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We investigate an n-species food chain model with spatial diffusion and time delays. By using Schauder’s fixed point theorem, we
obtain the result about the existence of the travelling wave solutions of the food chainmodel with reaction term satisfying the partial
quasimonotonicity conditions.

1. Introduction

In the past few decades, the dynamic relationship between
predators and preys has been investigated intensively due to
its universal existence and importance in both ecology and
mathematical ecology [1–3].

Recently, traveling waves for reaction-diffusion systems
(see, e.g., [4–7]) have received considerable attention since
they determine the long-term behavior of other solutions
in many situations. By now, many powerful methods have
been used to study the travelling wave solutions for reaction-
diffusion systems, like phase plane techniques in [8], degree
theory methods [9, 10], the shooting methods [11], the
monotone iteration [1], and so on [12, 13].

Although the existence of travelling wave solutions to
reaction-diffusion systems without delay has been widely
studied [14–16], delayed reaction-diffusion systems which
are more realistic in population dynamic and biological
models are much more complicated than ordinary sys-
tems. Recently, a number of researchers have studied the
existence of travelling wave solutions in delayed reaction-
diffusion systems. In [17, 18],Wu and Zou considered delayed
reaction-diffusion systems with reaction terms satisfying
the so-called quasimonotonicity or exponential quasimono-
tonicity conditions. In [19], Huang and Zou employed the
upper-lower solution technique and the monotone to study
the existence of travelling wave solutions for a class of

diffusion cooperative Lotka-Volterra systems with delays. In
[20], Ma used Schauder’s fixed point theorem to study the
existence of travelling wave solutions to reaction-diffusion
systems with quasimonotonicity reaction terms. In 2010,
Gan et al. [21] investigated the existence of travelling
wave solutions to the following three-species food chain
models:

𝜕𝑢

𝜕𝑡
= 𝐷
1

𝜕
2
𝑢

𝜕𝑥2
+ 𝑢 (𝑡, 𝑥) (𝑟

1
− 𝑎
11
𝑢 (𝑡, 𝑥) − 𝑎

12
V (𝑡, 𝑥)) ,

𝜕V
𝜕𝑡

= 𝐷
2

𝜕
2V
𝜕𝑥2

+ V (𝑡, 𝑥) (−𝑟
2
+ 𝑎
21
V (𝑡 − 𝜏, 𝑥)

−𝑎
22
V (𝑡, 𝑥) − 𝑎

23
𝑤 (𝑡, 𝑥)) ,

𝜕𝑤

𝜕𝑡
= 𝐷
3

𝜕
2
𝑤

𝜕𝑥2
+ 𝑤 (𝑡, 𝑥) (−𝑟

3
+ 𝑎
32
V (𝑡 − 𝜏, 𝑥) − 𝑎

33
𝑤 (𝑡, 𝑥)) .

(1)

They obtain the existence of traveling waves by using
Schauder’s fixed point theorem with the reaction term
satisfying the partial quasimonotonicity conditions instead
of the quasimonotonicity conditions.
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Motivated by the above papers, in this paper, we investi-
gate an n-species food chain model with spatial diffusion and
time delays:

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
= 𝐷
𝑖

𝜕
2
𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥2
− 𝑎
𝑖
𝑢
𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) ,

(2)

where 𝐷
𝑖
, 𝑎
𝑖
, 𝑤
𝑖𝑗
, and ℎ

𝑖𝑗
are positive constants and 𝑖 =

1, 2, . . . , 𝑛.
The main propose of this paper is to obtain the sufficient

condition for the existence of the travelling wave solutions of
system (2) by employing Schauder’s fixed point theorem.This
paper is organized as follows. In Section 2, some definition
and lemmas are given. And the main results of the paper are
established in the last section.

2. Preliminary

On substituting𝑢
𝑖
(𝑡, 𝑥) = 𝜙

𝑖
(𝑥+𝑐𝑡) anddenoting the traveling

wave coordinate 𝑥 + 𝑐𝑡 still by 𝑡, we derive from (2) that

𝐷
𝑖
𝜙
󸀠󸀠

𝑖
(𝑡) − 𝑐𝜙

󸀠

𝑖
(𝑡) − 𝑎

𝑖
𝜙
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑓
𝑗
(𝜙
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝑔
𝑗
(𝜙
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) = 0.

