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By using the classic metric projection method, we obtain sufficient conditions for Hölder continuity of the nonunique solution
mapping for a parametric generalized variational inequality with respect to data perturbation.The result is different from the recent
ones in the literature and has a strong geometric flavor.

1. Introduction

Variational inequality is a very general mathematical format,
which embraces the formats of several disciplines, as those
for equilibrium problems of mathematical physics, those
from game theory, and those for transportation equilibrium
problems. Thus, it is important to derive results for para-
metric variational inequality concerning the properties of the
solution mapping when the problem’s data vary.

It is well known that the Hölder continuity of the
perturbed solution mapping of variational inequalities is one
aspect of stability analysis. In general, the stability analysis
of solution mappings for parametric variational inequalities
includes semicontinuity, Lipschitz continuity, and Hölder
continuity of solution mappings. Most of the research in
the area of stability analysis for variational inequalities
has been performed under assumptions which implied the
local uniqueness of perturbed solutions so that the solution
mapping was single valued. By using the metric projection
method, Dafermos [1] first derived sufficient conditions for
the local uniqueness, continuity (or Lipschitz continuity),
and differentiability of a perturbed solution of variational
inequalities. Using the same techniques, Yen [2] and Yen and
Lee [3] later obtained uniqueness of the solution for a classical
perturbed variational inequality and showed that the solution
mapping is Hölder continuous with respect to parameters.

Then, Domokos [4] extended these results of [1–3] to the case
of reflexive Banach spaces.

There have also been a few papers to study more
general situations where the solution sets of variational
inequalities may be set valued. Robinson [5] investigated
characterizations and existences of solutions for a general-
ized equation involving set-valued mappings under certain
metric regularity hypotheses. As applications, he also studied
some Lipschitz-type continuity property of the solution
mapping for perturbed variational inequalities defined on
closed convex sets. Ha [6] used the degree theory to derive
some sufficient conditions, which guarantee the existence of
nonunique perturbed solutions of nonlinear complementar-
ity problems in a neighborhood of a reference point. Under
the Hausdorff metric and the strong quasimonotonicity, Lee
et al. [7] showed that nonunique solution mapping for a
perturbed vector variational inequality is Hölder continu-
ous with respect to parameters. Based on the scalarization
technique and degree theoretic method, Wong [8] recently
discussed the lower semicontinuity of the nonunique solution
mapping for a perturbed vector variational inequality, where
the operator may not be strongly monotone.

Although there have been many papers to study solution
stability of perturbed variational inequalities, very few papers
focus on such a study for perturbed generalized variational
inequalities. Recently, by virtue of the strong quasimono-
tonicity, Ait Mansour and Aussel [9] have obtained a result
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on Hölder continuity of the nonunique solution mapping
of a perturbed generalized variational inequality defined by
strongly quasimonotone set-valued maps in the case of finite
dimensional spaces. Without conditions related to the degree
theory and the metric projection, Kien [10] derived suffi-
cient conditions for the lower semicontinuity of nonunique
perturbed solutions of a perturbed generalized variational
inequality in reflexive Banach spaces.

Motivated by the work reported in [1–4, 9, 10], our main
interest is to investigate the Hölder continuity of nonunique
perturbed solution mapping for a perturbed generalized
variational inequality defined on perturbed feasible sets.
We first introduce a locally strong monotone set-valued
operator, which is weaker than the corresponding ones in
[1–4, 9, 10] and use the projection techniques of [1, 2, 4]
to derive some sufficient conditions, which guarantee the
Hölder continuity of the locally nonunique solution sets for
a perturbed generalized variational inequality with respect to
parameters.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the parametric generalized variational
inequality and recall the definitions and corresponding
results which are needed in this paper. Then, we derive a
relation between the Pseudo-Hölder property of a set-valued
mapping and the Hölder property of projection mapping.
In Section 3, we first introduce the key assumption (H

2
)

which is weaker than the corresponding ones in [1–4, 9, 10]
and the relative assumptions. Under these assumptions, we
follow the projection technique of [1–4] mainly to study the
behavior and Hölder property of the nonunique perturbed
solution mapping for a parametric generalized variational
inequality without the differentiability assumption and the
degree theory. An example is also given to illustrate that our
main result is applicable.

2. Preliminaries

Throughout this paper, if not other specified, let𝐸 be aHilbert
space which is equipped with an inner product ⟨⋅, ⋅⟩ and with
the norm ‖ ⋅ ‖, respectively. LetΛ,𝑀 be two parameter sets of
the normed spaces, and let 𝐵(𝑥, 𝜏) denote the closed ball with
the center 𝑥 and the radius 𝜏. The Hausdorff metric between
two nonempty subsets 𝐴, 𝐵 of 𝐸 is defined by

𝐻(𝐴, 𝐵) := max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏)} , (1)

where 𝑑(𝑎, 𝐵) := inf
𝑏∈𝐵

‖𝑎 − 𝑏‖.
Let 𝐾 : Λ 󴁂󴀱 𝐸 be a set-valued mapping with nonempty

closed convex values, and let 𝑇 : 𝐸 × 𝑀 󴁂󴀱 𝐸 be a set-
valued mapping with nonempty compact values. Consider
the following parametric generalized variational inequality
consisting of finding 𝑥 ∈ 𝐾(𝜆) such that there exists 𝑧∗ ∈

𝑇(𝑥, 𝜇) with

⟨𝑧
∗
, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾 (𝜆) . (2)

For each (𝜆, 𝜇) ∈ Λ ×𝑀, the solution set of (2) is defined
by

𝑆 (𝜆, 𝜇) := {𝑥 ∈ 𝐾 (𝜆) : ∃ 𝑧
∗
∈ 𝑇 (𝑥, 𝜇)

with ⟨𝑧
∗
, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾 (𝜆)} .

(3)

We first recall the following definitions and results which
are needed in the sequel. Let𝐾 be a nonempty closed convex
subset of 𝐸, and let 𝑃

𝐾
(𝑧) denote the projection of 𝑧 ∈ 𝐸

onto 𝐾. It is well known that the projection operator 𝑃
𝐾
(𝑧)

is a nonexpansive operator. From [11], we have the following
result.

