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Let 1 ≤ 𝑝 < ∞ and 𝐺 be a locally compact group. We characterize chaotic cosine operator functions, generated by weighted
translations on the Lebesgue space 𝐿𝑝(𝐺), in terms of the weight condition. In particular, chaotic cosine operator functions and
chaotic weighted translations can only occur simultaneously. We also give a necessary and sufficient condition for the direct sum
of a sequence of cosine operator functions to be chaotic.

1. Introduction

Let 𝑇 be a bounded linear operator on a Banach space 𝑋.
If V ∈ 𝑋 is a fixed point of 𝑇, then the orbit of V under 𝑇,
denoted by Orb(𝑇, V), is Orb(𝑇, V) = {V, 𝑇V, 𝑇2V, . . .} = {V}.
On the contrary, if there exists an element 𝑥 ∈ 𝑋 such that the
orbit is dense in 𝑋; that is, Orb(𝑇, 𝑥) = {𝑥, 𝑇𝑥, 𝑇

2
𝑥, . . .} = 𝑋,

then 𝑇 is called hypercyclic and 𝑥 is a hypercyclic vector for
𝑇. Hypercyclicity arose from the invariant subset problem
in analysis, and was studied intensely during the last two
decades. We refer to [1, 2] for recent books on this subject.

In the study of hypercyclicity, theweighted shifts on ℓ𝑝(Z)
play an important role for researchers to demonstrate and
construct the theories in [3–11]. Recently, we characterize
chaotic, hypercyclic, and mixing translation operators on
locally compact groups in [12–15], which extends some results
of weighted shifts on the discrete group Z in [5, 6, 8–11]
and provides a class of hypercyclic operators on Banach
spaces. In this note, we will continue our study in [16, 17]
and determine when a cosine operator function, generated
by such a weighted translation operator, is chaotic.

Let N0 = N ∪ {0}. According to the definition of Devaney
chaos, a sequence of bounded linear operators (𝑇𝑛)𝑛∈N0 on
a Banach space 𝑋 is chaotic in the successive way in [18]
if (𝑇𝑛)𝑛∈N0 is topologically transitive and the set of periodic
elements, denoted by P((𝑇𝑛)𝑛∈N0

) = {𝑥 ∈ 𝑋; ∃ 𝑚 ∈ N :

𝑇𝑘𝑚𝑥 = 𝑥, 𝑘 = 1, 2, 3, . . .}, is dense in 𝑋. We recall that
(𝑇𝑛)𝑛∈N0

is topologically transitive if, given nonempty open
subsets 𝑈,𝑉 of 𝑋, we have 𝑇𝑛(𝑈) ∩ 𝑉 ̸= 0 for some 𝑛 ∈

N. If 𝑇𝑛(𝑈) ∩ 𝑉 ̸= 0 from some 𝑛 onwards, then (𝑇𝑛)𝑛∈N0
is called topologically mixing. The notion of transitivity in
topological dynamics is close to the notion of hypercyclicity
in operator theory. Indeed, it is known in [19] that (𝑇𝑛)𝑛∈N0 is
transitive if, and only if, it is hypercyclic and has a dense set
of hypercyclic vectors. In themore general setting, a sequence
of operators (𝑇𝑛)𝑛∈N0 is said to be hypercyclic if Orb(𝑇𝑛, 𝑥) =
{𝑇𝑛𝑥 : 𝑛 ∈ N0} = 𝑋 for some 𝑥 ∈ 𝑋. If (𝑇𝑛)𝑛∈N0 is generated
by a single operator 𝑇 by its iterates, that is, 𝑇𝑛 := 𝑇

𝑛, then
hypercyclicity is equivalent to transitivity.

The interest to study cosine operator functions on groups
ismotivated by thework in [20, 21]. A cosine operator function
on a Banach space 𝑋 is a mapping C from the real line into
the space of continuous operators on 𝑋 satisfying C(0) = 𝐼

and the d’Alembert functional equation 2C(𝑡)C(𝑠) = C(𝑡 +

𝑠) + C(𝑡 − 𝑠) for all 𝑠, 𝑡 ∈ R, which implies C(𝑡) = C(−𝑡)

for all 𝑡 ∈ R. In [20], Bonilla and Miana obtained a sufficient
condition for a cosine operator functionC(𝑡) defined by

C (𝑡) =
1

2
(𝑇 (𝑡) + 𝑇 (−𝑡)) , (1)

to be transitive, where 𝑇 is a strongly continuous translation
group on some weighted Lebesgue space 𝐿𝑝(R). For a Borel
measure 𝜇 andΩ ⊂ R𝑑, Kalmes gave the characterization for
cosine operator functions, generated by second order partial
differential operators on 𝐿𝑝(Ω, 𝜇), to be transitive andmixing
in [21].

Throughout, let 𝐺 be a locally compact group with
identity 𝑒. Let 𝜆 be a right-invariant Haar measure on 𝐺, and
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denote by 𝐿𝑝(𝐺) (1 ≤ 𝑝 < ∞) the complex Lebesgue space
with respect to 𝜆.