(3)

If for some 𝑐 > 0, system (2) has a solution defined on 𝑅𝑛
satisfying

lim
𝑡→−∞

𝜙
𝑖
(𝑡) = 𝜙

−

𝑖
, lim

𝑡→∞

𝜙
𝑖
(𝑡) = 𝜙

+

𝑖
, (4)

where (𝜙−
1
, 𝜙
−

2
, . . . , 𝜙

−

𝑛
) and (𝜙+

1
, 𝜙
+

2
, . . . , 𝜙

+

𝑛
) are steady states of

(2), then 𝑢
𝑖
(𝑡, 𝑥) = 𝜙

𝑖
(𝑥+𝑐𝑡) is called a travelingwave solution

of (2) with speed 𝑐. Without loss of generality, we assume
that (𝜙−

1
, 𝜙
−

2
, . . . , 𝜙

−

𝑛
) = (0, 0, . . . , 0) and (𝜙

+

1
, 𝜙
+

2
, . . . , 𝜙

+

𝑛
) =

(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
).

Rewrite model (3) as

𝐷
𝑖
𝜙
󸀠󸀠

𝑖
(𝑡) − 𝑐𝜙

󸀠

𝑖
(𝑡) − 𝑎

𝑖
𝜙
𝑖
(𝑡) + 𝐻

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡) = 0, (5)

where

𝐻
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

=

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑓
𝑗
(𝜙
𝑗
(𝑡)) +

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝑔
𝑗
(𝜙
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) .

(6)

In the following parts, we assume that the nonlinear reaction
terms 𝐻

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)(𝑡)(𝑖 = 1, 2, . . . , 𝑛) satisfy the partial

quasimonotonicity conditions (PQM):

(1) 𝐻
𝑛
is nondecreasing. That is, for 0 ≤ 𝜙

𝑗
≤ 𝜙
𝑗
≤ 𝜙
𝑗
≤

𝑘
𝑗
(𝑗 = 1, 2, . . . , 𝑛),

𝐻
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)

≤ 𝐻
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ 𝐻

𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) .

(7)

(2) For 𝑡 ∈ 𝑅, and 0 ≤ 𝜙
𝑗
≤ 𝜙
𝑗
≤ 𝜙
𝑗
≤ 𝑘
𝑗
(𝑗 = 1, 2, . . . , 𝑛),

𝐻
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡)

≤ 𝐻
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

≤ 𝐻
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡) ,

𝑖 = 1, 2, . . . , 𝑛 − 1.

(8)

Let 𝐶
𝑘
(𝑅, 𝑅
𝑛
) = {(𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) ∈ 𝐶(𝑅, 𝑅

𝑛
) : 0 ≤ 𝜙

𝑖
≤

𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑛}, and for (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) ∈ 𝐶
𝑘
(𝑅, 𝑅
𝑛
), define

𝐹 = (𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
) : 𝐶
𝑘
(𝑅, 𝑅
𝑛
) → 𝐶

𝑘
(𝑅, 𝑅
𝑛
) by

𝐹
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

=
1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× [∫

𝑡

−∞

𝑒
𝜆𝑖1(𝑡−𝑠)𝐻

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑠) 𝑑𝑠

+ ∫

∞

𝑡

𝑒
𝜆𝑖2(𝑡−𝑠)𝐻

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑠) 𝑑𝑠] ,

(9)

where

𝜆
𝑖1
=

𝑐 − √𝑐2 + 4𝐷
𝑖
𝑎
𝑖

2𝐷
𝑖

, 𝜆
𝑖2
=

𝑐 + √𝑐2 + 4𝐷
𝑖
𝑎
𝑖

2𝐷
𝑖

. (10)

It is easy to see that 𝐹
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) satisfy

𝐷
𝑖
𝐹
󸀠󸀠

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) − 𝑐𝐹

󸀠

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)

− 𝑎
𝑖
𝐹
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) + 𝐻
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡) = 0.

(11)

Throughout this paper, we always assume that the follow-
ing assumptions hold.

(H
1
)

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑓
𝑗
(0) +

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝑔
𝑗
(0)

=

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑓
𝑗
(𝑘
𝑗
) +

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝑔
𝑗
(𝑘
𝑗
) = 0, 𝑖 = 1, 2, . . . , 𝑛.