Lemma 1. For each 𝑧 ∈ 𝐸, 𝑥 = 𝑃
𝐾
(𝑧) if and only if

⟨𝑥 − 𝑧, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (4)

Definition 2. Let 𝐾 : Λ 󴁂󴀱 𝐸 be a set-valued mapping with
nonempty closed convex values, 𝜆 ∈ Λ and 𝑥 ∈ 𝐾(𝜆). 𝐾(⋅) is
said to be 𝑘.𝛼-Pseudo-Hölder continuous at (𝜆, 𝑥) if and only
if there exist a neighborhood 𝑉 of 𝜆, a neighborhood𝑊 of 𝑥
such that

𝐾(𝜆
󸀠
) ∩𝑊 ⊂ 𝐾 (𝜆) + 𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆
󸀠
− 𝜆

󵄩󵄩󵄩󵄩󵄩

𝛼

𝐵 (0, 1) , ∀𝜆, 𝜆
󸀠
∈ 𝑉 ∩ Λ,

(5)

where 𝑘 > 0, 𝛼 > 0.
Note that when 𝛼 = 1, Definition 2 reduces to the Aubin

property in [12].

From the definition of norm, we can easily obtain the
following result.

Lemma 3. If 𝛼 > 0, then the norm mapping ‖ ⋅ ‖ : 𝐸 → 𝑅

satisfies
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩
𝛼

≤ (‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩)
𝛼

. (6)

Proof. If 𝑥 = 0 or 𝑦 = 0, the conclusion is trivial. Otherwise,
‖𝑥 + 𝑦‖/(‖𝑥‖ + ‖𝑦‖) ≤ 1 and (‖𝑥 + 𝑦‖/(‖𝑥‖ + ‖𝑦‖))

𝛼
≤ 1.

Hence, ‖𝑥 + 𝑦‖
𝛼
≤ (‖𝑥‖ + ‖𝑦‖)

𝛼.

The following Lemma, which is an extension of Lemma
1.1 in [2], plays an important role in this paper.

Lemma 4. Assume that𝐾(⋅) is 𝑘.𝛼-Pseudo-Hölder continuous
at (𝜆, 𝑥) and𝑋 is a closed bounded convex neighborhood of 𝑥.
Then, there exist a neighborhood𝑋

1
of 𝑥, a neighborhood𝑉

1
of

𝜆 such that ∀𝑦 ∈ 𝑋
1
, ∀𝜆, 𝜆󸀠 ∈ 𝑉

1
∩ Λ,

󵄩󵄩󵄩󵄩𝑃𝐾(𝜆)∩𝑋 (𝑦) − 𝑃
𝐾(𝜆
󸀠
)∩𝑋

(𝑦)
󵄩󵄩󵄩󵄩 ≤ 2𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼/2

. (7)

Proof. We shall use the similar arguments of [2, 13] to prove
the result.

Since 𝐾(⋅) is 𝑘.𝛼-Pseudo-Hölder continuous at (𝜆, 𝑥),
there exist a neighborhood 𝑊 of 𝑥, a neighborhood 𝑉 of 𝜆
which satisfy (5). Choose 𝜏 ∈ (0, 𝑘/6) such that 𝐵(𝑥, 𝜏) ⊂

𝑋 ∩𝑊, and fix a number 𝛿 > 0 satisfying

𝛿 ≤ min{1

2
(
𝜏

4𝑘
)
1/𝛼

, (
𝜏

8𝑘
)
1/𝛼

} . (8)
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Let

𝑋
1
:= 𝐵 (𝑥,

𝜏

8
) ∩ 𝐵(𝑥,

𝑘

8
) , (9)

𝑉
1
:= 𝑉 ∩ 𝐵 (𝜆, 𝛿) . (10)

We claim that these 𝑋
1
, 𝑉
1
satisfy (7). Indeed, since

𝐵(𝑥, 𝜏) ⊂ 𝑋 ∩𝑊 and 𝑉
1
⊂ 𝑉, then (5) implies that

𝐾(𝜆
󸀠
) ∩ 𝐵 (𝑥, 𝜏) ⊂ 𝐾 (𝜆) + 𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

𝐵 (0, 1) ,

∀𝜆, 𝜆
󸀠
∈ 𝑉
1
∩ Λ.

(11)

Furthermore, (5) implies

𝑥 ∈ 𝐾 (𝜆) + 𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆

󵄩󵄩󵄩󵄩󵄩

𝛼

𝐵 (0, 1) , ∀𝜆 ∈ 𝑉
1
∩ Λ. (12)

Then, it follows from (8) and (10) that there exists 𝑥 ∈ 𝐾(𝜆)

such that

‖𝑥 − 𝑥‖ ≤ 𝑘𝛿
𝛼
≤ 𝑘

𝜏

8𝑘
=

𝜏

8
, (13)

which implies

𝐾 (𝜆) ∩ 𝐵(𝑥,
𝜏

8
) ̸= 0, ∀𝜆 ∈ 𝑉

1
∩ Λ. (14)

Let 𝑥 ∈ 𝐾(𝜆) ∩ 𝐵(𝑥, 𝜏/8). Then, it follows from (9) and the
definition of projection operator that, for any 𝑦 ∈ 𝑋

1
, 𝜆 ∈

𝑉
1
∩ Λ,
󵄩󵄩󵄩󵄩𝑃𝐾(𝜆)∩𝑋 (𝑦) − 𝑥

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑃𝐾(𝜆)∩𝑋 (𝑦) − 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩

≤ 2
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 + ‖𝑥 − 𝑥‖

≤ 2 ⋅
𝜏

8
+
𝜏

8
=

3𝜏

8
<

𝜏

2
,

(15)

which means

𝑃
𝐾(𝜆)∩𝑋

(𝑦) ∈ 𝐵 (𝑥,
𝜏

2
) . (16)

Assume to the contrary that (7) is false. Then, there exist
𝜆, 𝜆
󸀠 ∈ 𝑉
1
∩ Λ, 𝑦 ∈ 𝑋

1
such that

‖𝑎 − 𝑏‖ > 2𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼/2

, (17)

where 𝑎 = 𝑃
𝐾(𝜆)∩𝑋

(𝑦) and 𝑏 = 𝑃
𝐾(𝜆
󸀠
)∩𝑋

(𝑦). From (16), we can
easily see that

𝑎 ∈ 𝐾 (𝜆) ∩ 𝐵(𝑥,
𝜏

2
) , 𝑏 ∈ 𝐾 (𝜆

󸀠
) ∩ 𝐵(𝑥,

𝜏

2
) . (18)

Then, by virtue of (11), there exist 𝑎
1
∈ 𝐾(𝜆) and 𝑏

1
∈ 𝐾(𝜆󸀠)

such that

󵄩󵄩󵄩󵄩𝑎 − 𝑏
1

󵄩󵄩󵄩󵄩 ≤ 𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

,
󵄩󵄩󵄩󵄩𝑏 − 𝑎

1

󵄩󵄩󵄩󵄩 ≤ 𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

. (19)

Therefore, (8), (10), (11), (18), and (19) and Lemma 3 together
yield that

󵄩󵄩󵄩󵄩𝑎1 − 𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑎1 − 𝑏
󵄩󵄩󵄩󵄩 + ‖𝑏 − 𝑥‖

≤ 𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

+ ‖𝑏 − 𝑥‖

≤ 𝑘(
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩
)
𝛼

+ ‖𝑏 − 𝑥‖

≤ 2
𝛼
𝑘𝛿
𝛼
+
𝜏

2
≤

3𝜏

4
< 𝜏.

