent to
strong solvability of the set 𝐴. We give some conditions such
that it is proved that if 𝐹𝐴(𝑥) is a singleton set then 𝐴 is a
singleton set.

Finally we will say some application of the stated results
in Musielak-Orlicz function space 𝐿𝜙(𝜇) and 𝐸

𝜙
(𝜇) over

nonatomic measure spaces in terms of the function 𝜙.
Equivalency of the Fréchet differentiability of the farthest
point map and the conditions 𝜙 ∈ Δ 2 and 𝜙 > 0 in reflexive
Musielak-Orlicz function spaces is the final result which will
be proved.

2. Preliminaries

Let 𝑋 be a Banach lattice and 𝐴 a bounded sublattice in 𝑋.
Suppose that 𝑥 ∈ 𝑋 such that 𝑥 ≥ 𝐴 (i.e., 𝑥 ≥ 𝑦 for each 𝑦 ∈
𝐴); we define 𝐹𝐴(𝑥) as 1.1; we always refer to such problems
as to the dominated Farthest points problem.

The dominated farthest points problem is called solvable
if 𝐹𝐴(𝑥) ̸= 0. The problem is said to be uniquely solvable if
card (𝐹𝐴(𝑥)) = 1 and is to be stable if for every maximizing
sequence {𝑥𝑛} in 𝐴, that is, a sequence in 𝐴 such that
lim𝑛→∞‖𝑥 − 𝑥𝑛‖ = 𝑓𝐴(𝑥), there holds 𝑑(𝑥𝑛, 𝐹𝐴(𝑥)) → 0 as
𝑛 → ∞. Finally, the problem is said to be strongly solvable
if it is uniquely solvable and stable. A sequence {𝑥𝑛} in 𝐴 is a
maximizing sequence for 𝑥0 if lim𝑛→∞‖𝑥𝑛 − 𝑥0‖ = 𝑓𝐴(𝑥0).

In this section, we recall some definitions and lemmas
which we need in main results.

Definition 1 (see [4]). A Banach lattice𝑋 is said to be strictly
monotone (𝑋 ∈ STM) if, for all 𝑥, 𝑦 ∈ 𝑋

+, the conditions
𝑥 ≥ 𝑦, 𝑦 ̸= 0, and ‖𝑥‖ = ‖𝑦‖ imply 𝑥 = 𝑦.

Definition 2 (see [4]). A Banach lattice 𝑋 is said to be
uniformly monotone (𝑋 ∈ UM) if, for all 𝑦𝑛 ≥ 𝑥𝑛 ≥ 0, such
that lim𝑛→∞‖𝑥𝑛‖ = lim𝑛→∞‖𝑦𝑛‖, then lim𝑛→∞‖𝑥𝑛 − 𝑦𝑛‖ =
0.

Definition 3 (see [5]). A Banach lattice 𝑋 is said to be upper
(lower) locally uniformly monotone, 𝑋 ∈ ULUM (𝑋 ∈

LLUM), if, for each 𝑥, 𝑦𝑛 ∈ 𝑋, such that 𝑦𝑛 ≥ 𝑥 ≥ 0 (𝑦𝑛 ≤
𝑥 ≤ 0) and lim𝑛→∞‖𝑥𝑛‖ → ‖𝑥‖, then lim𝑛→∞‖𝑥𝑛 − 𝑥‖ = 0.

Definition 4 (see [6]). A Banach lattice 𝑋 is said to be
decreasing (increasing) uniformly monotone, 𝑋 ∈ DUM
(𝑋 ∈ IUM), if, for each 𝑦𝑛, 𝑥𝑛 ∈ 𝑋

+, such that 𝑦𝑛 ≥

𝑥𝑛 ↓ (𝑥𝑛 ≤ 𝑦𝑛 ↑) and lim𝑛→∞‖𝑥𝑛‖ = lim𝑛→∞‖𝑦𝑛‖, then
lim𝑛→∞‖𝑥𝑛 − 𝑦𝑛‖ = 0.

Definition 5 (see [5]). A Banach lattice 𝑋 is said to be
CWLLUM if for any nonnegative 𝑥󸀠 ∈ 𝑋󸀠 with ‖𝑥󸀠‖ = 1 and
any 𝑥 ∈ 𝑋, with 𝑥 ≥ 0, ‖𝑥‖ = 1 and any sequence {𝑥𝑛} in 𝑋
satisfying 0 ≤ 𝑥𝑛 ≤ 𝑥 for all 𝑛 the condition 𝑥

󸀠
(𝑥−𝑥𝑛) → ‖𝑥‖

implies ‖𝑥𝑛‖ → 0.

Definition 6 (see [7]). A lattice seminorm𝜌 on aRiesz space is
said to be order continuous whenever 𝑥𝛼 ↓ 0 implies 𝜌(𝑥𝛼) ↓
0. If the above condition holds for sequences, that is, 𝑥𝑛 ↓ 0

implies 𝜌(𝑥𝑛) ↓ 0, then 𝜌 is said to be 𝜎-order continuous. If
𝜌 is a lattice norm then the norm is order continuous.

Definition 7 (see [7]). A Banach lattice 𝑋 is said to be a
Kantorovich-Banach space (or briefly a KB-space) whenever
every increasing norm bounded sequence of 𝑋+ is norm
convergent.

Definition 8 (see [8]). We say that the norm of the Banach
space𝑋 is Fréchet differentiable at 𝑥0 ∈ 𝑆(𝑋) whenever

lim
𝜆→0

󵄩󵄩󵄩󵄩𝑥0 + 𝜆𝑦
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩

𝜆

(3)

exists uniformly for 𝑦 ∈ 𝑆(𝑋). If the norm of 𝑋 is Fréchet
differentiable at 𝑥 ∈ 𝑆(𝑋), then we say that 𝑋 has a Fréchet
differentiable norm, where 𝑆(𝑋) = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1}.

