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The equivalent conditions of complete convergence are established for weighted sums of 𝜌-mixing random variables with
different distributions. Our results extend and improve the Baum and Katz complete convergence theorem. As an application,
the Marcinkiewicz-Zygmund type strong law of large numbers for sequence of 𝜌-mixing random variables is obtained.

1. Introduction

Let (Ω, 𝐹, 𝑃) be a probability space. The random variables we
deal with are all defined on (Ω, 𝐹, 𝑃). Let {𝑋

𝑛
, 𝑛 ≥ 1} be a

sequence of random variables. For each nonempty set 𝑆 ⊂ 𝑁,
write 𝐹

𝑠
= 𝜎(𝑋

𝑖
, 𝑖 ∈ 𝑆). Given 𝜎-algebras 𝐵, 𝑅 in 𝐹, let

𝜌 (𝐵, 𝑅) = sup {|corr (𝑋, 𝑌)| ; 𝑋 ∈ 𝐿

2
(𝐵) , 𝑌 ∈ 𝐿

2
(𝑅)} , (1)

where corr(𝑋, 𝑌) = (𝐸𝑋𝑌 − 𝐸𝑋𝐸𝑌)/(Var𝑋Var𝑌)

1/2. Define
the 𝜌-mixing coefficients by

𝜌 (𝑛) = sup 𝜌 (𝐹

𝑆
, 𝐹

𝑇
) , (2)

where (for a given positive integer 𝑁) this sup is taken over
all pairs of nonempty finite subsets 𝑆, 𝑇 of 𝑁 such that dist
(𝑆, 𝑇) ≥ 𝑛.

Obviously 0 ≤ 𝜌(𝑛 + 1) ≤ 𝜌(𝑛) ≤ 1, 𝑛 ≥ 0, and 𝜌(0) = 1

except in the trivial case where all of the random variables 𝑋

𝑖

are degenerate.

Definition 1. A sequence of random variables is said to be a
𝜌-mixing sequence of random variables if there exists 𝑘 ∈ 𝑁

such that 𝜌(𝑘) < 1.
Note that if {𝑋

𝑛
, 𝑛 ≥ 1} is a sequence of independent

random variables, then 𝜌(𝑛) = 0 for all 𝑛 ≥ 1. 𝜌-mixing
is similar to 𝜌-mixing, but both are quite different. 𝜌(𝑘) is
defined by (2) with index sets restricted to subsets 𝑆 of [1, 𝑛]

and subsets of 𝑇 of [𝑛 + 𝑘, ∞), 𝑛, 𝑘 ∈ 𝑁. On the other hand,
𝜌-mixing sequence assumes the condition 𝜌(𝑘) → 0, but
𝜌-mixing sequence assumes the condition that there exists
𝑘 ∈ 𝑁 such that 𝜌(𝑘) < 1; from this point of view, 𝜌-mixing
is weaker than 𝜌-mixing.

The concept of 𝜌-mixing random variables was intro-
duced by Bradley [1] and a number of limit theories for 𝜌-
mixing sequences of random variables have been established
by many authors. We refer to Bradley [1] for the central
limit theorem, Bryc and Smoleński [2], Peligrad and Gut [3],
and Utev and Peligrad [4] for moment inequalities, Gan [5],
Kuczmaszewska [6], and Wu and Jiang [7] for almost sure
convergence, and Cai [8], Zhu [9], An and Yuan [10], Zhou
et al. [11], Shen and Hu [12], Guo and Zhu [13], Wang et al.
[14], and Sung [15, 16] for complete convergence.

A sequence {𝑋

𝑛
, 𝑛 ≥ 1} of random variables converges

completely to the constant 𝐶 if

∞

∑

𝑛=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑛
− 𝐶

󵄨

󵄨

󵄨

󵄨

> 𝜖) < ∞ for any 𝜖 > 0. (3)

In view of the Borel-Cantelli lemma, this implies that 𝑋

𝑛
→

𝐶 almost surely. Hence, complete convergence is one of
the most important problems in probability theory. Since
the concept of complete convergence was introduced by
Hsu and Robbins [17], there have been many authors who
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devoted the study to complete convergence for independent
and identically distributed random variables. One of the
most important results is Baum and Katz theorem [18]. The
theorem was further generalized and extended in different
ways. Katz [19] and Chow [20] formed the following gener-
alization with a normalization of Marcinkiewicz-Zygmund
type theorem for the strong law of large numbers.