(20)

This means that

𝑎
1
∈ 𝐾 (𝜆) ∩ 𝐵 (𝑥, 𝜏) ⊂ 𝐾 (𝜆) ∩ 𝑋. (21)

Similarly, we have

𝑏
1
∈ 𝐾 (𝜆

󸀠
) ∩ 𝐵 (𝑥, 𝜏) ⊂ 𝐾 (𝜆

󸀠
) ∩ 𝑋. (22)

Then, it follows from (19), (21), (22), and the definition of
projection operator that

󵄩󵄩󵄩󵄩𝑦 − 𝑏
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑦 − 𝑎
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦 − 𝑏
1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑦 − 𝑎

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑎 − 𝑏

1

󵄩󵄩󵄩󵄩 ≤ 𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

,

󵄩󵄩󵄩󵄩𝑦 − 𝑎
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑦 − 𝑏
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦 − 𝑎
1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑦 − 𝑏

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑏 − 𝑎

1

󵄩󵄩󵄩󵄩 ≤ 𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

.

(23)

Let 𝑢 := ‖𝑦 − 𝑎
1
‖, V := ‖𝑦 − 𝑎‖, and 𝑤 := ‖𝑎

1
− 𝑎‖. From (19)

and (23), we have

0 ≤ 𝑢 − V ≤ (
󵄩󵄩󵄩󵄩𝑦 − 𝑏

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑏 − 𝑎

1

󵄩󵄩󵄩󵄩) −
󵄩󵄩󵄩󵄩𝑦 − 𝑎

󵄩󵄩󵄩󵄩

≤ 2𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

.
(24)

Applying (17) and (19), we obtain

𝑤 =
󵄩󵄩󵄩󵄩𝑎 − 𝑎

1

󵄩󵄩󵄩󵄩 ≥ ‖𝑎 − 𝑏‖ −
󵄩󵄩󵄩󵄩𝑏 − 𝑎

1

󵄩󵄩󵄩󵄩

> 2𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼/2

− 𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

.

(25)

It follows from (8) and Lemma 3 that

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

≤ (
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩
)
𝛼

≤ 2
𝛼
𝛿
𝛼
≤

1

24
< 1. (26)

Then,

𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

≤ 𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼/2

, (27)

which together with (25) implies 𝑤 > 𝑘‖𝜆 − 𝜆󸀠‖
𝛼/2. Since

𝐾(𝜆) is a convex subset of 𝐸 and𝑋 is a convex neighborhood
of 𝑥, we have

[𝑎, 𝑎
1
] := {𝜎𝑎 + (1 − 𝜎) 𝑎

1
: 𝜎 ∈ [0, 1]} ⊂ 𝐾 (𝜆) ∩ 𝑋. (28)

Since 𝑎 = 𝑃
𝐾(𝜆)∩𝑋

(𝑦), by the property of the projection, we
have

⟨𝑦 − 𝑎, 𝑎 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐾 (𝜆) ∩ 𝑋. (29)
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Then, it follows that

𝑢
2
= V2 + 𝑤

2
+ 2 ⟨𝑦 − 𝑎, 𝑎 − 𝑎

1
⟩

> V2 + 𝑤
2
> V2 + 𝑘

2󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

.

(30)

Hence, by (24),

2𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

(𝑢 + V) ≥ 𝑢
2
− V2 > 𝑘

2󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼

. (31)

Since (17) implies that 𝜆 ̸= 𝜆󸀠, we have

𝑢 + V >
𝑘

2
. (32)

On the other hand, by virtue of (9), (18), and (21), we have

𝑢 + V =
󵄩󵄩󵄩󵄩𝑦 − 𝑎

1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦 − 𝑎

󵄩󵄩󵄩󵄩

≤ 2
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑎

1

󵄩󵄩󵄩󵄩 + ‖𝑥 − 𝑎‖

≤ 2
𝑘

8
+ 𝜏 +

𝜏

2
=

𝑘

4
+
3𝜏

2
.

(33)

As 𝜏 was chosen so that 𝜏 ∈ (0, 𝑘/6), then

𝑢 + V =
𝑘

4
+
3𝜏

2
<

𝑘

2
, (34)

which is a contradiction to (32). The proof is complete.

Remark 5. Lemma 2.1 of [2] has (7) with𝛼 = 1.When 0 < 𝛼 ≤

1 or 𝛼 > 1; Lemma 4 is always satisfied. Therefore, Lemma 4
generalizes and improves Lemma 2.1 of [2].

3. Main Results

In this section, we always assume that 𝑥 ∈ 𝑆(𝜆, 𝜇) is a unique
solution to (2) at given parameter (𝜆, 𝜇) ∈ Λ × 𝑀. Let 𝑋
be a closed bounded convex neighborhood of 𝑥, let 𝑉 be
a neighborhood of 𝜆, and let 𝑈 be a neighborhood of 𝜇.
In order to analyze the behavior of the set-valued mapping
𝑆(𝜆, 𝜇) around 𝑆(𝜆, 𝜇) when (𝜆, 𝜇) is close to (𝜆, 𝜇), we need
to consider the following restrict problem.

For each (𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩ 𝑀), find 𝑥 ∈ 𝐾(𝜆) ∩ 𝑋

such that there exists 𝑧∗ ∈ 𝑇(𝑥, 𝜇) with

⟨𝑧
∗
, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾 (𝜆) ∩ 𝑋. (35)

Similarly, for (𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩ 𝑀), the local solution
set of (2) is defined by

LS (𝜆, 𝜇) := {𝑥 ∈ 𝐾 (𝜆) ∩ 𝑋 : ∃ 𝑧
∗
∈ 𝑇 (𝑥, 𝜇)

with ⟨𝑧
∗
, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾 (𝜆) ∩ 𝑋} .