(12)

(H
2
) For any 0 ≤ 𝜙

1

𝑖
, 𝜙
2

𝑖
≤ 𝑘
𝑖
(𝑖 = 1, 2, . . . , 𝑛), there

exist some positive constants 𝐿
𝑖
, 𝐾
𝑖
> 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝜙
1

𝑖
) − 𝑓
𝑖
(𝜙
2

𝑖
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐿
𝑖

󵄨󵄨󵄨󵄨󵄨
𝜙
1

𝑖
− 𝜙
2

𝑖

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑖
(𝜙
1

𝑖
) − 𝑔
𝑖
(𝜙
2

𝑖
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐾
𝑖

󵄨󵄨󵄨󵄨󵄨
𝜙
1

𝑖
− 𝜙
2

𝑖

󵄨󵄨󵄨󵄨󵄨
.

(13)
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Let 𝑢 > 0 and equip Φ = (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ∈

𝐶(𝑅, 𝑅
𝑛
) with the exponential decay norm defined by |Φ|

𝜇
=

sup
𝑡∈𝑅
𝑒
−𝜇|𝑡|

|Φ(𝑡)|
𝑅
𝑛 . And define 𝐵

𝜇
(𝑅, 𝑅
𝑛
) = {Φ ∈ 𝐶(𝑅, 𝑅

𝑛
) :

|Φ|
𝜇
< ∞}; then it is easy to see that (𝐵

𝜇
(𝑅, 𝑅
𝑛
), | ⋅ |
𝜇
) is a

Banach space.
We will study traveling wave solution to system (2) in the

following profile set:

Γ ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) , (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
))

= {
(1) 𝜙
𝑛
is nondecreasing in 𝑅;

(2) 𝜙
𝑖
≤ 𝜙
𝑖
≤ 𝜙
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(14)

It is easy to check that Γ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
), (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)) is

nonempty, convex, closed, and bounded.

Definition 1. Function Φ = (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) is called upper

solution of system (2) if Φ is twice differentiable almost
everywhere in 𝑅, and there hold

𝐷
𝑖
𝜙
󸀠󸀠

𝑖
(𝑡) − 𝑐𝜙

󸀠

𝑖
(𝑡) − 𝑎

𝑖
𝜙
𝑖
(𝑡)

+ 𝐻
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡)

≤ 0, a.e. in 𝑅,

𝐷
𝑛
𝜙
󸀠󸀠

𝑛
(𝑡) − 𝑐𝜙

󸀠

𝑛
(𝑡) − 𝑎

𝑖
𝜙
𝑛
(𝑡)

+ 𝐻
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ 0, a.e. in 𝑅.

(15)

Reversing the direction of above inequalities, we can get the
lower solution.

In this paper, we assume that the upper-lower solutions
of system (2) Φ = (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) and Φ = (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
)

satisfy

(P
1
) (0, 0, . . . , 0) ≤ (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ (𝜙

1
, 𝜙
2
, . . . ,

𝜙
𝑛
) ≤ (𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
), 𝑡 ∈ 𝑅,

(P
2
) lim
𝑡→−∞

(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) = (0, 0, . . . , 0), and

lim
𝑡→∞

(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) = (𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
).

Lemma 2. Assume that (PQM) holds; then one has

(1) 𝐹
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)(𝑡) is nondecreasing for 𝑡 ∈ 𝑅.

(2) For 𝑡 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛−1 and 0 ≤ 𝜙
𝑗
≤ 𝜙
𝑗
≤ 𝑘
𝑗
(𝑗 =

1, 2, . . . , 𝑛), there has

𝐹
𝑖
(𝜙
𝑖
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡)

≤ 𝐹
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

≤ 𝐹
𝑖
(𝜙
𝑖
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡) .

(16)

Lemma 2 is easy to prove, so we omit it.

Lemma 3. Assume that (H
2
) holds; then 𝐹

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)(𝑡)

is continuous with respect to the norm | ⋅ | in 𝐵
𝜇
(𝑅, 𝑅
𝑛
).