Theorem 2 (see [21]). Let 𝛼𝑝 ≥ 1, 𝛼 > 1/2, and let {𝑋

𝑛
, 𝑛 ≥

1} be a sequence of independent and identically distributed
random variables. If 𝑝 ≥ 1, assume that 𝐸𝑋

1
= 0. Then the

following statements are equivalent:

(i) 𝐸|𝑋

1
|

𝑝

< ∞;

(ii) ∑

∞

𝑛=1
𝑛

𝛼𝑝−2

𝑃(max
1≤𝑗≤𝑛

| ∑

𝑗

𝑖=1
𝑋

𝑖
| > 𝜖𝑛

𝛼

) < ∞ for all
𝜖 > 0.

In many stochastic models, the assumption of inde-
pendence among random variables is not plausible. So it
is necessary to extend the concept of independence to
dependence cases. Peligrad and Gut [3] extended this result
from independent and identically distributed case to the case
of 𝜌-mixing random variables with identical distribution. But
they did not provewhether the result ofTheorem 2 of the case
𝛼𝑝 = 1 holds for 𝜌-mixing sequence. In practical applications
it is difficult to check the independence of a sample or
the samples are not independent observations. Therefore, in
recent investigations limit theorems are very often considered
for sequences of dependent random variables. Recently, a
number of limit theorems for dependent random variables
have been established by many authors. We can refer to Sung
[22], Wu and Jiang [23], Wu [24], and Shen [25].

Let {𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of identically distributed

random variables and let {𝑎

𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} be an array

of constants. The strong convergence results for weighted
sums ∑

𝑛

𝑘=1
𝑎

𝑛𝑘
𝑋

𝑘
have been studied by many authors; see, for

example, Cuzick [26], Choi and Sung [27], Bai and Cheng
[28], Chen and Gan [29], and so forth. Many useful linear
statistics are weighted sums. Examples include least squares
estimators, nonparametric regression function estimators,
and jackknife estimates.

Inspired by Theorem 2.1 of Kuczmaszewska [30], our
main purpose in this work is to extend the complete con-
vergence for weighted sums ∑

𝑛

𝑘=1
𝑎

𝑛𝑘
𝑋

𝑘
of independent and

identically distributed random variables to the case of 𝜌-
mixing random variables. However, our proven methods are
different from the ones by Kuczmaszewska [30]; by applying
inequality (13) of Lemma 10 our proof is much simpler
than the one by Kuczmaszewska. Our proof of necessary
condition (using Lemma 10) is original. We provide suffi-
cient and necessary conditions of complete convergence for
weighted sums of 𝜌-mixing random variables with different
distributions. As applications, the Baum and Katz type result
and the Marcinkiewicz-Zygmund type strong law of large
numbers for sequences of 𝜌-mixing random variables are
obtained. In addition, our main results extend and improve
the corresponding results of Peligrad and Gut [3].

Throughout this paper, the symbol 𝐶 denotes a positive
constant which is not necessarily the same one in each

appearance, 𝑎

𝑛
= 𝑂(𝑏

𝑛
) will mean 𝑎

𝑛
≤ 𝐶(𝑏

𝑛
) for sufficiently

large 𝑛, 𝑎

𝑛
≪ 𝑏

𝑛
will mean 𝑎

𝑛
= 𝑂(𝑏

𝑛
), and 𝐼(𝐴) is the

indicator function of event 𝐴.

2. Main Results

Now we state our main results of this paper. The proofs will
be given in Section 3.