Definition 9 (see [9]). For a function 𝑓 from a Banach space
𝑋 into a Banach space 𝑌 the Gâteaux derivative at a point
𝑥0 ∈ 𝑋 is by definition a bounded linear operator𝑇 : 𝑋 → 𝑌

such that, for every 𝑢 ∈ 𝑋,

lim
𝑡→0

𝑓 (𝑥0 + 𝑡𝑢) − 𝑓 (𝑥0)

𝑡
= 𝑇𝑢. (4)

The operator 𝑇 is called the Fréchet derivative of 𝑓 at 𝑥0 if it
is a Gâteaux derivative of 𝑓 at 𝑥0 and the limit in (4) holds
uniformly in 𝑢 in the unit ball (or unit sphere) in𝑋.

Definition 10 (e.g., [10–12]). Let (𝑇, Σ, 𝜇) be a 𝜎-finite, com-
plete (nontrivial), positive measure space and 𝜙(𝑡, 𝑟) : 𝑇 ×
R+ → R+ a function such that for 𝜇-a.e. 𝑡 ∈ 𝑇, 𝜙(𝑡, 0) =
0, and 𝜙(𝑡, ⋅) is nontrivial (continuous at zero with nonzero
values), convex, and lsc.

Moreover, if 𝜙(⋅, 𝑟) is measurable, for all 𝑟 > 0, then we
call 𝜙 the Musielak-Orlicz function.

Definition 11. Musielak-Orlicz spaces 𝐿𝜙(𝜇) consist of all 𝜇-
measurable functions 𝑓 : 𝑇 → R such that

𝐼𝜙 (𝛼𝑓) = ∫
𝑇
𝜙 (𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 , 𝑡) 𝑑𝜇 < +∞ (5)

for some 𝛼 > 0 (depending on 𝑓).

Musielak-Orlicz spaces under the natural ordering, when
endowed with each of the following norms, become a Banach
lattice (e.g., [12, 13]). Luxemburg norm is

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜙
= inf {𝜆 > 0 : 𝐼𝜙 (

𝑓

𝜆
) ≤ 1} , (6)

and Orlicz norm is
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

0

𝜙
= sup {󵄨󵄨󵄨󵄨⟨𝑓, 𝑔⟩

󵄨󵄨󵄨󵄨 : 𝐼𝜙∗ (𝑔) ≤ 1} , (7)

where ⟨𝑓, 𝑔⟩ = ∫
𝑇
𝑓(𝑡)𝑔(𝑡)𝑑𝜇 and 𝜙

∗ denote the young
conjugate of 𝜙. The amemiya norm (see [14–16] for the Orlicz
spaces and [17] for the general case) is

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝐴

𝜙
= inf
𝑘>0

1

𝑘
(1 + 𝐼𝜙 (𝑘𝑓)) . (8)
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All norms defined above are latticemonotone norms and they
are equivalent:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜙
≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

0

𝜙
≤ 2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜙
,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

0

𝜙
≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝐴

𝜙
. (9)

In the following we will write, for short, 𝜙 > 0 or 𝜙 < +∞, if
for 𝜇-a.e. 𝑡 ∈ 𝑇 the function 𝜙(𝑡, ⋅) is strictly positive (except
zero) or assumes finite values only, respectively. In the case
that 𝜙 is finitely valued and the∞-condition is satisfied then
‖𝑓‖
0
𝜙 = ‖𝑓‖

𝐴
𝜙 for all 𝑓 ∈ 𝐿𝜙(𝜇). We recall that 𝜙 is satisfied

∞-condition if 𝜙(𝑡, 𝑢)/𝑢 → ∞ as 𝑢 → ∞ for 𝜇-a.e. 𝑡 ∈ 𝑇.
The function 𝜙 is said to satisfy a Δ 2, condition (𝜙 ∈ Δ 2),

if there exist a set 𝑇0 of zero measure, a constant 𝐾 > 0, and
an integrable (nonnegative) function ℎ, such that, for all 𝑡 ∈
𝑇 \ 𝑇0 and 𝑟 > 0, there holds

𝜙 (2𝑟, 𝑡) ≤ 𝐾𝜙 (𝑟, 𝑡) + ℎ (𝑡) . (10)

Suppose that 𝐿𝜙𝑎(𝜇) is a subspace of functions with order
continuous norm

𝐿
𝜙
𝑎 (𝜇) = {𝑓 ∈ 𝐿

𝜙
(𝜇) :

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 ≥ 𝑓𝑛 ↓ 0 󳨐⇒

󵄩󵄩󵄩󵄩𝑓𝑛
󵄩󵄩󵄩󵄩𝜙
↓ 0} ,

𝐸
𝜙
(𝜇) = {𝑓 ∈ 𝐿

𝜙
(𝜇) : 𝐼𝜙 (𝛼𝑓) < ∞ ∀𝛼 > 0} .

(11)

Then 𝐸𝜙(𝜇) ⊂ 𝐿𝜙𝑎(𝜇) ⊂ 𝐿
𝜙
(𝜇) as closed ideals (see [18], [13, p.

17], and [19]). If 𝜙 < +∞ then 𝐸𝜙(𝜇) is super order dense in
𝐿
𝜙
(𝜇) and 𝐿𝜙𝑎(𝜇) = 𝐸

𝜙
(𝜇) [13, p. 19], and 𝐿𝜙(𝜇) has an order

continuous norm precisely when 𝐿𝜙𝑎(𝜇) = 𝐿
𝜙
(𝜇). Clearly the

norm in 𝐸𝜙(𝜇) is order continuous.