A function 𝑤 : 𝐺 → (0,∞) is called a weight on 𝐺. Let
𝑎 ∈ 𝐺 and let 𝛿𝑎 be the unit point mass at 𝑎. A weighted
translation on 𝐺 is a weighted convolution operator 𝑇𝑎,𝑤 :

𝐿
𝑝
(𝐺) → 𝐿

𝑝
(𝐺) defined by

𝑇𝑎,𝑤 (𝑓) := 𝑤𝑇𝑎 (𝑓) (𝑓 ∈ 𝐿
𝑝
(𝐺)) , (2)

where 𝑤 is a weight on 𝐺 and 𝑇𝑎(𝑓) = 𝑓 ∗ 𝛿𝑎 ∈ 𝐿
𝑝
(𝐺) is the

convolution:

(𝑓 ∗ 𝛿𝑎) (𝑥) := ∫

𝐺

𝑓 (𝑥𝑦
−1
) 𝑑𝛿𝑎 (𝑦) = 𝑓 (𝑥𝑎

−1
) (𝑥 ∈ 𝐺) .

(3)

If 𝑤−1 ∈ 𝐿
∞
(𝐺), then the weighted translation operator

𝑇𝑎−1 ,𝑤−1∗𝛿−1
𝑎

is the inverse of 𝑇𝑎,𝑤. We write 𝑆𝑎,𝑤 for 𝑇𝑎−1,𝑤−1∗𝛿−1
𝑎

to simplify notation.
In what follows, we assume 𝑤,𝑤−1 ∈ 𝐿

∞
(𝐺) and define a

sequence of bounded linear operators 𝐶𝑛 : 𝐿
𝑝
(𝐺) → 𝐿

𝑝
(𝐺)

by

𝐶𝑛 =
1

2
(𝑇
𝑛

𝑎,𝑤
+ 𝑆
𝑛

𝑎,𝑤
) (4)

for all 𝑛 ∈ Z where 𝑇−𝑛
𝑎,𝑤

:= (𝑇
−1

𝑎,𝑤
)
𝑛
= 𝑆
𝑛

𝑎,𝑤
. Then (𝐶𝑛)𝑛∈Z can

be regarded as a cosine operator function by letting C(𝑛) =

𝐶𝑛. Since 𝐶𝑛 = 𝐶−𝑛 for all 𝑛 ∈ Z, we will investigate
the sequence of operators (𝐶𝑛)𝑛∈N0 and give a necessary and
sufficient condition for (𝐶𝑛)𝑛∈N0

to be chaotic in terms of
the weight function 𝑤, the Haar measure 𝜆, and the group
element 𝑎 ∈ 𝐺.

2. Chaotic Condition

In this section, we will show the main result and give some
examples of chaotic cosine operator functions on various
groups. Since (𝐶𝑛)𝑛∈N0 is generated by some element 𝑎 ∈ 𝐺,
we first note that (𝐶𝑛)𝑛∈N0 is never chaotic if 𝑎 is a torsion
element by the fact in [17] that (𝐶𝑛)𝑛∈N0 is not transitive when
𝑎 is torsion.

Lemma 1. Let 𝐺 be a locally compact group and let 𝑎 be a
torsion element in 𝐺. Let 1 ≤ 𝑝 < ∞ and 𝑇𝑎,𝑤 be a weighted
translation on 𝐿

𝑝
(𝐺) with inverse 𝑆𝑎,𝑤. Let 𝐶𝑛 = (1/2)(𝑇

𝑛

𝑎,𝑤
+

𝑆
𝑛

𝑎,𝑤
). Then (𝐶𝑛)𝑛∈N0

is not chaotic.

An element 𝑎 in a group𝐺 is called a torsion element if it is
of finite order. In a locally compact group𝐺, an element 𝑎 ∈ 𝐺

is called periodic [22] (or compact [23]) if the closed subgroup
𝐺(𝑎) generated by 𝑎 is compact. We call an element in 𝐺

aperiodic if it is not periodic. For discrete groups, periodic
and torsion elements are identical; in other words, aperiodic
elements are the nontorsion elements.

It has been shown in [15] that an element 𝑎 in a locally
compact group 𝐺 is aperiodic if, and only if, for any compact
subset 𝐾 ⊂ 𝐺, there exists𝑁 ∈ N such that 𝐾 ∩ 𝐾𝑎

±𝑛
= 0 for

𝑛 > 𝑁. We will make use of the aperiodic condition to obtain
the result.

Now we turn our attention to the set of periodic elements
of (𝐶𝑛)𝑛∈N0 . Let P((𝐶𝑛)𝑛∈N0

) be the set of periodic elements
of a sequence of operator (𝐶𝑛)𝑛∈N0 . By the d’Alembert func-
tional equation and induction, we have a simple observation
immediately.

Lemma 2. Let P((𝐶𝑛)𝑛∈N0
) be the set of periodic elements of

(𝐶𝑛)𝑛∈N0
. Then 𝐶𝑚𝑓 = 𝑓 for some 𝑚 ∈ N and 𝑓 ∈ ℓ

𝑝
(Z) if,

and only if, 𝑓 ∈ P((𝐶𝑛)𝑛∈N0
).

Proof. Let 𝐶𝑚𝑓 = 𝑓. By the d’Alembert functional equation,
we have 𝐶2𝑚𝑓 = 𝑓. Now assume 𝐶𝑘𝑚𝑓 = 𝑓 and 𝐶(𝑘+1)𝑚𝑓 =

𝑓. Then, applying the d’Alembert functional equation again,
we have

2𝑓 = 2𝐶𝑚𝑓 = 2𝐶𝑚 (𝐶(𝑘+1)𝑚𝑓)

= 𝐶(𝑘+2)𝑚𝑓 + 𝐶𝑘𝑚𝑓 = 𝐶(𝑘+2)𝑚𝑓 + 𝑓

(5)

which says 𝐶(𝑘+2)𝑚𝑓 = 𝑓.

Based on the work of characterizing transitive (𝐶𝑛)𝑛∈N0 in
[17], we are able to obtain the characterization for (𝐶𝑛)𝑛∈N0 to
be chaotic in this note. We state the result in [17] below.