Theorem 3. Let 𝑋 be a random variable and let {𝑋

𝑛
, 𝑛 ≥

1} be a sequence of 𝜌-mixing random variables satisfying the
condition

1

𝑛

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) = 𝐶𝑃 (|𝑋| > 𝑥) (4)

for all 𝑥 > 0, all 𝑛 ≥ 1, and some positive constant 𝐶. Let
{𝑎

𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} be a sequence of real numbers such that

󵄨

󵄨

󵄨

󵄨

𝑎

𝑛𝑘

󵄨

󵄨

󵄨

󵄨

≍ 𝑛

−𝛼

, ∀1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1, (5)

where 𝑎 ≍ 𝑏 means 𝑎 = 𝑂(𝑏) and 𝑏 = 𝑂(𝑎). Let 𝛼𝑝 ≥ 1,
𝛼 > 1/2, and if 𝛼 ≤ 1, assume that 𝐸𝑋

𝑛
= 0, 𝑛 ≥ 1. Then the

following statements are equivalent:

(i) 𝐸|𝑋|

𝑝

< ∞,
(ii) ∑

∞

𝑛=1
𝑛

𝛼𝑝−2

𝑃(max
1≤𝑘≤𝑛

| ∑

𝑘

𝑖=1
𝑎

𝑛𝑖
𝑋

𝑖
| > 𝜖) < ∞ 𝑓𝑜𝑟

𝑎𝑙𝑙 𝜖 > 0.

Remark 4. When proving the limit theorem of 𝜌-mixing
random variables with different distributions, many authors
apply the condition of {𝑋

𝑛
, 𝑛 ≥ 1} being stochastically

dominated by 𝑋, that is, for some constant 𝐶 > 0, 𝑃(|𝑋

𝑛
| ≥

𝑥) ≤ 𝐶𝑃(|𝑋| ≥ 𝑥), for all 𝑥 ≥ 0, 𝑛 ≥ 1, which implies that
(1/𝑛) ∑

𝑛

𝑘=1
𝑃(|𝑋

𝑘
| > 𝑥) ≤ 𝐶𝑃(|𝑋| > 𝑥), but the converse

is not true. Hence our condition of (4) is weaker than the
condition of stochastic dominance.

When {𝑋

𝑛
, 𝑛 ≥ 1} is a sequence of 𝜌-mixing identically

distributed random variables and 𝑎

𝑛𝑖
= 𝑛

−𝛼, for all 1 ≤ 𝑖 ≤ 𝑛,
𝑛 ≥ 1, then Theorem 3 becomes Baum and Katz complete
convergence theorem as follows.

Corollary 5. Let {𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of 𝜌-mixing

identically distributed random variables. Let 𝛼𝑝 ≥ 1, 𝛼 > 1/2,
and if 𝛼 ≤ 1, assume that 𝐸𝑋

𝑛
= 0, 𝑛 ≥ 1. Then the following

statements are equivalent:

(i) 𝐸|𝑋

1
|

𝑝

< ∞;

(ii) ∑

∞

𝑛=1
𝑛

𝛼𝑝−2

𝑃(max
1≤𝑗≤𝑛

| ∑

𝑗

𝑖=1
𝑋

𝑖
| > 𝜖𝑛

𝛼

) < ∞ for all
𝜖 > 0.

Remark 6. Corollary 5 not only generalizes Theorem 2 to 𝜌-
mixing case, but also extends Theorem 2 of Peligrad and Gut
[3] to the case 𝛼𝑝 = 1. Therefore, Corollary 5 improves and
extends the well-known Baum and Katz theorem.

An and Yuan [10,Theorem 2] presented aMarcinkiewicz-
Zygmund type strong law of large numbers for 𝜌-mixing
sequence. We find that the proof of theirTheorem 2 is wrong
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because the theorem is based on Theorem 1 [10]. However,
the author thinks that their proofs of Theorem 1 have a little
problem, since condition (1.2) does not hold for the array
with {𝑎

𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛}. An and Yuan [10, Theorem 1] proved

the implication (i) ⇒ (ii) under condition (1.3) and proved
the converse under conditions (1.2) and (1.3). However, the
array satisfying both (1.2) and (1.3) does not exist. Noting
that ♯𝐴

𝑛𝑘
/(𝑘 + 1) ≤ ∑

𝑛

𝑖=1
|𝑎

𝑛𝑖
|

𝑝

≤ 𝑂(𝑛

𝛿

), we have that
𝑛𝑒

−1/𝑘

≤ ♯𝐴

𝑛𝑘
≤ (𝑘 + 1)𝑂(𝑛

𝛿

). But this does not hold when
𝑘 is fixed and 𝑛 is large enough. In this paper, we obtain a
new complete convergence result for weighted sums of 𝜌-
mixing random variables without assumption of identical
distribution. Our result generalizes and sharpens the result
of An and Yuan [10]. The following corollary provides the
Marcinkiewicz-Zygmund type strong law of large numbers of
𝜌-mixing random variables without assumption of identical
distribution.