Lemma 12 (see [20]). The following assertions are equivalent:

(i) the norm on 𝑋 is order continuous,
(ii) 𝑋 is Dedekind complete (𝜎-Dedekind complete) satisfy-

ing ‖𝑥𝑛‖ → 0 as 𝑛 → ∞ for any decreasing sequence
{𝑥𝑛} ⊂ 𝑋

+ with inf{𝑥𝑛 : 𝑛 ∈ N} = 0,
(iii) every monotone order bounded sequence of 𝑋 is con-

vergent,
(iv) every disjoint order bounded sequence of𝑋+ is conver-

gent to zero,
(v) 𝑋 is an ideal in𝑋󸀠󸀠,
(vi) every order interval of𝑋 is weakly compact,
(vii) 𝑋󸀠 = 𝑋󸀠𝑛.

Lemma 13 (see [20]). The following assertions are equivalent:

(i) 𝑋 is reflexive,
(ii) 𝑋 and 𝑋󸀠 are KB-spaces,
(iii) 𝑋 does not contain any subspace isomorphic to 𝑙1 or to

𝑐0,
(iv) 𝑋 does not contain any sublattice isomorphic to 𝑙1 or to

𝑐0.

Lemma 14 (see [21]). A Banach lattice 𝑋 has an order-
continuous norm if and only if it has an equivalent locally
uniformly convex lattice norm.

Lemma 15 (see [22]). If 𝑋 is a Banach lattice, the following
properties are equivalent:

(i) 𝑋 and 𝑋󸀠 have order continuous norms,
(ii) there exists an equivalent lattice norm on 𝑋 which

is locally uniformly convexand Fréchet differentiable,
such that its dual norm is also locally uniformly convex
on 𝑋󸀠.

Lemma 16 (see [22]). A Banach lattice is reflexive if and only
if it can be given an equivalent lattice norm such that both the
space and its dual are simultaneously locally uniformly convex
and Fréchet differentiable.

Lemma 17 (see [2]). Suppose 𝐴 is a closed subset of a Banach
space 𝑋 such that the norm of 𝑋󸀠 is Fréchet differentiable. If 𝐴
is bounded and 𝑓𝐴 is Fréchet differentiable at some 𝑥 ∈ 𝑋,
then every maximizing sequence for 𝑥 converges; also 𝐹𝐴 is
continuous at 𝑥.

Lemma 18 (see [2]). Suppose that 𝑋 is a Banach space such
that the norms of𝑋 and𝑋󸀠 are both Fréchet differentiable. If𝐴
is a closed bounded subset of 𝑋 and 𝑥 is a point of 𝑋, then the
following are equivalent:

(i) the metric antiprojection is continuous at x,
(ii) every maximizing sequence in 𝐴 for 𝑥 converges,
(iii) the function 𝑓𝐴 is Fréchet differentiable at 𝑥.

Lemma 19 (see [23]). Given a Banach lattice 𝑋 the following
hold true:

(i) if 𝑋+ is rotund, then𝑋 is strictly monotone;
(ii) if 𝑋+ is locally uniformly rotund, then 𝑋 is upper and

lower locally uniformly monotone;
(iii) if 𝑋+ is uniformly rotund then 𝑋 is uniformly mono-

tone,
(iv) in the order intervals in the positive cone𝑋+ the inverse

statement of each of the above is also true.

Lemma 20 (see [24]). The following statements are equiva-
lent:

(i) 𝜙 ∈ Δ 2,
(ii) ‖𝑓‖𝜙 = 1 implies 𝐼𝜙(𝑓) = 1,
(iii) ‖𝑓𝑛‖𝜙 ↑ 1 implies 𝐼𝜙(𝑓𝑛) → 1,

(iv) 𝐿𝜙(𝜇) dose not contain an isometric copy of 𝑙∞,
(v) 𝐿𝜙(𝜇) dose not contain a lattice isometric copy of 𝑙∞,
(vi) 𝐿𝜙(𝜇) = 𝐿

𝜙
𝑎(𝜇); that is, the norm ‖ ⋅ ‖𝜙 is order

continuous on 𝐿𝜙(𝜇).

3. Dominated Farthest Points Problem in
Banach Lattices

In this section we introduce the dominated farthest points
problem in Banach lattices and give some criteria for strict
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monotonicity, lower locally uniformly monotone, upper
locally uniformly monotone, and uniformly monotone. We
prove that if (𝑋, ‖ ⋅ ‖1) and (𝑋, ‖ ⋅ ‖2) are two Banach lattices
with the same order such that ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are equivalent
norms and (𝑋, ‖ ⋅ ‖1) is an STM space and (𝑋, ‖ ⋅ ‖2) is an
LLUM space, then the problem of the dominated farthest
points has the same solution in two spaces. We give some
condition such that the Fréchet differentiability of farthest
point map is equivalent to continuity of antiprojection map.

Lemma 21. Let𝑋 be a Banach lattice, 𝐴 a sublattice, and 𝑥 ∈
𝑋 such that 𝑥 ≥ 𝐴. If 𝑎1 ∈ 𝐹𝐴(𝑥) and 𝑎2 ∈ 𝐴 such that 𝑎1 ≥ 𝑎2,
then 𝑎2 ∈ 𝐹𝐴(𝑥).

Proof. Since 𝑎1 ≥ 𝑎2 and𝑥 ≥ 𝐴, so 0 ≤ 𝑥−𝑎1 ≤ 𝑥−𝑎2 and thus
‖𝑥−𝑎1‖ ≤ ‖𝑥−𝑎2‖. Since𝑎1 ∈ 𝐹𝐴(𝑥)wehave ‖𝑥−𝑎1‖ = ‖𝑥−𝑎2‖.
Therefore, 𝑎2 ∈ 𝐹𝐴(𝑥).