Proof. For any fixed 𝜖 > 0, choose 𝛿 < 𝜖/(∑
𝑛

𝑗=1
𝑤
𝑖𝑗
𝐿
𝑗
+

∑
𝑛

𝑗=1
ℎ
𝑖𝑗
𝐾
𝑗
); a direct calculation shows that |𝜙1

𝑗
− 𝜙
2

𝑗
|
𝜇
< 𝛿,

|𝜙
1

𝑗
(𝑡 − 𝜏
𝑗
(𝑡)) − 𝜙

2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡))| < 𝛿; then there exists

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑖
(𝜙
1

1
, 𝜙
1

2
, . . . , 𝜙

1

𝑛
) (𝑡) − 𝐻

𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇|𝑡|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑓
𝑗
(𝜙
1

𝑗
(𝑡)) +

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝑔
𝑗
(𝜙
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

−

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑓
𝑗
(𝜙
2

𝑗
(𝑡)) −

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝑔
𝑗
(𝜙
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
−𝜇|𝑡|

≤

𝑛

∑

𝑗=1

𝑤
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝜙
1

𝑗
(𝑡)) − 𝑓

𝑗
(𝜙
2

𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇|𝑡|

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝜙
1

𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

−𝑔
𝑗
(𝜙
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇|𝑡|

≤

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝐿
𝑗
𝛿 +

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝐾
𝑗
𝛿 ≤ 𝜖.

(17)

For 𝑡 > 0, we can see that

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
(𝜙
1

1
, 𝜙
1

2
, . . . , 𝜙

1

𝑛
) − 𝐹
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
)
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇|𝑡|

≤
1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× [∫

𝑡

−∞

𝑒
𝜆𝑖1(𝑡−𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝐻
𝑖
(𝜙
1

1
, 𝜙
1

2
, . . . , 𝜙

1

𝑛
) (𝑠)

−𝐻
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
) (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇|𝑠|

𝑒
𝜇|𝑠|
𝑑𝑠

+ ∫

+∞

𝑡

𝑒
𝜆𝑖2(𝑡−𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝐻
𝑖
(𝜙
1

1
, 𝜙
1

2
, . . . , 𝜙

1

𝑛
) (𝑠)

−𝐻
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
) (𝑠)

󵄨󵄨󵄨󵄨󵄨

× 𝑒
−𝜇|𝑠|

𝑒
𝜇|𝑠|
𝑑𝑠] 𝑒
−𝜇𝑡

≤
𝜖

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
[∫

𝑡

−∞

𝑒
𝜆𝑖1(𝑡−𝑠)𝑒

𝜇|𝑠|
𝑑𝑠

+∫

+∞

𝑡

𝑒
𝜆𝑖2(𝑡−𝑠)𝑒

𝜇|𝑠|
𝑑𝑠] 𝑒
−𝜇𝑡
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=
𝜖

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
[

2𝜇

𝜆2
𝑖1
− 𝜇2

𝑒
(𝜆𝑖1−𝜇)𝑡 +

𝜆
𝑖2
− 𝜆
𝑖1

(𝜇 − 𝜆
𝑖1
) (𝜆
𝑖2
− 𝜇)

]

≤
𝜖

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
[

2𝜇

𝜆2
𝑖1
− 𝜇2

+
𝜆
𝑖2
− 𝜆
𝑖1

(𝜇 − 𝜆
𝑖1
) (𝜆
𝑖2
− 𝜇)

] .

(18)

For 𝑡 < 0, we have
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
(𝜙
1

1
, 𝜙
1

2
, . . . , 𝜙

1

𝑛
) − 𝐹
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
)
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇|𝑡|

≤
1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× [∫

𝑡

−∞

𝑒
𝜆𝑖1(𝑡−𝑠)

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑖
(𝜙
1

1
, 𝜙
1

2
, . . . , 𝜙

1

𝑛
) (𝑠)

−𝐻
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
) (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇|𝑠|

𝑒
𝜇|𝑠|
𝑑𝑠

+ ∫

+∞

𝑡

𝑒
𝜆𝑖2(𝑡−𝑠)

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑖
(𝜙
1

1
, 𝜙
1

2
, . . . , 𝜙

1

𝑛
) (𝑠)

−𝐻
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
) (𝑠)

󵄨󵄨󵄨󵄨󵄨

× 𝑒
−𝜇|𝑠|

𝑒
𝜇|𝑠|
𝑑𝑠] 𝑒
𝜇𝑡

≤
𝜖

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
[∫

𝑡

−∞

𝑒
𝜆𝑖1(𝑡−𝑠)𝑒

𝜇|𝑠|
𝑑𝑠

+∫

+∞

𝑡

𝑒
𝜆𝑖2(𝑡−𝑠)𝑒

𝜇|𝑠|
𝑑𝑠] 𝑒
𝜇𝑡

≤
𝜖

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
[

2𝜇

𝜆2
𝑖2
− 𝜇2

−
𝜆
𝑖2
− 𝜆
𝑖1

(𝜇 + 𝜆
𝑖1
) (𝜆
𝑖2
+ 𝜇)

] .