Corollary 7. Let 𝑋 be a random variable and let {𝑋

𝑛
, 𝑛 ≥

1} be a sequence of 𝜌-mixing random variables satisfying the
condition

1

𝑛

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) = 𝐶𝑃 (|𝑋| > 𝑥) (6)

for all 𝑥 > 0, all 𝑛 ≥ 1, and some positive constant 𝐶. 𝐸|𝑋|

𝑝

<

∞ for some 0 < 𝑝 < 2 and if 1 ≤ 𝑝 < 2, assume that 𝐸𝑋

𝑛
= 0,

𝑛 ≥ 1. Then, for any 𝜖 > 0,

∞

∑

𝑛=1

𝑛

−1

𝑃 (max
1≤𝑗≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑗

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

1/𝑝

) < ∞,

1

𝑛

1/𝑝

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󳨀→ 0 𝑎.𝑠., 𝑛 󳨀→ ∞.

(7)

3. Proof of Main Results

The following lemmas are useful for the proof of the main
results.

Lemma 8 (see [4]). Suppose 𝐾 is a positive integer, 0 ≤ 𝑟 < 1,
and 𝑞 ≥ 2. Then there exists a constant 𝐷 = 𝐷(𝐾, 𝑟, 𝑞) such
that the following statement holds.

If {𝑋

𝑖
, 𝑖 ≥ 1} is a sequence of random variables such that

𝜌(𝐾) ≤ 𝑟 and 𝐸𝑋

𝑛
= 0 and 𝐸|𝑋

𝑖
|

𝑞

< ∞ for all 𝑖 ≥ 1, then, for
every 𝑛 ≥ 1,

𝐸 (max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑖

∑

𝑗=1

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

) ≤ 𝐷

[

[

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

𝑞

+ (

𝑛

∑

𝑖=1

𝐸𝑋

2

𝑖
)

𝑞/2

]

]

. (8)

Lemma 9 (see [30]). Let {𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of random

variables which is weakly mean dominated by a random
variable 𝑋; that is, for all 𝑥 ≥ 0 and some positive constant
𝐶 > 0,

1

𝑛

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) ≤ 𝐶𝑃 (|𝑋| > 𝑥) . (9)

Then for any 𝑢 > 0, 𝑡 > 0, and 𝑛 ≥ 1, the following three
statements hold:

𝐼𝑓 𝐸|𝑋|

𝑢

< ∞, 𝑡ℎ𝑒𝑛

1

𝑛

𝑛

∑

𝑘=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

𝑢

≤ 𝐶𝐸|𝑋|

𝑢

, (10)

1

𝑛

𝑛

∑

𝑘=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

𝑢

𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

≤ 𝑡)

≤ 𝐶 [𝐸|𝑋|

𝑢

𝐼 (|𝑋| ≤ 𝑡) + 𝑡

𝑢

𝑃 (|𝑋| > 𝑡)] ,

(11)

1

𝑛

𝑛

∑

𝑘=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

𝑢

𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑡) ≤ 𝐶𝐸|𝑋|

𝑢

𝐼 (|𝑋| > 𝑡) . (12)

Lemma 10. Let {𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of 𝜌-mixing random

variables. Then there exists a positive constant 𝐶 such that, for
any 𝑥 ≥ 0 and all 𝑛 ≥ 1,

(

1

2

− 𝑃 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥))

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥)

≤ (

𝐶

2

+ 1) 𝑃 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) .

(13)

Proof of Lemma 10. Since {max
1≤𝑘≤𝑛

|𝑋

𝑘
| > 𝑥} = ⋃

𝑛

𝑘=1
{|𝑋

𝑘
| >

𝑥,max
1≤𝑗≤𝑘−1

|𝑋

𝑗
| ≤ 𝑥}, we have

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥)

=

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥, max
1≤𝑗≤𝑘−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑥)

+

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥, max
1≤𝑗≤𝑘−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥)

= 𝑃 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥)

+

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥, max
1≤𝑗≤𝑘−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥) .

(14)

Note that
𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥, max
1≤𝑗≤𝑘−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥)

=

𝑛

∑

𝑘=1

𝐸 (𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) 𝐼 ( max
1≤𝑗≤𝑘−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥))

≤ 𝐸 (

𝑛

∑

𝑘=1

𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) − 𝐸 (𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥)))

× 𝐼 (max
1≤𝑗≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥)

+

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) 𝑃 (max
1≤𝑗≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥) ≜ 𝐽

1
+ 𝐽

2
.

(15)
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Obviously, by Lemma 8, we get

𝐸 (

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛

∑

𝑘=1

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

) ≤ 𝐶

[

[

𝑛

∑

𝑘=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

𝑞

+ (

𝑛

∑

𝑘=1

𝐸𝑋

2

𝑘
)

𝑞/2

]

]

. (16)

Combining with the Cauchy-Schwarz inequality and (16), we
obtain

𝐽

1
= 𝐸 (

𝑛

∑

𝑘=1

𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) − 𝐸 (𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥)))

× 𝐼 (max
1≤𝑗≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥)

≤

[

[

𝐸(

𝑛

∑

𝑘=1

𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) − 𝐸 (𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥)))

2

× 𝑃 (max
1≤𝑗≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥)

]

]

1/2

≤ [𝐶

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) 𝑃 (max
1≤𝑗≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝑥)]

1/2

≤

1

2

𝑛

∑

𝑘=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) +

𝐶

2

𝑃 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑋

𝑘

󵄨

󵄨

󵄨

󵄨

> 𝑥) .

(17)

Now, we substitute (17) into (15) and then into (14), which
implies that (13) holds.

Consequently, we prove our main results.

Proof of Theorem 3. First, we prove that (i) ⇒ (ii).
Note that 𝑎

𝑛𝑖
= 𝑎

+

𝑛𝑖
− 𝑎

−

𝑛𝑖
, where 𝑎

+

𝑛𝑖
= max{0, 𝑎

𝑛𝑖
} and

𝑎

−

𝑛𝑖
= max{0, −𝑎

𝑛𝑖
}. To prove (ii) it suffices to show that

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝑎

±

𝑛𝑖
𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖) < ∞, ∀𝜖 > 0. (18)

Thus, without loss of generality, we may assume that 𝑎

𝑛𝑖
> 0

for all 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1.
For fixed 𝑛 ≥ 1, denote that

𝑋

𝑛𝑖
= 𝑋

𝑖
𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

≤ 𝑛

𝛼

) , 1 ≤ 𝑖 ≤ 𝑛. (19)

Firstly, we show that

max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝐸 (𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󳨀→ 0, 𝑛 󳨀→ ∞. (20)

If 1/2 < 𝛼 ≤ 1, by 𝐸𝑋

𝑛
= 0, (i), (5), (12) of Lemma 9, and

𝛼𝑝 ≥ 1, we have

max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝐸 (𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑎

𝑛𝑖
𝑋

𝑛𝑖

󵄨

󵄨

󵄨

󵄨

≪ 𝑛

−𝛼

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑛𝑖

󵄨

󵄨

󵄨

󵄨

= 𝑛

−𝛼

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝑛

𝛼

)

≤ 𝑛

1−𝛼

𝐸 |𝑋| (

|𝑋|

𝑛

𝛼
)

𝑝−1

𝐼 (|𝑋| > 𝑛

𝛼

)

≪ 𝑛

1−𝛼𝑝

𝐸|𝑋|

𝑝

𝐼 (|𝑋| > 𝑛

𝛼

) 󳨀→ 0, 𝑛 󳨀→ ∞.

(21)

If 𝛼 > 1, 𝑝 ≥ 1, by (5), (11) of Lemma 9, Markov
inequality, and 𝐸|𝑋| < ∞ from (i), we get

max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝐸 (𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≪ 𝑛

−𝛼

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

≤ 𝑛

𝛼

)

≪ 𝑛

1−𝛼

[𝐸 |𝑋| 𝐼 (|𝑋| ≤ 𝑛

𝛼

) + 𝑛

𝛼

𝑃 (|𝑋| > 𝑛

𝛼

)]

≪ 𝑛

1−𝛼

𝐸 |𝑋| 󳨀→ 0, 𝑛 󳨀→ ∞.