(36)

To obtain our main result, we introduce the following
assumptions for a neighborhood 𝑉 of 𝜆 and a neighborhood
𝑈 of 𝜇.

(H
1
) There exist ℎ > 0, 𝑙 > 0 and 𝛽 > 0 such that for any
𝑡(⋅, ⋅) ∈ 𝑇(⋅, ⋅) satisfying

󵄩󵄩󵄩󵄩󵄩
𝑡 (𝑥, 𝜇) − 𝑡 (𝑥

󸀠
, 𝜇
󸀠
)
󵄩󵄩󵄩󵄩󵄩
≤ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
+ 𝑙

󵄩󵄩󵄩󵄩󵄩
𝜇 − 𝜇
󸀠󵄩󵄩󵄩󵄩󵄩

𝛽

,

∀𝑥, 𝑥
󸀠
∈ 𝑋 ∩ 𝐸, 𝜇, 𝜇

󸀠
∈ 𝑈 ∩𝑀,

(37)

where 𝑡 : 𝐸 ×𝑀 → 𝐸 is a vector-valued mapping.
(H
2
) There exists 𝑚 > 0 such that for any 𝑡(⋅, ⋅) ∈ 𝑇(⋅, ⋅)

satisfying

⟨𝑡 (𝑥, 𝜇) − 𝑡 (𝑥
󸀠
, 𝜇) , 𝑥 − 𝑥

󸀠
⟩ ≥ 𝑚

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

2

,

∀𝑥, 𝑥
󸀠
∈ 𝑋 ∩ 𝐸, 𝜇 ∈ 𝑈 ∩𝑀,

(38)

where 𝑡 : 𝐸 ×𝑀 → 𝐸 is a vector-valued mapping.
(H
3
) There exists 𝜌 > 0 such that

𝜌 <
𝑚

ℎ2
. (39)

Assumption (H
1
) states 𝑇(⋅, ⋅) is locally strong ℎ.1-𝑙.𝛽-

Hölder continuous at (𝑥, 𝜇), while assumption (H
2
) is the

requirement that𝑇(⋅, 𝜇) is locally weak𝑚-monotone at𝑥with
a coefficient independent to 𝜇 ∈ 𝑈 ∩𝑀.

Remark 6. (1) If 𝑇 : 𝐸 ×𝑀 → 𝐸 is a single-valued mapping
and 𝛽 = 1, then assumptions (H

1
) and (H

2
) collapse to

the locally Lipschitz at (𝑥, 𝜇) and locally strongly monotone
at 𝑥 with a coefficient independent to 𝜇 ∈ 𝑈 ∩ 𝑀 of [2],
respectively.

(2) If 𝑇(⋅, ⋅) is a set-valued mapping with nonempty
compact values, then for any 𝑥, 𝑥󸀠 ∈ 𝑋 ∩ 𝐸, 𝜇, 𝜇󸀠 ∈ 𝑈 ∩𝑀,

(H
1
) 󳨐⇒ 𝐻(𝑇 (𝑥, 𝜇) , 𝑇 (𝑥

󸀠
, 𝜇
󸀠
))

≤ ℎ
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
+ 𝑙

󵄩󵄩󵄩󵄩󵄩
𝜇 − 𝜇
󸀠󵄩󵄩󵄩󵄩󵄩

𝛽

.

(40)

(3)Obviously, assumption (H
2
) is weaker than the follow-

ing condition which was introduced in [14].
(H󸀠
2
) For all 𝑥, 𝑥󸀠 ∈ 𝑋 ∩ 𝐸, 𝜇 ∈ 𝑈 ∩𝑀, there exists𝑚 > 0

such that ∀𝑧∗ ∈ 𝑇(𝑥, 𝜇), 𝑧󸀠∗ ∈ 𝑇(𝑥󸀠, 𝜇),

⟨𝑧
∗
− 𝑧
󸀠∗
, 𝑥 − 𝑥

󸀠
⟩ ≥ 𝑚

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

2

. (41)

It is well know that (H󸀠
2
) implies that the local solution

mapping LS to (2) is single valued. However, when (H󸀠
2
) is

replaced by assumption (H
2
), the local solution mapping LS,

in general, is not single valued; that is, LS may be a set-valued
mapping.

(4) The following example is given to illustrate the
existence of a class of set-valued mapping satisfying (H

1
) and

(H
2
). It should be noted that the example also illustrates that

(H
2
) is weaker than (H󸀠

2
) in [14].

Example 7. Let 𝐸 = R and𝑀 = [0, 1]. Let 𝑇 : 𝐸 ×𝑀 󴁂󴀱 𝐸 be
a set-valued mapping which is defined by

𝑇 (𝑥, 𝜇) = {𝑡
1
(𝑥, 𝜇) , 𝑡

2
(𝑥, 𝜇)} , (42)
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where 𝑡
1
(𝑥, 𝜇) = 𝑥−𝜇 and 𝑡

2
(𝑥, 𝜇) = 𝑥+𝜇. Obviously,𝑇(𝑥, 𝜇)

is not single-valued mapping; 𝑡
1
(⋅, ⋅) or 𝑡

2
(⋅, ⋅) is 1.1-Lipschitz

on 𝐸 × 𝑀; for any 𝜇 ∈ 𝑀, 𝑡
1
(⋅, 𝜇) or 𝑡

2
(⋅, 𝜇) is 1-strongly

monotone on 𝐸.
However, the set-valued mapping does not satisfy (H󸀠

2
).

Indeed, take 𝑥, 𝑦 ∈ 𝐸 : 𝑥 > 𝑦 and 𝜇 ̸= 0. Then, we can easily
see that ⟨𝑡

1
(𝑥, 𝜇) − 𝑡

2
(𝑦, 𝜇), 𝑥 − 𝑦⟩ = (𝑥 − 𝑦)

2
− 2𝜇(𝑥 − 𝑦) <

(𝑥 − 𝑦)
2.

From Lemma 1 and the definition of the local solution for
(2), we can get the following result.