(19)

So, 𝐹
𝑖
: 𝐵
𝜇
(𝑅, 𝑅
𝑛
) → 𝐵

𝜇
(𝑅, 𝑅
𝑛
) is continuous with respect to

the norm | ⋅ | in 𝐵
𝜇
(𝑅, 𝑅
𝑛
).

Lemma 4. Assume that (H
1
) and (PQM) hold; then

𝐹(Γ ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) , (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)))

⊂ Γ ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) , (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)) .

(20)

Proof. According to Lemma 2, for any (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) with

(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
), there

exists

𝐹
𝑖
(𝜙
𝑖
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡)

≤ 𝐹
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

≤ 𝐹
𝑖
(𝜙
𝑖
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡) ;

𝐹
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)

≤ 𝐹
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ 𝐹
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) .

(21)

By the definition of upper-lower solutions, we have

𝐷
𝑖
𝜙
󸀠󸀠

𝑖
(𝑡) − 𝑐𝜙

󸀠

𝑖
(𝑡) − 𝑎

𝑖
𝜙
𝑖
(𝑡)

+ 𝐻
𝑖
(𝜙
𝑖
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡) ≤ 0.

(22)

Choosing (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) = (𝜙

𝑖
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
)

in (9) and denoting 𝜙
𝑖
= 𝐹
𝑖
(𝜙
𝑖
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
),

we get

𝐷
𝑖
𝜙
󸀠󸀠

𝑖
(𝑡) − 𝑐𝜙

󸀠

𝑖
(𝑡) − 𝑎

𝑖
𝜙
𝑖
(𝑡)

+ 𝐻
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑖
, 𝜙
𝑖+1
, 𝜙
𝑖+2
, . . . , 𝜙

𝑛
) (𝑡) = 0.

(23)

Setting 𝑤
𝑖
(𝑡) = 𝜙

𝑖
− 𝜙
𝑖
and combining (22) and (23), we have

𝐷
𝑖
𝑤
󸀠󸀠

𝑖
− 𝑐𝑤
󸀠

𝑖
− 𝑎
𝑖
≥ 0. (24)

Repeating the proof of Lemma 3.3 in Wu and Zou [17], we
obtain 𝑤

𝑖
(𝑡) ≤ 0, which implies that 𝐹

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤

𝜙
𝑖
(𝑖 = 1, 2, . . . , 𝑛 − 1).
Next, choosing (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) = (𝜙

𝑖
, 𝜙
2
, . . . , 𝜙

𝑛
) in (9),

we can get 𝐹
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ 𝜙

𝑛
. Then, by a similar

argument, we know that 𝐹
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≥ 𝜙

𝑖
, (𝑖 =

1, 2, . . . , 𝑛 − 1), and 𝐹
𝑛
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≥ 𝜙
𝑛
; then

𝐹 (Γ ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) , (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)))

⊂ Γ ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) , (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)) .

(25)

This completes the proof.

Lemma 5. The above defined function 𝐹 is compact.

Proof. By the definition of 𝐹, we have

𝐹
󸀠

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

=
𝜆
𝑖1
𝑒
𝜆𝑖1𝑡

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
∫

𝑡

−∞

𝑒
−𝜆𝑖1𝑠𝐻

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑠) 𝑑𝑠

+
𝜆
𝑖2
𝑒
𝜆𝑖2𝑡

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
∫

∞

𝑡

𝑒
−𝜆𝑖2𝑠𝐻

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑠) 𝑑𝑠.