Theorem 3 (see [17]). Let 𝐺 be a locally compact group and
let 𝑎 be an aperiodic element in 𝐺. Let 1 ≤ 𝑝 < ∞ and 𝑇𝑎,𝑤

be a weighted translation on 𝐿𝑝(𝐺) with inverse 𝑆𝑎,𝑤. Let 𝐶𝑛 =
(1/2)(𝑇

𝑛

𝑎,𝑤
+𝑆
𝑛

𝑎,𝑤
).Then the following conditions are equivalent.

(i) (𝐶𝑛)𝑛∈N0 is topologically transitive.

(ii) For each compact subset 𝐾 ⊂ 𝐺 with 𝜆(𝐾) > 0, there
are sequences of Borel sets (𝐸𝑘), (𝐸+𝑘 ), and (𝐸

−

𝑘
) in 𝐾

such that 𝐸𝑘 = 𝐸
+

𝑘
∪ 𝐸
−

𝑘
, 𝜆(𝐾) = lim𝑘→∞𝜆(𝐸𝑘) and

both sequences

𝜑𝑛 :=

𝑛

∏

𝑠=1

𝑤 ∗ 𝛿
𝑠

𝑎−1
, 𝜑𝑛 := (

𝑛−1

∏

𝑠=0

𝑤 ∗ 𝛿
𝑠

𝑎
)

−1

(6)

admit, respectively, subsequences (𝜑𝑛𝑘) and (𝜑𝑛𝑘) satis-
fying

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜑𝑛𝑘

|𝐸𝑘

󵄩󵄩󵄩󵄩󵄩∞
= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜑𝑛𝑘

|𝐸𝑘

󵄩󵄩󵄩󵄩󵄩∞
= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜑2𝑛𝑘

|𝐸+
𝑘

󵄩󵄩󵄩󵄩󵄩∞
= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜑2𝑛𝑘

|𝐸−
𝑘

󵄩󵄩󵄩󵄩󵄩∞
= 0.

(7)

Now we are ready to show the main result.

Theorem 4. Let 𝐺 be a locally compact group and let 𝑎 be an
aperiodic element in 𝐺. Let 1 ≤ 𝑝 < ∞ and 𝑇𝑎,𝑤 be a weighted
translation on 𝐿

𝑝
(𝐺) with inverse 𝑆𝑎,𝑤. Let 𝐶𝑛 = (1/2)(𝑇

𝑛

𝑎,𝑤
+

𝑆
𝑛

𝑎,𝑤
), and letP((𝐶𝑛)𝑛∈N0

) be the set of periodic elements.Then
the following conditions are equivalent.

(i) (𝐶𝑛)𝑛∈N0 is chaotic.

(ii) P((𝐶𝑛)𝑛∈N0
) is dense in 𝐿

𝑝
(𝐺).
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(iii) For each compact subset 𝐾 ⊂ 𝐺 with 𝜆(𝐾) > 0, there
is a sequence of Borel sets (𝐸𝑘) in 𝐾 such that 𝜆(𝐾) =
lim𝑘→∞𝜆(𝐸𝑘) and both sequences

𝜑𝑛 :=

𝑛

∏

𝑠=1

𝑤 ∗ 𝛿
𝑠

𝑎−1
, 𝜑𝑛 := (

𝑛−1

∏

𝑠=0

𝑤 ∗ 𝛿
𝑠

𝑎
)

−1

(8)

admit, respectively, subsequences (𝜑𝑛𝑘) and (𝜑𝑛𝑘) satis-
fying

lim
𝑘→∞

(

∞

∑

𝑙=1

∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥) +

∞

∑

𝑙=1

∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥)) = 0.

(9)

Proof. Since (i) ⇒(ii) is trivial, we only need to show (ii) ⇒
(iii) and (iii)⇒(i).

(ii)⇒(iii). LetP((𝐶𝑛)𝑛∈N0
) be dense in 𝐿

𝑝
(𝐺). Let𝐾 be a

compact subset of𝐺 with 𝜆(𝐾) > 0. Then by the aperiodicity,
there exists some 𝑁 ∈ N such that 𝐾 ∩ 𝐾𝑎

±𝑚
= 0 for all

𝑚 > 𝑁. Let 𝜒𝐾 ∈ 𝐿
𝑝
(𝐺) be the characteristic function of 𝐾.

By density of P((𝐶𝑛)𝑛∈N0
), we can find a sequence (𝑛𝑘) ⊂ N

and a sequence (𝑓𝑘) of periodic points of (𝐶𝑛)𝑛∈N0 such that
‖ 𝑓𝑘 − 𝜒𝐾‖𝑝 < 1/4

𝑘 and 𝐶𝑛𝑘
𝑓𝑘 = 𝑓𝑘 in which we may assume

𝑛𝑘+1 > 𝑛𝑘 > 𝑁. Hence we have

1

4
𝑘
>
󵄩󵄩󵄩󵄩𝑓𝑘 − 𝜒𝐾

󵄩󵄩󵄩󵄩𝑝
≥
󵄩󵄩󵄩󵄩𝑓𝑘𝜒𝐾 − 𝜒𝐾

󵄩󵄩󵄩󵄩𝑝
. (10)

Let 𝐴𝑘 = {𝑥 ∈ 𝐾 : |𝑓𝑘𝜒𝐾(𝑥) − 1| > 1/2
𝑘
}. Then we have

󵄨󵄨󵄨󵄨𝑓𝑘𝜒𝐾 (𝑥)
󵄨󵄨󵄨󵄨 ≥ 1 −

1

2
𝑘

(𝑥 ∈ 𝐾 \ 𝐴𝑘) . (11)