Lemma 8. For each (𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩𝑀), the problem
(2) has a local solution 𝑥(𝜆, 𝜇) if and only if 𝑥 := 𝑥(𝜆, 𝜇) is a
fixed point of the set-valued mapping 𝐺 : (𝑋 ∩ 𝐸) × (𝑉

1
∩Λ) ×

(𝑈 ∩𝑀) 󴁂󴀱 𝑋 ∩ 𝐸 defined by

𝐺 (𝑥, 𝜆, 𝜇) := ⋃
𝑡(𝑥,𝜇)∈𝑇(𝑥,𝜇)

{𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇))} , (43)

where 𝜌 > 0 is a fixed number.

Proof. Let 𝑥(𝜆, 𝜇) be a local solution of (2) at parameters 𝜆 ∈

𝑉 ∩ Λ, 𝜇 ∈ 𝑈 ∩ 𝑀. Then, 𝑥 := 𝑥(𝜆, 𝜇) ∈ 𝐾(𝜆) ∩ 𝑋 and
𝑡(𝑥, 𝜇) ∈ 𝑇(𝑥, 𝜇) exist such that

⟨𝑡 (𝑥, 𝜇) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾 (𝜆) ∩ 𝑋. (44)

Then, for any given 𝜌 > 0,

⟨𝑥 − (𝑥 − 𝜌𝑡 (𝑥, 𝜇)) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾 (𝜆) ∩ 𝑋, (45)

which along with Lemma 1 implies that

𝑥 = 𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇))

∈ ⋃
𝑡(𝑥,𝜇)∈𝑇(𝑥,𝜇)

{𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇))} .
(46)

Therefore, 𝑥(𝜆, 𝜇) is a fixed point of 𝐺(⋅, 𝜆, 𝜇).
Since the converse can be similarly proved, we omit

it.

Proposition 9. Suppose that assumptions (H
1
)–(H
3
) hold.

Then,
(a) for any 𝜆 ∈ 𝑉 ∩ Λ, 𝜇 ∈ 𝑈 ∩ 𝑀, 𝐺(⋅, 𝜆, 𝜇) defined by

(43) is a set-valued 𝜃-contradiction mapping on𝑋∩𝐸; that is,
for any 𝑥, 𝑥󸀠 ∈ 𝐸 ∩ 𝑋,

𝐻(𝐺 (𝑥, 𝜆, 𝜇) , 𝐺 (𝑥
󸀠
, 𝜆, 𝜇)) ≤ 𝜃

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (47)

where 𝜃 := √1 − 2𝜌𝑚 + 𝜌2ℎ2 < 1;
(b) for any 𝜆 ∈ 𝑉 ∩ Λ, 𝜇 ∈ 𝑈 ∩𝑀, the solution set to (2) is

nonempty compact.

Proof. (a) For each 𝑥 ∈ 𝑋 ∩ 𝐸, 𝜆 ∈ 𝑉 ∩ Λ, and 𝜇 ∈ 𝑈 ∩ 𝑀,
since𝑇(𝑥, 𝜇) is a compact valuedmapping and the projection
mapping 𝑃

𝐾(𝜆)∩𝑋
(⋅) is continuous, then 𝐺(𝑥, 𝜆, 𝜇) defined by

(43) is a compact valued mapping. Therefore, the left part of

(47) is well defined. Let 𝑎 ∈ 𝐺(𝑥, 𝜆, 𝜇) be arbitrarily given.
Then, there exists 𝑡(𝑥, 𝜇) ∈ 𝑇(𝑥, 𝜇) such that

𝑎 = 𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇)) . (48)

Let 𝑏 := 𝑃
𝐾(𝜆)∩𝑋

(𝑥󸀠 − 𝜌𝑡(𝑥󸀠, 𝜇)), which along with (43) yields
that 𝑏 ∈ 𝐺(𝑥󸀠, 𝜆, 𝜇).

Using assumption (H
1
) and the property that the pro-

jection onto a fixed closed convex subset is a nonexpansive
mapping, we obtain

‖𝑎 − 𝑏‖

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇)) − 𝑃
𝐾(𝜆)∩𝑋

(𝑥
󸀠
− 𝜌𝑡 (𝑥

󸀠
, 𝜇))

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠
− 𝜌 (𝑡 (𝑥, 𝜇) − 𝑡 (𝑥

󸀠
, 𝜇))

󵄩󵄩󵄩󵄩󵄩
.

(49)

On the other hand, it follows from assumptions (H
1
) and

(H
2
) that

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠
− 𝜌 (𝑡 (𝑥, 𝜇) − 𝑡 (𝑥

󸀠
, 𝜇))

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

2

− 2𝜌 ⟨𝑡 (𝑥, 𝜇) − 𝑡 (𝑥
󸀠
, 𝜇) , 𝑥 − 𝑥

󸀠
⟩

+ 𝜌
2󵄩󵄩󵄩󵄩󵄩
𝑡(𝑥, 𝜇) − 𝑡(𝑥

󸀠
, 𝜇)

󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 2𝜌𝑚 + 𝜌
2
ℎ
2
)
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

2

,

(50)

which implies that
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠
− 𝜌 (𝑡 (𝑥, 𝜇) − 𝑡 (𝑥

󸀠
, 𝜇))

󵄩󵄩󵄩󵄩󵄩

≤ √1 − 2𝜌𝑚 + 𝜌2ℎ2
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
.

(51)

Combing (49) and (51), we obtain

‖𝑎 − 𝑏‖ ≤ √1 − 2𝜌𝑚 + 𝜌2ℎ2
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

= 𝜃
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
. (52)

By assumption (H
3
), 𝜃 < 1 and hence we have

sup
𝑎∈𝐺(𝑥,𝜆,𝜇)

𝑑 (𝑎, 𝐺 (𝑥
󸀠
, 𝜆, 𝜇)) ≤ 𝜃

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
. (53)

Using the same arguments, we can show that

sup
𝑏∈𝐺(𝑥󸀠 ,𝜆,𝜇)

𝑑 (𝑏, 𝐺 (𝑥, 𝜆, 𝜇)) ≤ 𝜃
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
, (54)

which along with (53) implies that 𝐺(⋅, 𝜆, 𝜇) is a set-valued
𝜃-contradiction mapping on𝑋 ∩ 𝐸.