Theorem 22. Let 𝑋 be a Banach lattice. Then 𝑋 is an STM
space if and only if for every sublattice 𝐴 in 𝑋 and 𝑥 ∈ 𝑋 such
that 𝑥 ≥ 𝐴, 𝑐𝑎𝑟𝑑 (𝐹𝐴(𝑥)) ≤ 1.

Proof. Suppose that 𝑋 is an STM space and 𝐴 a sublattice in
𝑋. Suppose that 𝑥 ∈ 𝑋 such that 𝑥 ≥ 𝐴 and 𝑠, 𝑡 ∈ 𝐹𝐴(𝑥).
Since𝐴 is a sublattice 𝑠 ∧ 𝑡 ∈ 𝐴 and 𝑠 ∧ 𝑡 ≤ 𝑠, from Lemma 21,
𝑠∧ 𝑡 ∈ 𝐹𝐴(𝑥), so ‖𝑥− 𝑠∧ 𝑡‖ = ‖𝑥− 𝑠‖; since𝑋 is an STM space
𝑠 ∧ 𝑡 = 𝑠; similarly 𝑠 ∧ 𝑡 = 𝑡; therefore 𝑠 = 𝑡.

Conversely if 𝑋 is not an STM space, then there exist
𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≥ 𝑦 ≥ 0 and ‖𝑥 − 𝑦‖ = ‖𝑥‖. Define
𝐴 = [0, 𝑦]; then 𝐴 is a sublattice and 𝑥 ≥ 𝐴; since 𝑥 ≥ 𝑥 − 𝑡
for each 𝑡 ∈ 𝐴, so ‖𝑥‖ ≥ ‖𝑥 − 𝑡‖ for each 𝑡 ∈ 𝐴, and thus
0 ∈ 𝐹𝐴(𝑥), by the assumption ‖𝑥‖ = ‖𝑥 − 𝑦‖; so 𝑦 ∈ 𝐹𝐴(𝑥);
therefore card (𝐹𝐴(𝑥)) > 1.

Theorem 23. A Banach lattice 𝑋 is an STM space and has
order continuous norm if and only if the dominated farthest
points problem with respect to closed order bounded sublattices
is uniquely solvable.

Proof. Suppose that 𝑋 is an STM space and has order
continuous norm and𝐴 is a closed sublattice.We assume that
𝑥 ≥ 𝐴 and {𝑦𝑛} is a maximizing sequence; that is, 𝑓𝐴(𝑥) =
sup𝑦∈𝐴‖𝑥 − 𝑦‖ = lim𝑛→∞‖𝑥 − 𝑦𝑛‖. Put 𝑧𝑛 = ∧

𝑛
𝑘=1𝑦𝑘. Since 𝐴

is a sublattice and 0 ≤ 𝑥 − 𝑦𝑛 ≤ 𝑥 − 𝑧𝑛, {𝑧𝑛} is a decreasing
maximizing sequence. Since there exists 𝑧 = ∧𝑛𝑦𝑛 ≤ 𝑥, we
have 0 ≤ 𝑧𝑛 − 𝑧 ↓ 0, by the order continuity of the norm
‖𝑧𝑛 − 𝑧‖ → 0. On the other hand 𝐴 is a closed sublattice so
𝑧 ∈ 𝐴 and, since ‖𝑥 − 𝑧‖ = 𝑓𝐴(𝑥), therefore 𝑧 ∈ 𝐹𝐴(𝑥).

Suppose that the norm on 𝑋 is not order continuous;
then there exists a sequence {𝑦𝑛} such that 0 ≤ 𝑦𝑛 ↓ 0 but
inf ‖𝑦𝑛‖ > 0. We can assume that ‖𝑦𝑛‖ > ‖𝑦𝑛+1‖ for 𝑛 ∈ N,
otherwise replacing 𝑦𝑛 by (1+1/𝑛)𝑦𝑛, for 𝑛 ∈ N. Suppose that
𝑥 ∈ 𝑋 such that𝑥 > 𝑦1 and put𝐴 = {𝑦𝑛}; then𝐴 is a sublattice
and 𝐹𝐴(𝑥) = 0. On the other hand by Dini’s theorem 𝐴 is
norm closed. Indeed if ‖𝑦𝑛

𝑘

− 𝑧‖ → 0, 𝑦𝑛
𝑘

∈ 𝐴 and 𝑧 ∉ 𝐴,
then we use the fact that if 𝑦𝑛

𝑘

is downward directed sequence
which is weakly convergent to 𝑧 then 𝑧 = inf𝑘(𝑦𝑛

𝑘

), and thus

𝑧 = 0; hence ‖𝑦𝑛
𝑘

‖ → 0; this is a contradiction and so 𝑧 ∈ 𝐴.
By the assumption𝐹𝐴(𝑥) ̸= 0 this contradiction completes the
proof.

Remark 24. In Theorem 23, if 𝑋 is an LLUM, CWLLUM,
IUM, or DUM space then the theorem is also true.

Theorem 25. Let 𝑋 be an order continuous Banach lattice
with the ULUM property; then the dominated farthest points
problem with respect to closed order bounded sublattices is
strongly solvable.

Proof. FromTheorem 23 the dominated farthest points prob-
lemwith respect to closed sublattices is uniquely solvable.The
proof of stability is the same as the proof of Theorem 4.4 in
[5].

Theorem 26. Let 𝑋 be an STM space and 𝐴 a sublattice in
𝑋. If 𝑥, 𝑦 ∈ 𝑋 such that 𝑥, 𝑦 ≥ 𝐴 (or 𝑥, 𝑦 ≤ 𝐴) and
𝐹𝐴(𝑥), 𝐹𝐴(𝑦) ̸= 0, then 𝐹𝐴(𝑥) = 𝐹𝐴(𝑦).