Also, by the inequality below

1

4
𝑝𝑘

>
󵄩󵄩󵄩󵄩𝑓𝑘𝜒𝐾 − 𝜒𝐾

󵄩󵄩󵄩󵄩

𝑝

𝑝

= ∫

𝐺

󵄨󵄨󵄨󵄨𝑓𝑘𝜒𝐾 (𝑥) − 𝜒𝐾 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥)

≥ ∫

𝐾

󵄨󵄨󵄨󵄨𝑓𝑘𝜒𝐾 (𝑥) − 1
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥)

≥ ∫

𝐴𝑘

󵄨󵄨󵄨󵄨𝑓𝑘𝜒𝐾 (𝑥) − 1
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥) >

1

2
𝑝𝑘
𝜆 (𝐴𝑘) ,

(12)

we have 𝜆(𝐴𝑘) < 1/2
𝑝𝑘. Hence 𝜆(𝐾 \ 𝐸𝑘) < 1/2

𝑝𝑘 by letting
𝐸𝑘 = 𝐾 \ 𝐴𝑘. Moreover, using 𝑓𝑘 = 𝐶𝑙𝑛𝑘

𝑓𝑘 for 𝑙 ∈ N, the right

invariance of the Haar measure 𝜆 and 𝐾𝑎
𝑟𝑛𝑘 ∩ 𝐾𝑎

𝑠𝑛𝑘 = 0 for
all 𝑟, 𝑠 ∈ Z and 𝑟 ̸= 𝑠, we arrive at
1

4
𝑝𝑘

>
󵄩󵄩󵄩󵄩𝑓𝑘𝜒𝐾 − 𝜒𝐾

󵄩󵄩󵄩󵄩

𝑝

𝑝

= ∫

𝐺

󵄨󵄨󵄨󵄨𝑓𝑘𝜒𝐾 (𝑥) − 𝜒𝐾 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥)

≥ ∫

𝐺\𝐾

󵄨󵄨󵄨󵄨𝑓𝑘𝜒𝐾 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥)

≥

∞

∑

𝑙=1

∫

𝐾𝑎𝑙𝑛𝑘

󵄨󵄨󵄨󵄨𝑓𝑘𝜒𝐾 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥)

+

∞

∑

𝑙=1

∫

𝐾𝑎−𝑙𝑛𝑘

󵄨󵄨󵄨󵄨𝑓𝑘𝜒𝐾 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥)

=

∞

∑

𝑙=1

∫

𝐾

󵄨󵄨󵄨󵄨󵄨
𝑓𝑘𝜒𝐾 (𝑥𝑎

𝑙𝑛𝑘
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

+

∞

∑

𝑙=1

∫

𝐾

󵄨󵄨󵄨󵄨󵄨
𝑓𝑘𝜒𝐾 (𝑥𝑎

−𝑙𝑛𝑘
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

=
1

2
𝑝

∞

∑

𝑙=1

∫

𝐾

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑙𝑛𝑘
𝑎,𝑤

𝑓𝑘𝜒𝐾 (𝑥𝑎
𝑙𝑛𝑘
)+𝑆
𝑙𝑛𝑘
𝑎,𝑤

𝑓𝑘𝜒𝐾 (𝑥𝑎
𝑙𝑛𝑘
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

+
1

2
𝑝

∞

∑

𝑙=1

∫

𝐾

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑙𝑛𝑘
𝑎,𝑤

𝑓𝑘𝜒𝐾 (𝑥𝑎
−𝑙𝑛𝑘

)

+𝑆
𝑙𝑛𝑘
𝑎,𝑤

𝑓𝑘𝜒𝐾 (𝑥𝑎
−𝑙𝑛𝑘

)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

≥
1

2
𝑝

∞

∑

𝑙=1

∫

𝐸𝑘

󵄨󵄨󵄨󵄨󵄨
𝜑𝑙𝑛𝑘

(𝑥) 𝑓𝑘𝜒𝐾 (𝑥)

+𝜑
−1

𝑙𝑛𝑘
(𝑥𝑎
𝑙𝑛𝑘
) 𝑓𝑘𝜒𝐾 (𝑥𝑎

2𝑙𝑛𝑘
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

+
1

2
𝑝

∞

∑

𝑙=1

∫

𝐸𝑘

󵄨󵄨󵄨󵄨󵄨
𝜑
−1

𝑙𝑛𝑘
(𝑥𝑎
−𝑙𝑛𝑘

) 𝑓𝑘𝜒𝐾 (𝑥𝑎
−2𝑙𝑛𝑘

)

+𝜑𝑙𝑛𝑘
(𝑥) 𝑓𝑘𝜒𝐾 (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

=
1

2
𝑝

∞

∑

𝑙=1

∫

𝐸𝑘

󵄨󵄨󵄨󵄨󵄨
𝜑𝑙𝑛𝑘

(𝑥) 𝑓𝑘𝜒𝐾 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

+
1

2
𝑝

∞

∑

𝑙=1

∫

𝐸𝑘

󵄨󵄨󵄨󵄨󵄨
𝜑𝑙𝑛𝑘

(𝑥) 𝑓𝑘𝜒𝐾 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

≥
1

2
𝑝
(1 −

1

2
𝑘
)

𝑝 ∞

∑

𝑙=1

∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥)

+
1

2
𝑝
(1−

1

2
𝑘
)

𝑝 ∞

∑

𝑙=1

∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥)