(b) By (a) and the Nadler fixed point theorem in [15],
𝐺(⋅, 𝜆, 𝜇) has a fixed point 𝑥(𝜆, 𝜇) for each (𝜆, 𝜇) ∈ (𝑉 ∩

Λ) × (𝑈 ∩ 𝑀). Hence, for any (𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩ 𝑀),
LS(𝜆, 𝜇) ̸= 0 by Lemma 8. Moreover, we claim that LS(𝜆, 𝜇) is
a closed subset. Indeed, let 𝑥

𝑛
∈ LS(𝜆, 𝜇) with 𝑥

𝑛
→ 𝑥
0
as

𝑛 → ∞. Then, it follows from Lemma 8 that

𝑥
𝑛
∈ 𝐺 (𝑥

𝑛
, 𝜆, 𝜇) , ∀𝑛. (55)
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Therefore, by (a), we obtain

𝑑 (𝑥
0
, 𝐺 (𝑥
0
, 𝜆, 𝜇))

≤
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝑑 (𝑥
𝑛
, 𝐺 (𝑥
𝑛
, 𝜆, 𝜇))

+ 𝐻 (𝐺 (𝑥
𝑛
, 𝜆, 𝜇) , 𝐺 (𝑥

0
, 𝜆, 𝜇))

≤ (1 + 𝜃)
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞,

(56)

which implies that 𝑥
0

∈ 𝐺(𝑥
0
, 𝜆, 𝜇) and 𝑥

0
∈ LS(𝜆, 𝜇) by

Lemma 8. Hence, LS(𝜆, 𝜇) is a compact set since 𝐾(𝜆) ∩ 𝑋

is compact. The proof is complete.

As an immediate consequence of Lemma8, Proposition 9,
and the Banach fixed point theorem, we have the following
result.

Corollary 10. For any (𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩ 𝑀), 𝑡(⋅, 𝜇) ∈

𝑇(⋅, 𝜇), the vector-valued mapping 𝑔 : (𝑋 ∩ 𝐸) × (𝑉
1
∩ Λ) ×

(𝑈 ∩𝑀) → 𝑋 ∩ 𝐸 defined by

𝑔 (𝑥, 𝜆, 𝜇) := 𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇)) , (57)

where 𝜌 > 0, is a fixed number. Furthermore, assume that
assumptions (H

1
)–(H
3
) are satisfied.

Then, for any 𝜆 ∈ 𝑉 ∩ Λ, 𝜇 ∈ 𝑈 ∩𝑀, 𝑔(⋅, 𝜆, 𝜇) is a vector-
valued 𝜃-contradiction mapping and has a unique fixed point
𝑥(𝜆, 𝜇).

Now, we state our main result.

Theorem 11. Suppose that 𝐾(⋅) is 𝑘.𝛼-Pseudo-Hölder con-
tinuous at (𝜆, 𝑥). Furthermore, suppose that assumptions
(H
1
)–(H
3
) hold. Then, there exist a neighborhood 𝑈 of 𝜇, a

neighborhood 𝑉 of 𝜆 such that
(a) for all (𝜆󸀠, 𝜇󸀠), (𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩𝑀),

𝐻(𝐿𝑆 (𝜆
󸀠
, 𝜇
󸀠
) , 𝐿𝑆 (𝜆, 𝜇))

≤
1

1 − 𝜃
(2𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼/2

+ 𝜌𝑙
󵄩󵄩󵄩󵄩󵄩
𝜇 − 𝜇
󸀠󵄩󵄩󵄩󵄩󵄩

𝛽

) ;

(58)

(b) for all (𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩ 𝑀), 𝐿𝑆(𝜆, 𝜇) ⊂ int𝑋
and for any 𝑥(𝜆, 𝜇) ∈ 𝐿𝑆(𝜆, 𝜇) is a solution to (2) at parameters
𝜆 ∈ 𝑉 ∩ Λ, 𝜇 ∈ 𝑈 ∩𝑀.

Proof. By the Pseudo-Hölder continuity of 𝐾(⋅) and
Lemma4, there exist a neighborhood𝑉

1
of𝜆, a neighborhood

𝑋
1
of 𝑥 such that
󵄩󵄩󵄩󵄩𝑃𝐾(𝜆󸀠)∩𝑋 (𝑦) − 𝑃

𝐾(𝜆)∩𝑋
(𝑦)

󵄩󵄩󵄩󵄩

≤ 2𝑘
󵄩󵄩󵄩󵄩󵄩
𝜆
󸀠
− 𝜆

󵄩󵄩󵄩󵄩󵄩

𝛼/2

, ∀𝜆, 𝜆
󸀠
∈ 𝑉
1
∩ Λ, ∀𝑦 ∈ 𝑋

1
.

(59)

Since 𝑇(𝑥, 𝜇) is compact, then 𝜎 :=

sup
𝑡(𝑥,𝜇)∈𝑇(𝑥,𝜇)

‖𝑡(𝑥, 𝜇)‖ < ∞. Let 𝜌
1
satisfy assumption

(H
3
) and

𝑥 + 𝜌
1
𝜎𝐵 (0, 1) ⊂ int𝑋

1
, (60)

where int𝑋
1
denotes the interior of𝑋

1
.

Fix 𝜌 ∈ (0, 𝜌
1
]. For any (𝜆, 𝜇) ∈ (𝑉

1
∩ Λ) × (𝑈 ∩ 𝑀), let

𝑥 ∈ LS(𝜆, 𝜇) be arbitrarily given. Then, there exists 𝑡̂(𝑥, 𝜇) ∈
𝑇(𝑥, 𝜇) such that

𝑥 = 𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡̂ (𝑥, 𝜇)) . (61)

For any (𝜆󸀠, 𝜇󸀠) ∈ (𝑉
1
∩ Λ) × (𝑈 ∩ 𝑀), by Corollary 10,

𝑔(⋅, 𝜆󸀠, 𝜇󸀠) = 𝑃
𝐾(𝜆
󸀠
)∩𝑋

(⋅−𝜌𝑡̂(⋅, 𝜇)) has a unique fixed point𝑥󸀠 =
𝑥(𝜆󸀠, 𝜇󸀠). Then, it follows from Lemma 8 that 𝑥󸀠 = 𝑥(𝜆󸀠, 𝜇󸀠) is
a solution to (2) at parameters (𝜆󸀠, 𝜇󸀠); that is,

𝑥
󸀠
= 𝑃
𝐾(𝜆
󸀠
)∩𝑋

(𝑥
󸀠
− 𝜌𝑡̂ (𝑥

󸀠
, 𝜇
󸀠
)) . (62)