Proof. Suppose that 𝑥, 𝑦 ∈ 𝑋 such that 𝑥, 𝑦 ≥ 𝐴 and 𝐹𝐴(𝑥) =
{𝑥0}, 𝐹𝐴(𝑦) = {𝑦0}. Since 𝐴 is a sublattice so 𝑥0 ∧ 𝑦0 ∈ 𝐴;
from Lemma 21, 𝑥0 ∧ 𝑦0 ∈ 𝐹𝐴(𝑥). Similarly 𝑥0 ∧ 𝑦0 ∈ 𝐹𝐴(𝑦);
therefore 𝑥0 ∧ 𝑦0 = 𝑥0 = 𝑦0.

Corollary 27. Let 𝑋 be an STM space with order continuous
norm. If𝐴 is a sublattice in𝑋, 𝑥 ∈ 𝑋 such that 𝑥 ≥ 𝐴 or 𝑥 ≤ 𝐴;
then the metric antiprojection is in this form:

𝐹𝐴 (𝑥) = {
{𝑥0} , 𝑥 ≥ 𝐴,

{𝑦0} , 𝑥 ≤ 𝐴,
(12)

for some 𝑥0, 𝑦0 ∈ 𝐴.

Proof. It is a consequence of Theorems 23 and 26.

Theorem 28. Let𝑋 be an STM space and 𝐴 a sublattice in𝑋.
If 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≥ 𝐴 and 𝑦 ≤ 𝐴 and 𝐹𝐴(𝑥) = 𝐹𝐴(𝑦) ̸= 0,
then 𝐴 is singleton.

Proof. Suppose that 𝐹𝐴(𝑥) = 𝐹𝐴(𝑦) = {𝑥0} and 𝑦0 ∈ 𝐴. Since
𝐴 is a sublattice so 𝑥0 ∧𝑦0 ∈ 𝐴, from Lemma 21, 𝑥−𝑥0 ∧𝑦0 ≥
𝑥 − 𝑥0 ≥ 0, thus 𝑥0 ∧ 𝑦0 ∈ 𝐹𝐴(𝑥) = {𝑥0}, thus 𝑥0 ≤ 𝑦0, and
again, from Lemma 21, we have 𝑦0 ∈ 𝐹𝐴(𝑦) = {𝑥0}. Therefore
𝐴 = {𝑥0}.

Lemma 29. Let (𝑋, ‖ ⋅ ‖1) and (𝑋, ‖ ⋅ ‖2) be two Banach
lattices with the same order such that ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are equiv-
alent norm. If (𝑋, ‖ ⋅ ‖1) is an order continuous Banach lattice,
then (𝑋, ‖ ⋅ ‖2) is also a Banach lattice with order continuous
norm.

Proof. It is a consequence of equivalency of two norms.

Example 30. (a) Every equivalent norm on 𝐿𝑝(𝜇) with ‖ ⋅ ‖𝑝
for 1 < 𝑝 < ∞ is order continuous.

(b) Every equivalent norm on 𝐶(𝑋) (𝑋 is not a finite set)
with sup-norm is not order continuous.
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Theorem 31. Let (𝑋, ‖ ⋅ ‖1) and (𝑋, ‖ ⋅ ‖2) be two Banach
lattices with the same order such that ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are
equivalent norms. Suppose that (𝑋, ‖ ⋅ ‖1) is an STM space and
(𝑋, ‖ ⋅ ‖2) is an LLUM space. If𝐴 is a sublattice of𝑋 and 𝑥 ∈ 𝑋
such that 𝑥 ≥ 𝐴 (or 𝑥 ≤ 𝐴), then 𝐹1𝐴(𝑥) = 𝐹

2
𝐴(𝑥), where 𝐹

𝑖
𝐴(𝑥)

is the set of farthest points with respect to ‖ ⋅ ‖𝑖 for 𝑖 = 1, 2.

Proof. Since (𝑋, ‖ ⋅ ‖2) is order continuous and ‖ ⋅ ‖1 and
‖ ⋅ ‖2 are equivalent, from Lemma 29, (𝑋, ‖ ⋅ ‖1) is order con-
tinuous. From Theorem 23 and Remark 24, the dominated
farthest points problem is uniquely solvable for two norms.
Suppose that 𝑥0 ∈ 𝐹

2
𝐴(𝑥); if 𝑥0 ∉ 𝐹

1
𝐴(𝑥), there exists 𝑥0 ̸= 𝑦0 ∈

𝐴 such that ‖𝑥 − 𝑦0‖1 > ‖𝑥 − 𝑥0‖1. Since 𝐴 is a sublattice
𝑥0 ∧ 𝑦0 ∈ 𝐴; since 𝑥0 ̸= 𝑦0, we have either 𝑥0 ∧ 𝑦0 < 𝑥0 or
𝑥0 ∧ 𝑦0 < 𝑦0.

If 𝑥0 ∧ 𝑦0 < 𝑥0, then 𝑥 − 𝑥0 ∧ 𝑦0 > 𝑥 − 𝑥0 ≥ 0 and since
(𝑋, ‖ ⋅ ‖2) is an LLUM space ‖𝑥 − 𝑥0 ∧ 𝑦0‖2 > ‖𝑥 − 𝑥0‖2 that
is a contradiction.

If 𝑥0 ∧ 𝑦0 < 𝑦0, then 𝑥 − 𝑥0 ∧ 𝑦0 > 𝑥 − 𝑦0 and so
‖𝑥 − 𝑥0 ∧ 𝑦0‖1 > ‖𝑥 − 𝑦0‖1; also 𝑥 − 𝑥0 ∧ 𝑦0 ≥ 𝑥 − 𝑥0 and
so ‖𝑥 − 𝑥0 ∧ 𝑦0‖2 ≥ ‖𝑥 − 𝑥0‖2; since {𝑥0} = 𝐹

2
𝐴(𝑥), we have

𝑥0 ∧ 𝑦0 = 𝑥0 and so ‖𝑥 − 𝑥0‖1 = ‖𝑥 − 𝑥0 ∧ 𝑦0‖1 > ‖𝑥 − 𝑦0‖1
that is a contradiction; therefore 𝑥0 = 𝑦0; thus 𝐹

1
𝐴(𝑥) =

𝐹
2
𝐴(𝑥).