(13)

which proves condition (iii).
(iii) ⇒(i). The proof is similar to the proof of [12,

Theorem 2.1]. We include the argument for completeness.
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ByTheorem 3, a sequence of operators (𝐶𝑛)𝑛∈N0 is topolog-
ically transitive. Hence we will show P((𝐶𝑛)𝑛∈N0

) is dense
in 𝐿
𝑝
(𝐺). It is known that the space 𝐶𝑐(𝐺) of continuous

functions on 𝐺 with compact support is dense in 𝐿
𝑝
(𝐺). Let

𝑓 ∈ 𝐶𝑐(𝐺) with compact support 𝐾 ⊂ 𝐺. There is a sequence
of Borel sets (𝐸𝑘) in 𝐾 such that 𝜆(𝐾) = lim𝑘→∞𝜆(𝐸𝑘) and

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)
󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

= ∫

𝐸𝑘𝑎
𝑙𝑛
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑤 (𝑥)𝑤 (𝑥𝑎

−1
) ⋅ ⋅ ⋅ 𝑤 (𝑥𝑎

−(𝑙𝑛𝑘−1)
)
󵄨󵄨󵄨󵄨󵄨

𝑝

×
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥𝑎

−𝑙𝑛𝑘
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝜆 (𝑥)

= ∫

𝐸𝑘

󵄨󵄨󵄨󵄨󵄨
𝑤 (𝑥𝑎

𝑙𝑛𝑘
)𝑤 (𝑥𝑎

𝑙𝑛𝑘−1
) ⋅ ⋅ ⋅ 𝑤 (𝑥𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑝󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥)

= ∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥)

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝜆 (𝑥) ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝

∞
∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥) .

(14)

Similarly,

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)
󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑝

∞
∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥) . (15)

Let

V𝑘 = 𝑓𝜒𝐸𝑘
+

∞

∑

𝑙=1

𝑇
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
) +

∞

∑

𝑙=1

𝑆
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
) . (16)

Then V𝑘 ∈ 𝐿
𝑝
(𝐺) by the weight assumption in the condition

(iii). Also, using𝐾𝑎𝑟𝑛𝑘 ∩𝐾𝑎𝑠𝑛𝑘 = 0 again, we have V𝑘 → 𝑓 as
𝑘 → ∞ which follows from

󵄩󵄩󵄩󵄩V𝑘 − 𝑓
󵄩󵄩󵄩󵄩

𝑝

𝑝

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑝

∞
𝜆 (𝐾 \ 𝐸𝑘)

+

∞

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)
󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+

∞

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)
󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑝

∞
𝜆 (𝐾 \ 𝐸𝑘)

+
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑝

∞
(

∞

∑

𝑙=1

∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥)

+

∞

∑

𝑙=1

∫

𝐸𝑘

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥)) .

(17)

On the other hand, V𝑘 is an element of P((𝐶𝑛)𝑛∈N0
) by the

equality

2𝐶𝑛𝑘
V𝑘 = 𝑇

𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
) +

∞

∑

𝑙=1

𝑇
𝑛𝑘
𝑎,𝑤

𝑇
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)

+

∞

∑

𝑙=1

𝑇
𝑛𝑘
𝑎,𝑤

𝑆
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)

+ 𝑆
𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
) +

∞

∑

𝑙=1

𝑆
𝑛𝑘
𝑎,𝑤

𝑇
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)

+

∞

∑

𝑙=1

𝑆
𝑛𝑘
𝑎,𝑤

𝑆
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)

=

∞

∑

𝑙=1

𝑇
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
) + 𝑓𝜒𝐸𝑘

+

∞

∑

𝑙=1

𝑆
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)

+ 𝑓𝜒𝐸𝑘
+

∞

∑

𝑙=1

𝑇
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
) +

∞

∑

𝑙=1

𝑆
𝑙𝑛𝑘
𝑎,𝑤

(𝑓𝜒𝐸𝑘
)

= V𝑘 + V𝑘 = 2V𝑘.

(18)

Putting all these together, condition (iii) implies (i).

We note that [15] in many familiar nondiscrete groups,
including the additive group R𝑑, the Heisenberg group, and
the affine group, all elements except the identity are aperiodic.
On the other hand, if 𝐺 is discrete, then 𝐴𝑘 = 0 and 𝐸𝑘 = 𝐾

for all 𝑘 ∈ N in the proof of Theorem 4. Hence we have the
characterization below for discrete groups.

Corollary 5. Let𝐺 be a discrete group and let 𝑎 be a nontorsion
element in𝐺. Let 1 ≤ 𝑝 < ∞ and𝑇𝑎,𝑤 be aweighted translation
on ℓ
𝑝
(𝐺). Let 𝐶𝑛 = (1/2)(𝑇

𝑛

𝑎,𝑤
+ 𝑆
𝑛

𝑎,𝑤
). Then the following

conditions are equivalent.
(i) (𝐶𝑛)𝑛∈N0 is chaotic.
(ii) For each finite subset 𝐾 ⊂ 𝐺, both sequences

𝜑𝑛 =

𝑛

∏

𝑠=1

𝑤 ∗ 𝛿
𝑠

𝑎−1
, 𝜑𝑛 = (

𝑛−1

∏

𝑠=0

𝑤 ∗ 𝛿
𝑠

𝑎
)

−1

(19)

admit. Respectively, subsequences (𝜑𝑛𝑘) and (𝜑𝑛𝑘) satis-
fying

lim
𝑘→∞

(

∞

∑

𝑙=1

∑

𝐾

𝜑
𝑝

𝑙𝑛𝑘
(𝑥) +

∞

∑

𝑙=1

∑

𝐾

𝜑
𝑝

𝑙𝑛𝑘
(𝑥)) = 0. (20)

It is also interesting to know that condition (iii) in
Theorem 4 is also the sufficient and necessary condition for
𝑇𝑎,𝑤 to be chaotic in [12, Theorem 2.1]. In other words,
(𝐶𝑛)𝑛∈N0

is chaotic if, and only if,𝑇𝑎,𝑤 is chaotic.We conclude
the result below.