(26)
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Thus,

󵄨󵄨󵄨󵄨󵄨
𝐹
󸀠

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨󵄨𝜇

= sup
𝑡∈𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
𝑖1
𝑒
𝜆𝑖1𝑡

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× ∫

𝑡

−∞

𝑒
−𝜆𝑖1𝑠𝐻

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑠) 𝑑𝑠

+
𝜆
𝑖2
𝑒
𝜆𝑖2𝑡

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

×∫

∞

𝑡

𝑒
−𝜆𝑖2𝑠𝐻

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
−𝜇|𝑡|

≤
−𝜆
𝑖1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× sup
𝑡∈𝑅

𝑒
𝜆𝑖1𝑡−𝜇|𝑡| ∫

𝑡

−∞

𝑒
−𝜆𝑖1𝑠 󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

+
𝜆
𝑖2

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× sup
𝑡∈𝑅

𝑒
𝜆𝑖2𝑡−𝜇|𝑡| ∫

∞

𝑡

𝑒
−𝜆𝑖2𝑠

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
) (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤
−𝜆
𝑖1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨󵄨𝜇

× sup
𝑡∈𝑅

𝑒
𝜆𝑖1𝑡−𝜇|𝑡| ∫

𝑡

−∞

𝑒
−𝜆𝑖1𝑠𝑒
𝜇|𝑠|
𝑑𝑠

+
𝜆
𝑖2

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑖
(𝜙
2

1
, 𝜙
2

2
, . . . , 𝜙

2

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨󵄨𝜇

× sup
𝑡∈𝑅

𝑒
𝜆𝑖2𝑡−𝜇|𝑡| ∫

∞

𝑡

𝑒
−𝜆𝑖2𝑠𝑒
𝜇|𝑠|
𝑑𝑠.

(27)

We will complete the proof by two cases as follows:
(i) case 𝑡 > 0

󵄨󵄨󵄨󵄨󵄨
𝐹
󸀠

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨󵄨𝜇

≤
−𝜆
𝑖1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× sup
𝑡∈𝑅

𝑒
(𝜆𝑖1−𝜇)𝑡 [∫

0

−∞

𝑒
−(𝜆𝑖1+𝜇)𝑠𝑑𝑠 + ∫

𝑡

0

𝑒
(𝜇−𝜆𝑖1)𝑠𝑑𝑠]

×
󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)

󵄨󵄨󵄨󵄨𝜇

+
𝜆
𝑖2

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× sup
𝑡∈𝑅

𝑒
(𝜆𝑖2−𝜇)𝑡 ∫

∞

𝑡

𝑒
(𝜇−𝜆𝑖2)𝑠𝑑𝑠

󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)
󵄨󵄨󵄨󵄨𝜇

≤
𝜆
𝑖1

𝐷
𝑖
(𝜇 + 𝜆

𝑖1
) (𝜆
𝑖2
− 𝜆
𝑖1
)

󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)
󵄨󵄨󵄨󵄨𝜇

+
𝜆
𝑖2

𝐷
𝑖
(𝜆
𝑖2
− 𝜇) (𝜆

𝑖2
− 𝜆
𝑖1
)

󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)
󵄨󵄨󵄨󵄨𝜇

=
1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
[

𝜆
𝑖1

𝜇 + 𝜆
𝑖1

+
𝜆
𝑖2

𝜆
𝑖2
− 𝜇

]

×
󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)

󵄨󵄨󵄨󵄨𝜇;

(28)

(ii) case 𝑡 < 0
󵄨󵄨󵄨󵄨󵄨
𝐹
󸀠

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨󵄨𝜇

≤
−𝜆
𝑖1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× sup
𝑡∈𝑅

𝑒
(𝜆𝑖1+𝜇)𝑡 ∫

𝑡

−∞

𝑒
−(𝜆𝑖1+𝜇)𝑠𝑑𝑠

×
󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)

󵄨󵄨󵄨󵄨𝜇

+
𝜆
𝑖2

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)

× sup
𝑡∈𝑅

𝑒
(𝜆𝑖2+𝜇)𝑡 [∫

0

𝑡

𝑒
(−𝜆𝑖2−𝜇)𝑠𝑑𝑠 + ∫

∞

0

𝑒
(𝜇−𝜆𝑖2)𝑠𝑑𝑠]

×
󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)

󵄨󵄨󵄨󵄨𝜇

≤
𝜆
𝑖1

𝐷
𝑖
(𝜇 + 𝜆

𝑖1
) (𝜆
𝑖2
− 𝜆
𝑖1
)

󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)
󵄨󵄨󵄨󵄨𝜇

+
𝜆
𝑖2

𝐷
𝑖
(𝜆
𝑖2
− 𝜇) (𝜆

𝑖2
− 𝜆
𝑖1
)

󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)
󵄨󵄨󵄨󵄨𝜇

=
1

𝐷
𝑖
(𝜆
𝑖2
− 𝜆
𝑖1
)
[

𝜆
𝑖1

𝜇 + 𝜆
𝑖1

+
𝜆
𝑖2

𝜆
𝑖2
− 𝜇

]

×
󵄨󵄨󵄨󵄨𝐻𝑖 (𝜙1, 𝜙2, . . . , 𝜙𝑛) (𝑡)

󵄨󵄨󵄨󵄨𝜇.