(22)

If 𝛼 > 1, 0 < 𝑝 < 1, by 𝛼𝑝 ≥ 1, we can get
lim
𝑛→∞

𝑛𝑃(|𝑋| > 𝑛

𝛼

) = 0, and thus

max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝐸 (𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≪ 𝑛

−𝛼

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

𝐼 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

≤ 𝑛

𝛼

)

≪ 𝑛

1−𝛼

[𝐸 |𝑋| 𝐼 (|𝑋| ≤ 𝑛

𝛼

) + 𝑛

𝛼

𝑃 (|𝑋| > 𝑛

𝛼

)]

≪ 𝑛

1−𝛼

𝑛

∑

𝑖=1

𝐸 |𝑋| 𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

)

+ 𝑛𝑃 (|𝑋| > 𝑛

𝛼

) .

(23)

Note that, if 𝛼𝑝 ≥ 1, we have

∞

∑

𝑖=1

𝑖

1−𝛼

𝐸 |𝑋| 𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

)

≤

∞

∑

𝑖=1

𝑖

1−𝛼𝑝

𝐸|𝑋|

𝑝

𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

)

≤

∞

∑

𝑖=1

𝐸|𝑋|

𝑝

𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

)

= 𝐸|𝑋|

𝑝

< ∞.

(24)
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Hence, by Kronecker lemma and (23), we obtain

max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝐸 (𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≪ 𝑛

1−𝛼

𝑛

∑

𝑖=1

𝐸 |𝑋| 𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

) 󳨀→ 0, 𝑛 󳨀→ ∞.

(25)

From (21), (22), and (25) we can get (20) immediately.
Hence, for all 𝑛 sufficiently large and any 𝜖 > 0, we have

max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝐸 (𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

<

𝜖

2

. (26)

It is easy to check that for all 𝑛 sufficiently large

{max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝑎

𝑛𝑖
𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖}

⊂

𝑛

⋃

𝑖=1

{

󵄨

󵄨

󵄨

󵄨

𝑎

𝑛𝑖
𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖} ∪ {max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝑎

𝑛𝑖
𝑋

𝑛𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖}

⊂

𝑛

⋃

𝑖=1

{

󵄨

󵄨

󵄨

󵄨

𝑎

𝑛𝑖
𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖} ∪ {max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

(𝑎

𝑛𝑖
𝑋

𝑛𝑖
− 𝐸𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

>

𝜖

2

}

≜ 𝐴

𝑛
∪ 𝐵

𝑛
,

(27)

which implies that for all 𝑛 sufficiently large

𝑃 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

𝑎

𝑛𝑖
𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖) ≤ 𝑃 (𝐴

𝑛
) + 𝑃 (𝐵

𝑛
) . (28)

Therefore, in order to prove (ii), we only need to prove that

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (𝐴

𝑛
) < ∞, (29)

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (𝐵

𝑛
) < ∞. (30)

By (4), (5), and 𝛼𝑝 ≥ 1, we can get that

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (𝐴

𝑛
)

≤

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑛

∑

𝑖=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑎

𝑛𝑖
𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖)

≤

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑛

∑

𝑖=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑎

−1

𝑛𝑖
≥ 𝐶𝜖𝑛

𝛼

)

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−1

𝑃 (|𝑋| > 𝐶𝜖𝑛

𝛼

)

=

∞

∑

𝑛=1

𝑛

𝛼𝑝−1

∞

∑

𝑖=𝑛

𝑃 (𝐶𝜖𝑖

𝛼

< |𝑋| ≤ 𝐶𝜖(𝑖 + 1)

𝛼

)

=

∞

∑

𝑖=1

𝑖

∑

𝑛=1

𝑛

𝛼𝑝−1

𝑃 (𝐶𝜖𝑖

𝛼

< |𝑋| ≤ 𝐶𝜖(𝑖 + 1)

𝛼

)

≤

∞

∑

𝑖=1

𝑖

𝛼𝑝

𝑃 (𝐶𝜖𝑖

𝛼

< |𝑋| ≤ 𝐶𝜖(𝑖 + 1)

𝛼

)

≪ 𝐸|𝑋|

𝑝

< ∞.