Then, using assumption (H
1
), Proposition 9, and the

property that the projection onto a fixed convex subset is a
nonexpansive mapping, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥, 𝜇)) − 𝑃
𝐾(𝜆
󸀠
)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
))
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥, 𝜇)) − 𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥, 𝜇
󸀠
))
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥, 𝜇
󸀠
)) − 𝑃

𝐾(𝜆)∩𝑋
(𝑧 (𝑥
󸀠
, 𝜇
󸀠
))
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
)) − 𝑃

𝐾(𝜆
󸀠
)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
))
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑧 (𝑥, 𝜇) − 𝑧 (𝑥, 𝜇

󸀠
)
󵄩󵄩󵄩󵄩󵄩
+ 𝜃 ‖𝑥 − 𝑥‖

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
)) − 𝑃

𝐾(𝜆
󸀠
)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
))
󵄩󵄩󵄩󵄩󵄩

≤ 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑡̂ (𝑥, 𝜇) − 𝑡̂ (𝑥, 𝜇

󸀠
)
󵄩󵄩󵄩󵄩󵄩
+ 𝜃

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
)) − 𝑃

𝐾(𝜆
󸀠
)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
))
󵄩󵄩󵄩󵄩󵄩

≤ 𝜌𝑙
󵄩󵄩󵄩󵄩󵄩
𝜇 − 𝜇
󸀠󵄩󵄩󵄩󵄩󵄩

𝛽

+ 𝜃
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
)) − 𝑃

𝐾(𝜆
󸀠
)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
))
󵄩󵄩󵄩󵄩󵄩
,

(63)

where 𝑧(𝑥, 𝜇) := 𝑥 − 𝜌𝑡̂(𝑥, 𝜇), 𝑧(𝑥󸀠, 𝜇󸀠) := 𝑥󸀠 − 𝜌𝑡̂(𝑥󸀠, 𝜇󸀠),
𝑧(𝑥, 𝜇󸀠) := 𝑥−𝜌𝑡̂(𝑥, 𝜇󸀠), and 𝜃 < 1 defined as in Proposition 9.

Noting that the arbitrariness of 𝑥 ∈ LS(𝜆, 𝜇), we obtain
that

sup
𝑥∈LS(𝜆,𝜇)

𝑑 (𝑥, LS (𝜆󸀠, 𝜇󸀠))

≤
1

1 − 𝜃
(𝜌𝑙

󵄩󵄩󵄩󵄩󵄩
𝜇 − 𝜇
󸀠󵄩󵄩󵄩󵄩󵄩

𝛽

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
))

−𝑃
𝐾(𝜆
󸀠
)∩𝑋

(𝑧 (𝑥
󸀠
, 𝜇
󸀠
))
󵄩󵄩󵄩󵄩󵄩
) .

(64)
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Then, substituting (𝜆󸀠, 𝜇󸀠) = (𝜆, 𝜇) in (64) and by the
uniqueness of LS(𝜆, 𝜇) we obtain that

sup
𝑥∈LS(𝜆,𝜇)

𝑑 (𝑥, LS (𝜆, 𝜇)) = sup
𝑥∈LS(𝜆,𝜇)

‖𝑥 − 𝑥‖

≤
1

1 − 𝜃
(𝜌𝑙

󵄩󵄩󵄩󵄩𝜇 − 𝜇
󵄩󵄩󵄩󵄩
𝛽

+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥, 𝜇))

−𝑃
𝐾(𝜆)∩𝑋

(𝑧 (𝑥, 𝜇))
󵄩󵄩󵄩󵄩󵄩
) ,

(65)

where 𝑧(𝑥, 𝜇) := 𝑥 − 𝜌𝑡̂(𝑥, 𝜇).
According to (60), we have 𝑧(𝑥, 𝜇) := 𝑥 − 𝜌𝑡̂(𝑥, 𝜇) ∈

int𝑋
1
, which along with (59), (65) yields that

𝐻(LS (𝜆, 𝜇) , {𝑥}) = 𝐻 (LS (𝜆, 𝜇) , LS (𝜆, 𝜇))

≤
1

1 − 𝜃
(2𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆

󵄩󵄩󵄩󵄩󵄩

𝛼/2

+ 𝜌𝑙
󵄩󵄩󵄩󵄩𝜇 − 𝜇

󵄩󵄩󵄩󵄩
𝛽

) .

(66)

We claim that there exist a neighborhood 𝑉 of 𝜆, a
neighborhood 𝑈 of 𝜆 such that (58) is satisfied. Indeed, let
𝜖 > 0 be so small that 𝑧(𝑥, 𝜇) + 𝜖𝐵(0, 1) ⊂ int𝑋

1
. Using

(66), assumption (H
1
) and (5) of Remark 6, we can find a

neighborhood 𝑉 ⊂ 𝑉
1
of 𝜆, a neighborhood 𝑈 ⊂ 𝑈 of 𝜇 such

that for any (𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩𝑀),

LS (𝜆, 𝜇) ⊂ int𝑋, 𝐻 (𝑥 − 𝜌𝑇 (𝑥, 𝜇) , 𝑥 − 𝜌𝑇 (𝑥, 𝜇)) ≤ 𝜖,

∀𝑥 ∈ LS (𝜆, 𝜇) .
(67)

Therefore, (60) and (67) together yield that, for all 𝑥 ∈

LS(𝜆, 𝜇), 𝑡(𝑥, 𝜇) ∈ 𝑇(𝑥, 𝜇),
𝑧 (𝜆, 𝜇) := 𝑥 − 𝜌𝑡 (𝑥, 𝜇) ∈ int𝑋

1
. (68)

Hence, for any (𝜆, 𝜇), (𝜆󸀠, 𝜇󸀠) ∈ (𝑉 ∩ Λ) × (𝑈 ∩𝑀), it follows
from (59), (64), and (68) that

sup
𝑥∈LS(𝜆,𝜇)

𝑑 (𝑥, LS (𝜆󸀠, 𝜇󸀠))

≤
1

1 − 𝜃
(2𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼/2

+ 𝜌𝑙
󵄩󵄩󵄩󵄩󵄩
𝜇 − 𝜇
󸀠󵄩󵄩󵄩󵄩󵄩

𝛽

) .

(69)

On the other hand, it follows from the symmetrical roles
of (𝜆, 𝜇), (𝜆󸀠, 𝜇󸀠) that

sup
𝑥∈LS(𝜆󸀠 ,𝜇󸀠)

𝑑 (𝑥, LS (𝜆, 𝜇))

≤
1

1 − 𝜃
(2𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼/2

+ 𝜌𝑙
󵄩󵄩󵄩󵄩󵄩
𝜇 − 𝜇
󸀠󵄩󵄩󵄩󵄩󵄩

𝛽

) .