Corollary 6. Let 𝐺 be a locally compact group and let 𝑎 be an
aperiodic element in 𝐺. Let 1 ≤ 𝑝 < ∞ and 𝑇𝑎,𝑤 be a weighted
translation on 𝐿

𝑝
(𝐺) with inverse 𝑆𝑎,𝑤. Let 𝐶𝑛 = (1/2)(𝑇

𝑛

𝑎,𝑤
+

𝑆
𝑛

𝑎,𝑤
). Then the following conditions are equivalent.
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(i) (𝐶𝑛)𝑛∈N0 is chaotic.

(ii) 𝑇𝑎,𝑤 is chaotic.

(iii) 𝑆𝑎,𝑤 is chaotic.

(iv) 𝑇𝑛
𝑎,𝑤

is chaotic for all 𝑛 ∈ N.

(v) 𝑆𝑛
𝑎,𝑤

is chaotic for all 𝑛 ∈ N.

Proof. For 𝑛 ∈ N, we denote the set of periodic elements of
the operator 𝑇𝑛

𝑎,𝑤
by P(𝑇

𝑛

𝑎,𝑤
) = {𝑓 ∈ 𝐿

𝑝
(𝐺); ∃ 𝑚 ∈ N :

(𝑇
𝑛

𝑎,𝑤
)
𝑚
𝑓 = 𝑓}. We will show that conditions (ii) and (iii) are

equivalent, and (ii) implies (iv).
(ii)⇔(iii). It is known in [19] that an invertible operator is

transitive, if and only if, its inverse is transitive. Also it is easy
to seeP(𝑇𝑎,𝑤) = P(𝑆𝑎,𝑤). Hence we prove the equivalence.

(ii)⇒(iv). By [24], 𝑇𝑛
𝑎,𝑤

is transitive for all 𝑛 ∈ N if 𝑇𝑎,𝑤 is
transitive. Moreover, we note that P(𝑇𝑎,𝑤) = P(𝑇

𝑛

𝑎,𝑤
) for all

𝑛 ∈ N. Therefore condition (ii) implies (iv).

We end up this section with two examples on 𝐺 = Z and
𝐺 = R, which says that one can constructmany chaotic cosine
operator functions on various groups.

Example 7. Let 𝐺 = Z, 𝑎 = 1 ∈ Z which is nontorsion.
Let 𝑤 ∗ 𝛿1 be a weight on Z. Then the weighted translation
operator 𝑇1,𝑤∗𝛿1 on ℓ

𝑝
(Z) is the bilateral weighted forward

shift 𝑇, studied in [11] and given by 𝑇𝑒𝑗 = 𝑤𝑗𝑒𝑗+1 with 𝑤𝑗 =

𝑤(𝑗). Here (𝑒𝑗)𝑗∈Z is the canonical basis of ℓ𝑝(Z) and (𝑤𝑗)𝑗∈Z
is a sequence of positive real numbers. Also, we have

𝜑𝑙𝑛 (𝑗) =

𝑙𝑛

∏

𝑠=1

(𝑤 ∗ 𝛿1) ∗ 𝛿
𝑠

−1
(𝑗) =

𝑙𝑛−1

∏

𝑠=0

𝑤 (𝑗 + 𝑠) ,

𝜑
−1

𝑙𝑛
(𝑗) =

𝑙𝑛−1

∏

𝑠=0

(𝑤 ∗ 𝛿1) ∗ 𝛿
𝑠

1
(𝑗) =

𝑙𝑛

∏

𝑠=1

𝑤 (𝑗 − 𝑠) .

(21)

Let 𝑤−1 ∈ ℓ
∞
(Z) and let 𝐶𝑛 = (1/2)(𝑇

𝑛
+ 𝑆
𝑛
) where 𝑆 is

the inverse of 𝑇 = 𝑇1,𝑤∗𝛿1
. Then by Corollary 5, (𝐶𝑛)𝑛∈N0 and

𝑇1,𝑤∗𝛿1
are chaotic if, given 𝜀 > 0 and 𝑞 ∈ N, there exists an

arbitrarily large 𝑛 ∈ N such that

∞

∑

𝑙=1

∑

|𝑗|≤𝑞

(

𝑙𝑛−1

∏

𝑠=0

𝑤 (𝑗 + 𝑠))

𝑝

+

∞

∑

𝑙=1

∑

|𝑗|≤𝑞

(
1

∏
𝑙𝑛

𝑠=1
𝑤 (𝑗 − 𝑠)

)

𝑝

< 𝜀.

(22)

In fact, there are many weight functions 𝑤 on Z satisfying
the weight condition above. For example, one may define 𝑤 :

Z → (0,∞) by

𝑤 (𝑗) =

{

{

{

1

2
if 𝑗 ≥ 0

2 if 𝑗 < 0.