Remark 32. If we assume that (𝑋, ‖ ⋅ ‖1) is an STM space with
order continuous norm, then Lemmas 14 and 19 guaranteed
the existence of ‖ ⋅ ‖2, such that (𝑋, ‖ ⋅ ‖2) is a LLUM space.

Theorem 33. Let 𝑋 be a Banach lattice and 𝐴 a closed order
bounded subset of𝑋. If 𝑥 ∈ 𝑋, 𝑥 ≥ 𝐴, the following statements
are equivalent:

(i) any sequence {𝑎𝑛} ⊂ 𝐴 such that lim𝑛→∞‖𝑥 − 𝑎𝑛‖ =
𝑓𝐴(𝑥) is convergent;

(ii) the metric antiprojection is uniquely defined on 𝑥 ≥ 𝐴
and, for any vector 𝑥 ≥ 𝐴, any maximizing sequences
have a convergent subsequence;

(iii) dominated farthest point problemwith respect to closed
bounded sublattices is strongly solvable.

Proof. (i) → (ii). Suppose that there exists an 𝑥 ≥ 𝐴, such
that card (𝐹𝐴(𝑥)) > 1.We assume that 𝑥0, 𝑦0 ∈ 𝐹𝐴(𝑥), 𝑥0 ̸= 𝑦0,
and {𝑎𝑛}, {𝑏𝑛} are two maximizing sequences in 𝐴 convergent
to 𝑥0 and 𝑦0, respectively.

We define

𝑐𝑛 = {
𝑎𝑛, 𝑛 is odd,
𝑏𝑛, 𝑛 is even;

(13)

then 𝑐𝑛 is not convergent, that is, a contradiction, so
card (𝐹𝐴(𝑥)) = 1. Since every maximizing sequence is
convergent the proof is complete.

(ii) → (i). Suppose that 𝐹𝐴(𝑥) = {𝑥0} and {𝑥𝑛} is a
maximizing sequence. If the condition (i) is not true, then
{𝑥𝑛} has a subsequent {𝑥𝑛

𝑗

} such that ‖𝑥0 − 𝑥𝑛
𝑗

‖ ≥ 𝜀 > 0,
for any 𝑗 ∈ N. Since lim𝑗→∞‖𝑥 − 𝑥𝑛

𝑗

‖ = 𝑓𝐴(𝑥), the sequence
{𝑥𝑛
𝑗

} has a limit point of 𝑥󸀠0, we have 𝑥
󸀠
0 ∈ 𝐹𝐴(𝑥) and 𝑥0 ̸= 𝑥

󸀠
0

that is a contradiction; therefore (i) is true.

(ii) → (iii). By the assumption 𝐹𝐴(𝑥) = {𝑥0}, suppose
that {𝑎𝑛} is a maximizing sequence in 𝐴 for 𝑥. From (ii),
{𝑎𝑛} has a convergent subsequence to 𝑥0, so 𝑑({𝑎𝑛}, 𝐹𝐴(𝑥)) =
𝑑({𝑎𝑛}, 𝑥0) = 0.

(iii) → (ii). From the definition of strongly
solvable card (𝐹𝐴(𝑥)) = 1, put 𝐹𝐴(𝑥) = {𝑥0}. Suppose that
{𝑎𝑛} is a maximizing sequence in 𝐴 for 𝑥. So 𝑑({𝑎𝑛}, 𝑥0) = 0
so 𝑥0 is a limit point of {𝑎𝑛}; thus there exists a subsequence
{𝑎𝑛
𝑗

} convergent to 𝑥0; this completes the proof.

Corollary 34. Let𝑋 be a Banach lattice with ULUM property
and order continuous norm and 𝐴 a closed order bounded
sublattice of𝑋; then

(i) any sequence {𝑎𝑛} ⊂ 𝐴 such that lim𝑛→∞‖𝑥 − 𝑎𝑛‖ =
𝑓𝐴(𝑥) is convergent;

(ii) the metric antiprojection is uniquely defined on 𝑥 ≥ 𝐴
and, for any vector 𝑥 ≥ 𝐴, any maximizing sequences
have a convergence subsequence,

(iii) dominated farthest point problemwith respect to closed
order bounded sublattices is strongly solvable.

Proof. It is a compound of Theorems 25 and 33.

Theorem 35. Let (𝑋, ‖ ⋅ ‖) be an STM space such that 𝑋󸀠 and
𝑋
󸀠󸀠 have order continuous norm, 𝐴 a closed order bounded

sublattice in 𝑋, and 𝑥0 ∈ 𝑋, such that 𝑥0 ≥ 𝐴. If 𝑓𝐴 is Fréchet
differentiable at 𝑥0 then

(i) 𝑐𝑎𝑟𝑑 (𝐹𝐴(𝑥0)) = 1,
(ii) any sequence {𝑎𝑛} ⊂ 𝐴 such that lim𝑛→∞‖𝑥0 − 𝑎𝑛‖ =

𝑓𝐴(𝑥0) is convergent,
(iii) if 𝑥𝑛 → 𝑥0 and {𝑎𝑘} = 𝐹𝐴(𝑥𝑘) for 𝑘 ∈ N ∪ {0} then

𝑎𝑛 → 𝑎0,
(iv) the dominated farthest points problem is strongly solv-

able.