(70)

Therefore, (69) and (70) together yield that for any (𝜆, 𝜇),
(𝜆󸀠, 𝜇󸀠) ∈ (𝑉 ∩ Λ) × (𝑈 ∩𝑀),

𝐻(LS (𝜆, 𝜇) , LS (𝜆󸀠, 𝜇󸀠))

≤
1

1 − 𝜃
(2𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆
󸀠󵄩󵄩󵄩󵄩󵄩

𝛼/2

+ 𝜌𝑙
󵄩󵄩󵄩󵄩󵄩
𝜇 − 𝜇
󸀠󵄩󵄩󵄩󵄩󵄩

𝛽

) .

(71)

Thus, we have established (58) and obtained LS(𝜆, 𝜇) ⊂

int𝑋 in (67), which implies that for all 𝑥(𝜆, 𝜇) ∈ LS(𝜆, 𝜇) is
the solution in𝑋 to (2) at parameters 𝜆 ∈ 𝑉 ∩ Λ, 𝜇 ∈ 𝑈 ∩𝑀.
The proof is complete.

The following example is given to illustrate that the local
solution set of (2) is not single valued and Theorem 11 is
applicable.

Example 12. Let 𝐸 = R2,Λ = 𝑀 = R, (𝜆, 𝜇) = (1, 0) ∈ Λ×𝑀

be a given point and let 𝑉 = Λ, 𝑈 = 𝑀 be a neighborhood of
(𝜆, 𝜇). Let 𝑇 : 𝐸 × 𝑀 󴁂󴀱 𝐸 be a set-valued mapping which is
defined by

𝑇 (𝑥, 𝜇) = {((2 − 𝜃) 𝑥
1
, (2 − 𝜃) 𝑥

2
+ (1 − 2𝜃) 𝜇) : 0 ≤ 𝜃 ≤ 1} ,

∀𝑥 = (𝑥
1
, 𝑥
2
) ∈ 𝐸, 𝜇 ∈ 𝑀

(72)

and𝐾 : Λ 󴁂󴀱 𝐸 defined by

𝐾 (𝜆) = {𝑥 = (𝑥
1
, 𝑥
2
) ∈ 𝐸 : 𝑥

1
+ 𝑥
2
= 2𝜆} , ∀𝜆 ∈ Λ. (73)

Clearly, 𝑥 = (1, 1) is a unique solution to (2) at parameter
(𝜆, 𝜇). Let 𝑋 = R2 be a neighborhood of 𝑥 and let 𝑡(⋅, ⋅) ∈

𝑇(⋅, ⋅) be taken arbitrarily. Obviously, 𝑡(⋅, ⋅) is 2.1-1.1-Hölder
continuous and strongly 1-monotone on (𝑋 ∩ 𝐸) × (𝑈 ∩𝑀);
there exists 𝜌 satisfying 0 < 𝜌 ≤ 1/4; the map 𝐾(⋅) is
1.1-Hölder continuous with closed convex values on 𝑉 ∩ Λ.
Therefore, all assumptions of Theorem 11 are satisfied.

Moreover, by virtue of Lemma 8, we note that 𝑥 ∈ 𝐾(𝜆) ∩

𝑋 is a local solution of (2) at parameter (𝜆, 𝜇) if and only if 𝑥
satisfies the inclusion

𝑥 ∈ 𝐺 (𝑥, 𝜆, 𝜇) = ⋃
𝑡(𝑥,𝜇)∈𝑇(𝑥,𝜇)

{𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇))} . (74)

Let 𝑥 = (𝑥
1
, 𝑥
2
) ∈ 𝐸 be any point. By a simple

computation, we obtain

𝑃
𝐾(𝜆)∩𝑋

(𝑥) = (𝜆 +
𝑥
1
− 𝑥
2

2
, 𝜆 +

𝑥
2
− 𝑥
1

2
) . (75)

Then, it follows that, for each𝜌 : 0 < 𝜌 ≤ 1/4 and any 𝑡(𝑥, 𝜇) ∈
𝑇(𝑥, 𝜇),

𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇))

= (𝜆 + (((1 − 𝜌 (2 − 𝜃)) 𝑥
1
− (1 − 𝜌 (2 − 𝜃)) 𝑥

2

−𝜌 (1 − 2𝜃) 𝜇)) × 2
−1
) ,

𝜆 + (((1 − 𝜌 (2 − 𝜃)) 𝑥
2
+ 𝜌 (1 − 2𝜃) 𝜇

− (1 − 𝜌 (2 − 𝜃)) 𝑥
1
) × 2
−1
)) .

(76)
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Hence,

𝑥 ∈ 𝐺 (𝑥, 𝜆, 𝜇)

= ⋃
𝑡(𝑥,𝜇)∈𝑇(𝑥,𝜇)

𝑃
𝐾(𝜆)∩𝑋

(𝑥 − 𝜌𝑡 (𝑥, 𝜇))

= {(𝜆 + (((1 − 𝜌 (2 − 𝜃)) 𝑥
1
− (1 − 𝜌 (2 − 𝜃)) 𝑥

2

−𝜌 (1 − 2𝜃) 𝜇) ) × 2
−1
) ,

𝜆 + (((1 − 𝜌 (2 − 𝜃)) 𝑥
2
+ 𝜌 (1 − 2𝜃) 𝜇

− (1 − 𝜌 (2 − 𝜃)) 𝑥
1
) × 2
−1
) : 0 ≤ 𝜃 ≤ 1} .

(77)

By virtue of Lemma 8, direct computation shows that, for any
(𝜆, 𝜇) ∈ (𝑉 ∩ Λ) × (𝑈 ∩𝑀),

LS (𝜆, 𝜇) = {(𝜆 +
(1 − 2𝜃) 𝜇

2 (2 − 𝜃)
, 𝜆 −

(1 − 2𝜃) 𝜇

2 (2 − 𝜃)
) : 0 ≤ 𝜃 ≤ 1} .

(78)

Then, the local solution set LS(⋅, ⋅) of (2) satisfies (58) for
any neighborhoods 𝑉 of 𝜆, 𝑈 of 𝜇. Hence, Theorem 11 is
applicable.
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