(23)

Example 8. Let 𝐺 = R, 𝑎 = 2, and 𝑤 be a weight on R. Then
the weighted translation 𝑇2,𝑤 on 𝐿

𝑝
(R) is defined by

𝑇2,𝑤𝑓 (𝑥) = 𝑤 (𝑥) 𝑓 (𝑥 − 2) (𝑓 ∈ 𝐿
𝑝
(R)) ,

𝜑𝑙𝑛𝑘
(𝑥) =

𝑙𝑛𝑘

∏

𝑠=1

𝑤 ∗ 𝛿
𝑠

−2
(𝑥) =

𝑙𝑛𝑘

∏

𝑠=1

𝑤 (𝑥 + 2𝑠) ,

𝜑
−1

𝑙𝑛𝑘
(𝑥) =

𝑙𝑛𝑘−1

∏

𝑠=0

𝑤 ∗ 𝛿
𝑠

2
(𝑥) =

𝑙𝑛𝑘−1

∏

𝑠=0

𝑤 (𝑥 − 2𝑠) .

(24)

Let 𝐶𝑛 = (1/2)(𝑇
𝑛

2,𝑤
+ 𝑆
𝑛

2,𝑤
) where 𝑆2,𝑤 = 𝑇

−1

2,𝑤
. Then

(𝐶𝑛)𝑛∈N0
and 𝑇2,𝑤 are chaotic if, given a compact subset 𝐾 of

R, we have

lim
𝑘→∞

(

∞

∑

𝑙=1

∫

𝐾

(

𝑙𝑛𝑘

∏

𝑠=1

𝑤 (𝑥 + 2𝑠))

𝑝

𝑑𝜆 (𝑥)

+

∞

∑

𝑙=1

∫

𝐾

(
1

∏
𝑙𝑛𝑘−1

𝑠=0
𝑤 (𝑥 − 2𝑠)

)

𝑝

𝑑𝜆 (𝑥)) = 0.

(25)

Similarly, one may choose 𝑤 : R → (0,∞) by

𝑤 (𝑥) =

{{{{{

{{{{{

{

1

2
if𝑥 ≥ 1

1

2
𝑥

if − 1 < 𝑥 < 1

2 if𝑥 ≤ −1,

(26)

which is the required weight function in the above condition.

3. The Direct Sum of Cosine
Operator Functions

Following the investigation on transitivity of the direct sumof
a sequence of cosine operator functions in [17], we will give,
in this section, the characterization for the direct sum of a
sequence of cosine operator functions to be chaotic in terms
of the similarweight condition inTheorem 4.Thework on the
direct sum of operators in linear dynamics has been studied
by many authors, for example [5, 9, 11], where the notion of
transitivity on direct sum of operators is related with another
notion, namely, weak mixing, and hypercyclic criterion.

Given some𝑁 ∈ N, let (𝑇𝑎𝑚 ,𝑤𝑚) be a sequence of weighted
translation operators on 𝐿

𝑝
(𝐺), defined by sequences of

aperiodic elements (𝑎𝑚) in 𝐺 and positive weight functions
(𝑤𝑚) for 1 ≤ 𝑚 ≤ 𝑁. We write 𝑇𝑚 for 𝑇𝑎𝑚 ,𝑤𝑚

for
simplification. In [17], we have the result below.

Corollary 9 (see [17]). Let 𝑇𝑚 be a weighted translation
defined above for 1 ≤ 𝑚 ≤ 𝑁. Let 𝐶𝑚,𝑛 = (1/2)(𝑇

𝑛

𝑚
+ 𝑆
𝑛

𝑚
).

Then the following conditions are equivalent.

(i) (𝐶1,𝑛 ⊕ 𝐶2,𝑛 ⊕ ⋅ ⋅ ⋅ ⊕𝐶𝑁,𝑛)𝑛∈N0
is topologically transitive.

(ii) For 1 ≤ 𝑚 ≤ 𝑁 and each compact subset 𝐾 ⊂ 𝐺

with 𝜆(𝐾) > 0, there are sequences of Borel sets (𝐸𝑚,𝑘),
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(𝐸
+

𝑚,𝑘
), and (𝐸

−

𝑚,𝑘
) in 𝐾 such that 𝐸𝑚,𝑘 = 𝐸

+

𝑚,𝑘
∪ 𝐸
−

𝑚,𝑘
,

𝜆(𝐾) = lim𝑘→∞𝜆(𝐸𝑚,𝑘) and both sequences

𝜑𝑚,𝑛 :=

𝑛

∏

𝑠=1

𝑤𝑚 ∗ 𝛿
𝑠

𝑎−1
𝑚

, 𝜑𝑚,𝑛 := (

𝑛−1

∏

𝑠=0

𝑤𝑚 ∗ 𝛿
𝑠

𝑎𝑚
)

−1

(27)

admit, respectively, subsequences (𝜑𝑚,𝑛𝑘) and (𝜑𝑚,𝑛𝑘
)

satisfying

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜑𝑚,𝑛𝑘

|𝐸𝑚,𝑘

󵄩󵄩󵄩󵄩󵄩∞
= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜑𝑚,𝑛𝑘

|𝐸𝑚,𝑘

󵄩󵄩󵄩󵄩󵄩∞
= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝜑𝑚,2𝑛𝑘

|𝐸+
𝑚,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩∞
= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝜑𝑚,2𝑛𝑘

|𝐸−
𝑚,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩∞
= 0.

(28)

UsingCorollary above, we characterize chaos of the direct
sum of a sequence of cosine operator functions below.

Corollary 10. Let𝑇𝑚 be aweighted translation for 1 ≤ 𝑚 ≤ 𝑁.
Let 𝐶𝑚,𝑛 = (1/2)(𝑇

𝑛

𝑚
+ 𝑆
𝑛

𝑚
). Then the following conditions are

equivalent.