(29)

According to the conditions in (PQM), we get that
|𝐻
𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)(𝑡)|
𝜇
is bounded by a positive number.

Therefore, |𝐹
󸀠

𝑖
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)(𝑡)|
𝜇

is bounded. The
above estimate for 𝐹

󸀠 shows that 𝐹(Γ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
),

(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
))) is equicontinuous. It follows from Lemma 4

that 𝐹(Γ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
), (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
))) is uniformly

bounded.
Next, we define

𝐹
𝑚
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

=

{{

{{

{

(1) 𝐹 (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡) , 𝑡 ∈ [−𝑚,𝑚] ;

(2) 𝐹 (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑚) , 𝑡 ∈ (𝑚,∞) ;

(3) 𝐹 (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (−𝑚) , 𝑡 ∈ (−∞, −𝑚) .

(30)
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Then, for each 𝑚 ≥ 1, 𝐹𝑚(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)(𝑡) is also equicon-

tinuous and uniformly bounded. In the interval [−𝑚,𝑚], it
follows from Ascoli-Arzela theorem that 𝐹𝑚 is compact. On
the other hand, 𝐹𝑚 → 𝐹 in 𝐵

𝜇
(𝑅, 𝑅
𝑛
) as𝑚 → ∞, since

sup
𝑡∈𝑅

󵄨󵄨󵄨󵄨𝐹
𝑚
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡) − 𝐹 (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝑡|

= sup
𝑡∈(−∞,−𝑚)∪(𝑚,∞)

󵄨󵄨󵄨󵄨𝐹
𝑚
(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

−𝐹 (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝑡|

≤ 2𝐾𝑒
−𝜇𝑚

󳨀→ 0, 𝑚 󳨀→ ∞.

(31)

By Proposition 2.12 in [22], we have that 𝐹 :

Γ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
), (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)) → Γ((𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
),

(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)) is compact. This completes the proof.

3. Main Results

Theorem 6. Assume that (H
1
), (H
2
), and (PQM) hold. More-

over, suppose that there is a pair of upper-lower solutions Φ =

(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) andΦ = (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) for (2) satisfying (P

1
)

and (P
2
). Then, system (2) has a travelling wave solution.

Proof. Following Lemmas 2 to 5, we see that all the con-
dition in Schauder’s fixed point theorem hold. Then we
know that there exists a fixed point (𝜙∗

1
, 𝜙
∗

2
, . . . , 𝜙

∗

𝑛
) of 𝐹 in

Γ((𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
), (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
)). Nowwe need to verify the

asymptotic boundary conditions. By (P
2
) we notice the fact

that

(0, 0, . . . , 0) ≤ (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ (𝜙

∗

1
, 𝜙
∗

2
, . . . , 𝜙

∗

𝑛
)

≤ (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
) ≤ (𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
) ;

(32)

we get that

lim
𝑡→−∞

(𝜙
∗

1
, 𝜙
∗

2
, . . . , 𝜙

∗

𝑛
) = (0, 0, . . . , 0) ,

lim
𝑡→∞

(𝜙
∗

1
, 𝜙
∗

2
, . . . , 𝜙

∗

𝑛
) = (𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
) .

(33)

Therefore, the fixed point (𝜙∗
1
, 𝜙
∗

2
, . . . , 𝜙

∗

𝑛
) satisfies the asymp-

totic boundary conditions. This completes the proof.

4. Conclusion

In this paper, we studied an n-species food chain model with
spatial diffusion and time delays. By using Schauder’s fixed
point theorem and cross-iteration methods, we reduced the
existence of the travelling wave solutions to the existence of
a pair of upper-lower solutions. Finally, we proved that the
system (2) has a travelling wave solution. However, in order
to investigate the specific form of the travelling wave solution
of (2), we still have a lot of work to do in the future.
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