(31)

That is, (29) holds. Thus, it remains to prove (30).
Since {𝑋

𝑛
, 𝑛 ≥ 1} is a sequence of 𝜌-mixing random

variables and 𝑋

𝑛𝑖
= 𝑋

𝑖
𝐼(|𝑋

𝑖
| ≤ 𝑛

𝛼

), 1 ≤ 𝑖 ≤ 𝑛, thus {𝑋

𝑛𝑖
−

𝐸𝑋

𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛} is still a sequence of 𝜌-mixing random

variables with 𝐸(𝑋

𝑛𝑖
− 𝐸𝑋

𝑛𝑖
) = 0. By Markov inequality and

Lemma 8, let 𝑞 ≥ 2. Then,
∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (𝐵

𝑛
)

=

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

(𝑎

𝑛𝑖
𝑋

𝑛𝑖
− 𝐸𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

>

𝜖

2

)

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝐸 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

(𝑎

𝑛𝑖
𝑋

𝑛𝑖
− 𝐸𝑎

𝑛𝑖
𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

)

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−𝛼𝑞

𝐸 (max
1≤𝑘≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘

∑

𝑖=1

(𝑋

𝑛𝑖
− 𝐸𝑋

𝑛𝑖
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

)

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−𝛼𝑞
[

[

(

𝑛

∑

𝑖=1

𝐸𝑋

2

𝑛𝑖
)

𝑞/2

+

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑛𝑖

󵄨

󵄨

󵄨

󵄨

𝑞
]

]

≜ 𝐼

1
+ 𝐼

2
.

(32)

When 𝑝 ≥ 2, taking 𝑞 > max{(𝛼𝑝 − 1)/(𝛼 − 1/2), 2}, then
𝛼𝑝 − 2 − 𝛼𝑞 + 𝑞/2 < −1, and by Jensen inequality and (11) of
Lemma 9, we have

𝐼

1
=

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−𝛼𝑞

(

𝑛

∑

𝑖=1

𝐸𝑋

2

𝑛𝑖
)

𝑞/2

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−𝛼𝑞+𝑞/2

[𝐸𝑋

2

𝐼 (|𝑋| ≤ 𝑛

𝛼

) + 𝑛

2𝛼

𝑃 (|𝑋| > 𝑛

𝛼

)]

𝑞/2

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−𝛼𝑞+𝑞/2

[𝐸𝑋

2

]

𝑞/2

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−𝛼𝑞+𝑞/2

< ∞.

(33)
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Taking 𝑞 > 𝑝, we have by (11) of Lemma 9 that

𝐼

2
=

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−𝛼𝑞

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑛𝑖

󵄨

󵄨

󵄨

󵄨

𝑞

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−𝛼𝑞+1

[𝐸|𝑋|

𝑞

𝐼 (|𝑋| ≤ 𝑛

𝛼

) + 𝑛

𝛼𝑞

𝑃 (|𝑋| > 𝑛

𝛼

)]

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−1−𝛼𝑞

𝐸|𝑋|

𝑞

𝐼 (|𝑋| ≤ 𝑛

𝛼

) +

∞

∑

𝑛=1

𝑛

𝛼𝑝−1

𝑃 (|𝑋| > 𝑛

𝛼

)

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−1−𝛼𝑞

𝑛

∑

𝑖=1

𝐸|𝑋|

𝑞

𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

) + 𝐸|𝑋|

𝑝

≪

∞

∑

𝑖=1

∞

∑

𝑛=𝑖

𝑛

𝛼𝑝−1−𝛼𝑞

𝐸|𝑋|

𝑞

𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

)

≪

∞

∑

𝑖=1

𝑖

𝛼𝑝−𝛼𝑞

𝐸|𝑋|

𝑞

𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

)

=

∞

∑

𝑖=1

𝑖

𝛼𝑝−𝛼𝑞

𝐸|𝑋|

𝑝

|𝑋|

𝑞−𝑝

𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

)

≤

∞

∑

𝑖=1

𝐸|𝑋|

𝑝

𝐼 ((𝑖 − 1)

𝛼

< |𝑋| ≤ 𝑖

𝛼

)

= 𝐸|𝑋|

𝑝

< ∞.