Proof. Part (i). From Theorem 23, the dominated farthest
points problem is uniquely solvable so card (𝐹𝐴(𝑥0)) = 1.

Part (ii). From (i) 𝐹𝐴(𝑥0) = {𝑎0}, suppose that {𝑎𝑛} is a
maximizing sequence in 𝐴, lim𝑛→∞‖𝑥0 − 𝑎𝑛‖ = ‖𝑥0 − 𝑎0‖.
𝑎0 is a limit point of {𝑎𝑛} and so there is a subsequence
{𝑎𝑛
𝑘

} such that 𝑎𝑛
𝑘

→ 𝑎0 from Lemma 15, there exists
an equivalent norm ‖ ⋅ ‖1 such that 𝑋󸀠 and 𝑋󸀠󸀠 are locally
uniformly convex space and 𝑋

󸀠 has Fréchet differentiable
norm, fromTheorem 31, and 𝑎0 is unique farthest point in 𝐴
from 𝑥0 with ‖ ⋅ ‖1. Since {𝑎𝑛} has a subsequence convergent
to 𝑎0, {𝑎𝑛} is also a maximizing sequence with ‖ ⋅ ‖1 and
hence lim𝑛→∞‖𝑥0 − 𝑎𝑛‖1 = ‖𝑥0 − 𝑎0‖1. From Lemma 17, {𝑎𝑛}
converges with ‖ ⋅ ‖1, so it is convergent with ‖ ⋅ ‖ and this
completes the proof.

Part (iii). From Lemma 17, 𝐹𝐴 is continuous so if 𝑥𝑛 →
𝑥0; then 𝐹𝐴(𝑥𝑛) → 𝐹𝐴(𝑥0) or equivalently 𝑎𝑛 → 𝑎0.

Part (iv). By part (i), card (𝐹𝐴(𝑥)) = 1. Suppose that {𝑥𝑛} is
amaximizing sequence in𝐴; that is, lim𝑛→∞‖𝑥0−𝑥𝑛‖ = ‖𝑥0−
𝑎0‖. Since 𝑥𝑛 → 𝑥0 we have 𝑑(𝑥𝑛, 𝐹𝐴(𝑥0)) → 0; therefore
the dominated farthest points problem is strongly solvable.
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Theorem36. Let (𝑋, ‖⋅‖) be a reflexive, STM space𝐴, a closed
order bounded sublattice in 𝑋, and 𝑥0 ∈ 𝑋, such that 𝑥0 ≥ 𝐴.
The following statements are equivalent:

(i) the dominated farthest points problem is strongly solv-
able;

(ii) any sequence {𝑎𝑛} ⊂ 𝐴 such that lim𝑛→∞‖𝑥0 − 𝑎𝑛‖ =
𝑓𝐴(𝑥0) is convergent;

(iii) if 𝑥𝑛 → 𝑥0 and {𝑎𝑘} = 𝐹𝐴(𝑥𝑘) for 𝑘 ∈ N ∪ {0}, then
𝑎𝑛 → 𝑎0;

(iv) 𝑓𝐴 is Fréchet differentiable at 𝑥0.

Proof. (i)↔ (ii). FromTheorem 33 thus is true.
(iv) → (ii), (iv)→ (iii). From Lemma 13, 𝑋 and 𝑋󸀠 are

KB-spaces and so fromLemma 12 they have order continuous
norm.Therefore it is a part of Theorem 35.

(ii) → (iv), (iii)→ (iv). From Lemma 16, there exists
an equivalent norm ‖ ⋅ ‖1 such that 𝑋󸀠 and 𝑋󸀠󸀠 are locally
uniformly convex space and𝑋󸀠,𝑋󸀠󸀠 has Fréchet differentiable
norm, and from Lemma 18, (ii), (iii), and (iv) are equivalent
to norm ‖ ⋅ ‖1, so 𝑓𝐴 is Fréchet differentiable with norm ‖ ⋅ ‖1

since ‖ ⋅ ‖ is equivalent to ‖ ⋅ ‖1 from [25, p. 3]; 𝑓𝐴 is Fréchet
differentiable with norm ‖ ⋅ ‖; this completes the proof.

Theorem 37. Let 𝑋 be a uniformly convex Banach lattice
space, 𝐴 a closed order bounded sublattice in 𝑋, and 𝑥0 ∈ 𝑋,
such that 𝑥0 ≥ 𝐴. The following statements are equivalent:

(i) the dominated farthest points problem is strongly solv-
able;

(ii) any sequence {𝑎𝑛} ⊂ 𝐴 such that lim𝑛→∞‖𝑥0 − 𝑎𝑛‖ =
𝑓𝐴(𝑥0) is convergent;

(iii) if 𝑥𝑛 → 𝑥0 and {𝑎𝑘} = 𝐹𝐴(𝑥𝑘) for 𝑘 ∈ N ∪ {0}, then
𝑎𝑛 → 𝑎0;

(iv) 𝑓𝐴 is Fréchet differentiable at 𝑥0.

Proof. Since 𝑋 is uniformly convex, so it is a reflexive
Banach lattice and from Lemma 19, it is a UM space; from
Theorem 36 the proof is complete.

Theorem 38. Let 𝑋 be a UM space with an order unit 1, 𝐴 a
closed order bounded sublattice in 𝑋, and 𝑥0 ∈ 𝑋, such that
𝑥0 ≥ 𝐴. The following statements are equivalent:

(i) the dominated farthest points problem is strongly solv-
able;

(ii) any sequence {𝑎𝑛} ⊂ 𝐴 such that lim𝑛→∞‖𝑥 − 𝑎𝑛‖ =
𝑓𝐴(𝑥) is convergent;

(iii) if 𝑥𝑛 → 𝑥0 and {𝑎𝑘} = 𝐹𝐴(𝑥𝑘) for 𝑘 ∈ N ∪ {0}, then
𝑎𝑛 → 𝑎0;

(iv) 𝑓𝐴 is Fréchet differentiable at 𝑥0.