(i) (𝐶1,𝑛 ⊕ 𝐶2,𝑛 ⊕ ⋅ ⋅ ⋅ ⊕ 𝐶𝑁,𝑛)𝑛∈N0
is chaotic.

(ii) For 1 ≤ 𝑚 ≤ 𝑁 and each compact subset 𝐾 ⊂ 𝐺 with
𝜆(𝐾) > 0, there are sequences of Borel sets (𝐸𝑚,𝑘) in 𝐾

such that 𝜆(𝐾) = lim𝑘→∞𝜆(𝐸𝑚,𝑘) and both sequences

𝜑𝑚,𝑛 :=

𝑛

∏

𝑠=1

𝑤𝑚 ∗ 𝛿
𝑠

𝑎−1
𝑚

, 𝜑𝑚,𝑛 := (

𝑛−1

∏

𝑠=0

𝑤𝑚 ∗ 𝛿
𝑠

𝑎𝑚
)

−1

(29)

admit, respectively, subsequences (𝜑𝑚,𝑛𝑘) and (𝜑𝑚,𝑛𝑘
)

satisfying

lim
𝑘→∞

(

∞

∑

𝑙=1

∫

𝐸𝑚,𝑘

𝜑
𝑝

𝑚,𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥)

+

∞

∑

𝑙=1

∫

𝐸𝑚,𝑘

𝜑
𝑝

𝑚,𝑙𝑛𝑘
(𝑥) 𝑑𝜆 (𝑥)) = 0.

(30)

Proof. The proof is similar to the proof of Theorem 4.
(i) ⇒(ii). By density of P((𝐶𝑚,𝑛)𝑛∈N0

), we can find a
sequence (𝑛𝑘) ⊂ N and sequences (𝑓𝑚,𝑘) of periodic points
of (𝐶𝑚,𝑛)𝑛∈N0 such that ‖𝑓𝑚,𝑘 − 𝜒𝐾‖𝑝

< 1/4
𝑘 and 𝐶𝑚,𝑛𝑘

𝑓𝑚,𝑘 =

𝑓𝑚,𝑘. Let 𝐸𝑚,𝑘 = 𝐾 \ 𝐴𝑚,𝑘 for each 𝑚. Following the same
estimation in the proof of Theorem 4, we can obtain the
weight conditions.

(ii)⇒(i). Let 𝑓𝑚 ∈ 𝐶𝑐(𝐺) with compact support 𝐾𝑚 ⊂ 𝐺

for 1 ≤ 𝑚 ≤ 𝑁, and let 𝐾 = ∪
𝑁

𝑚=1
𝐾𝑚. Letting

V𝑚,𝑘 := 𝑓𝑚𝜒𝐸𝑚,𝑘
+

∞

∑

𝑙=1

𝑇
𝑙𝑛𝑘
𝑚

(𝑓𝑚𝜒𝐸𝑚,𝑘
)

+

∞

∑

𝑙=1

𝑆
𝑙𝑛𝑘
𝑚

(𝑓𝑚𝜒𝐸𝑚,𝑘
) .

(31)

and repeating the argument in the proof of Theorem 4, one
can show that V𝑚,𝑘 → 𝑓𝑚 as 𝑘 → ∞ and V𝑚,𝑘 is an element of
P((𝐶𝑚,𝑛)𝑛∈N0

). Hence (𝐶1,𝑛⊕ 𝐶2,𝑛⊕⋅ ⋅ ⋅⊕ 𝐶𝑁,𝑛)𝑛∈N0
is chaotic.

Remark 11. By Corollary 10 above, we note that (𝐶𝑛)𝑛∈N0 is
chaotic if, and only if, (𝐶𝑛 ⊕𝐶𝑛)𝑛∈N0

is chaotic. Similarly, 𝑇𝑎,𝑤
and 𝑇𝑎,𝑤 ⊕ 𝑇𝑎,𝑤 can be chaotic only at the same time.

Finally, we give an example of the direct sum of cosine
operator functions on ℓ

𝑝
(Z).

Example 12. Given some𝑁 ∈ N, let𝐺 = Z and 𝑎𝑚 = 1 for 1 ≤
𝑚 ≤ 𝑁.We consider a sequence of weighted translations (𝑇𝑚)
on ℓ
2
(Z), given by 𝑇𝑚 := 𝑇1,𝑤𝑚∗𝛿1

where (𝑤𝑚) is a sequence
of positive weight functions. Then we define sequences of
operators (𝐶𝑚,𝑛)𝑛∈N0 by 𝐶𝑚,𝑛 = (1/2)(𝑇

𝑛

𝑚
+ 𝑆
𝑛

𝑚
) where 𝑆𝑚 is

the inverse of𝑇𝑚. By Corollary 10, (𝐶1,𝑛⊕𝐶2,𝑛⊕⋅ ⋅ ⋅⊕𝐶𝑁,𝑛)𝑛∈N0
is chaotic if, given 𝜀 > 0 and 𝑞 ∈ N, there exists an arbitrarily
large 𝑛 such that for all |𝑗| ≤ 𝑞 and 1 ≤ 𝑚 ≤ 𝑁, we have

∞

∑

𝑙=1

∑

|𝑗|≤𝑞

(

𝑙𝑛−1

∏

𝑠=0

𝑤𝑚 (𝑗 + 𝑠))

𝑝

+

∞

∑

𝑙=1

∑

|𝑗|≤𝑞

(
1

∏
𝑙𝑛

𝑠=1
𝑤𝑚 (𝑗 − 𝑠)

)

𝑝

< 𝜀.

(32)
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