(34)

When 𝑝 < 2, then, taking 𝑞 = 2, by (32), we get

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (𝐵

𝑛
) ≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−2𝛼

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑛𝑖

󵄨

󵄨

󵄨

󵄨

2

. (35)

Similarly to the proof of inequality (34), we obtain

∞

∑

𝑛=1

𝑛

𝛼𝑝−2−2𝛼

𝑛

∑

𝑖=1

𝐸

󵄨

󵄨

󵄨

󵄨

𝑋

𝑛𝑖

󵄨

󵄨

󵄨

󵄨

2

< ∞, (36)

which implies that

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (𝐵

𝑛
) < ∞. (37)

Now, we prove the converse. To prove that (ii) implies (i),
it suffices to show that

∞

∑

𝑛=1

𝑛

𝛼𝑝−1

𝑃 (|𝑋| > 𝜖𝑛

𝛼

) < ∞, ∀𝜖 > 0. (38)

Noting that

max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑎

𝑛𝑖
𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

≤ max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑖

∑

𝑗=1

𝑎

𝑛𝑗
𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+ max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑖−1

∑

𝑗=1

𝑎

𝑛𝑗
𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

, (39)

then from (ii) and (5), we have
∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

𝛼

)

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑎

𝑛𝑖
𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖)

≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑃 (max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑖

∑

𝑗=1

𝑎

𝑛𝑗
𝑋

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖) < ∞.

(40)

Combining with the condition of 𝛼𝑝 ≥ 1,

𝑃 (max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

𝛼

) 󳨀→ 0, 𝑛 󳨀→ ∞. (41)

Thus, for sufficiently large 𝑛,

𝑃 (max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

𝛼

) <

1

2

. (42)

Therefore, by applying Lemma 10, it is easy to see that

𝑛

∑

𝑖=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

𝛼

) ≪ 𝑃 (max
1≤𝑖≤𝑛

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

𝛼

) , (43)

which, together with the conditions of (4) and (40), gives

∞

∑

𝑛=1

𝑛

𝛼𝑝−1

𝑃 (|𝑋| > 𝜖𝑛

𝛼

) ≪

∞

∑

𝑛=1

𝑛

𝛼𝑝−2

𝑛

∑

𝑖=1

𝑃 (

󵄨

󵄨

󵄨

󵄨

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

𝛼

) < ∞,

(44)

which implies that (i) holds. This completes the proof of
Theorem 3.

Proof of Corollary 7. Taking 𝛼 = 1/𝑝 and 𝑎

𝑛𝑖
= 𝑛

−𝛼, for all
1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1, in Theorem 3, we can get (7) immediately;
thus

∞ >

∞

∑

𝑛=1

𝑛

−1

𝑃 (max
1≤𝑗≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑗

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

1/𝑝

)

=

∞

∑

𝑖=0

2
𝑖+1
−1

∑

𝑛=2
𝑖

𝑛

−1

𝑃 (max
1≤𝑗≤𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑗

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖𝑛

1/𝑝

)

≥

1

2

∞

∑

𝑖=1

𝑃 (max
1≤𝑗≤2

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑗

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖2

(𝑖+1)/𝑝

) .

(45)

It follows from Borel-Cantelli lemma that

𝑃 (max
1≤𝑗≤2

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑗

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

> 𝜖2

(𝑖+1)/𝑝

, i.o.) = 0. (46)

Hence,

lim
𝑖→∞

1

2

(𝑖+1)/𝑝

max
1≤𝑗≤2

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑗

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

= 0 a.s. (47)
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For all positive integers 𝑛, there exists a nonnegative integer
𝑖

0
such that 2

𝑖0−1

≤ 𝑛 < 2

𝑖0 . We have by (47) that

max
2
𝑖0−1≤𝑛≤2

𝑖0

1

𝑛

1/𝑝

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

1

2

(𝑖0−1)/𝑝
max
1≤𝑗≤2

𝑖0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑗

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

2

2/𝑝

2

(𝑖0+1)/𝑝
max
1≤𝑗≤2

𝑖0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑗

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󳨀→ 0 a.s., 𝑖

0
󳨀→ ∞,

(48)

which implies that

1

𝑛

1/𝑝

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛

∑

𝑖=1

𝑋

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󳨀→ 0 a.s., 𝑛 󳨀→ ∞. (49)

The proof of Corollary 7 is completed.
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