Proof. Since 𝑋 is a UM space with order unit 1, 𝐵1(0) =

[−1, 1]. So from Lemma 19, rotundity properties are equiva-
lent to monotonicity properties on 𝐵1(0), so𝑋 is a uniformly
convex Banach lattice from Theorem 37; the proof is com-
plete.

4. Some Applications of the
Dominated Farthest Points Problem in
Musielak-Orlicz Spaces

In this section we give some applications of the theorems that
were proved in Section 3 in Musielak-Orlicz function space.
The most important result that will be proved in this section
is the equivalency of the Fréchet differentiability of farthest
point map and the conditions 𝜙 ∈ Δ 2 and 𝜙 > 0 in reflexive
Musielak-Orlicz function spaces.

Theorem 39. For the Musielak-Orlicz space 𝐿𝜙(𝜇) the follow-
ing statements are equivalent:

(i) 𝜙 ∈ Δ 2;
(ii) for each closed order bounded sublattice𝐴 in 𝐿𝜙(𝜇) and

𝑥 ∈ 𝐿
𝜙
(𝜇) such that 𝑥 ≥ 𝐴 (or 𝑥 ≤ 𝐴), 𝑐𝑎𝑟𝑑 (𝐹𝐴(𝑥)) ≥

1.

Moreover (ii) is true for 𝐸𝜙(𝜇) with 𝜙 < ∞.

Proof. It is a consequence of Theorem 23.

Remark 40. In Musielak-Orlicz space 𝐿𝜙 with 𝜇(𝑇) < ∞ and
nonatomicmeasure 𝜇, if 𝜙 ∈ Δ 2 and 𝜙 > 0with any norm the
sets of farthest points in dominated farthest points problem
are coinciding; this means that 𝐹1𝐴(𝑥) = 𝐹

2
𝐴(𝑥) = 𝐹

3
𝐴(𝑥), for

every 𝑥 ∈ 𝑋 and sublattice 𝐴 ⊂ 𝑋 with 𝑥 ≥ 𝐴, and that
𝐹
𝑖
𝐴(𝑥) for 𝑖 = 1, 2, 3 denote the set of farthest points with

respect to Luxemburg norm, Orlicz norm, and Ammemyia
norm, respectively.

Corollary 41. Thedominated farthest points problem in 𝐿𝜙(𝜇)
(𝐸𝜙(𝜇) with 𝜙 < ∞) with respect to closed order bounded
sublattices is unique if and only if 𝜙 > 0 and 𝜙 ∈ Δ 2 (resp.,
𝜙 > 0).

Proof. From [4, Theorem 2.7] (resp., [4, Theorem 2.8]) 𝐿𝜙(𝜇)
has order continuous norm and it is an STM space (resp.,
𝐸
𝜙
(𝜇)); so fromTheorem 22 the proof is complete.

Theorem 42. In the Musielak-Orlicz spaces the following
statements are equivalent:

(i) 𝜙 ∈ Δ 2;
(ii) for all closed order bounded linear sublattices 𝐴 ⊂

𝐿
𝜙
(𝜇), 𝐹𝐴(𝑥) ̸= 0 for each 𝑥 ∈ 𝐿𝜙(𝜇).

Moreover (ii) is true for 𝐸𝜙(𝜇) with 𝜙 < ∞.

Proof. (ii)→ (i). It is an immediate consequence of (ii)→ (i),
in Theorem 39.

(i)→ (ii). Suppose that {𝑥𝑛} is a maximizing sequence in
𝐴; for example,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥 − 𝑥𝑛
󵄩󵄩󵄩󵄩𝜙
= 𝑓𝐴 (𝑥) . (14)

Since 𝐴 is a bounded subset of 𝐿𝜙(𝜇), so sup𝑛{‖𝑥𝑛‖𝜙} <
∞. 𝐿𝜙(𝜇) is a KB-space [4,Theorem 3.5] so {𝑥𝑛} is convergent
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to some 𝑥0 ∈ 𝑋. Since 𝐴 is a closed linear sublattice, so 𝑥0 ∈
𝐴; this complete the proof.

Remark 43. Let𝑋 be a KB-space; with the same argument as
Theorem 44, we can show that for all closed bounded linear
sublattices 𝐴 ⊂ 𝑋, 𝐹𝐴(𝑥) ̸= 0 for each 𝑥 ∈ 𝑋.

Theorem44. Let𝐴 be a closed order bounded sublattice in the
reflexiveMusielak-Orlicz spaces with the Luxemburg norm; the
following statements are equivalent:

(i) the dominated farthest points problem is strongly solv-
able;

(ii) any sequence {𝑎𝑛} ⊂ 𝐴 such that lim𝑛→∞‖𝑥 − 𝑎𝑛‖ =
𝑓𝐴(𝑥) is convergent;

(iii) if 𝑥𝑛 → 𝑥0 and {𝑎𝑘} = 𝐹𝐴(𝑥𝑘) for 𝑘 ∈ N ∪ {0}, then
𝑎𝑛 → 𝑎0;

(iv) 𝑓𝐴 is Fréchet differentiable at 𝑥0;
(v) 𝜙 > 0 and 𝜙 ∈ Δ 2;

(vi) 𝐿𝜙(𝜇) (resp. 𝐸𝜙(𝜇) with 𝜙 < ∞) is a UM (resp. STM)
space.

Proof. From Theorem 36 (i)–(iv) are equivalent. From [4,
Theorem 2.7, 2.8] (v) and (vi) are equivalent. FromTheorems
38 and 25 (i) and (v) are equivalent.
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