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This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks
with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the
concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed
to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally,
numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.

1. Introduction

Over the past decades, delayed neural networks have been
successfully applied in the pattern recognition, signal pro-
cessing, image processing, and pattern recognition problems.
However, these successful applications mostly rely on the
dynamic behaviors of delayed neural networks and some of
these applications are dependent on stability of the equilibria
of neural networks. Up to now, there have been a large
number of results related to dynamical behaviors of delayed
neural networks [1–8].

On the one, in the past few decades, Markovian jump
systems have gained special research attention. Such class of
systems is a special class of stochastic hybrid systems, which
may switch from one to another at the different time. Such as
component failures, sudden environmental disturbance and
abrupt variations of a nonlinear system [9–11]. Moreover, it
is shown that such jumping can be decided by a Markovian
chain [12]. For the linear Markovian jumping systems, many
important issues have been devoted extensively such as
stability, stabilization, control synthesis, and filter design [13–
16]. In reality, however, it is worth mentioning that most
of the gotten results are based on the implicit assumptions
that the complete knowledge of transition probabilities is

known. It is known that in most situations, the transition
probabilities rate of Markovian jump systems and networks
is not known; it is difficult to obtain all the transition
probabilities.Therefore, it is of great importance to investigate
the partly unknown transition probabilities. Very recently,
the systems with partially unknown transition probabilities
have been fully investigated and many important results
have been obtained; for a recent survey on this topic and
related questions, one can refer to [17–23]. However, it has
been shown that the existing delay-dependent results are
conservative.

On the other hand, the practical problems which describ-
ed system stay as not exceeding a given threshold over finite-
time interval are considered. Compared with classical Lyapu-
nov stability, finite-time stability was studied to tackle the tra-
nsient behavior of systems in the finite-time interval. Recen-
tly, the concept of finite-time stability has been revisited in the
terms of linear matrix inequalities (LMIs); some results have
been obtained to guarantee that system is finite-time stable
and finite-time bounded [24–39]. To the best of our knowl-
edge, the finite-time stability analysis for Markovian jumping
neural networks with mode-dependent time-varying delays
and partially known transition rates has not been tackled, and
such a situation motivates our present study.
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The main contribution of this paper lies in proposing a
novel method for finite-time boundedness of delayedMarko-
vian jumping neural networks with partly unknown transi-
tion probabilities.The considered system ismore general than
the systems with completely known or completely unknown
transition probabilities, which can be regarded as two special
cases of the one tackled here. In contrast to study on
Markovian jumping neural networks with time delays, the
knowledge of the unknown elements is not required in our
method. By employing the appropriate Lyapunov-Krasovskii
functional, the sufficient conditions are obtained to ensure
that the system does not exceed a given threshold in a
specified time interval. The finite-time bounded criteria can
be tackled in the form of LMIs. Finally, numerical examples
are given to demonstrate that the derived results are less
conservative and more useful than some existent ones.

2. Preliminaries

Given a probability space (Ω, 𝐹, 𝑃) whereΩ, 𝐹 and 𝑃, respec-
tively, represents the sample space, the algebra of events and
the probabilitymeasure which defined onΩ. In this paper, we
consider the following 𝑛-neuron Markovian jumping neural
network over the space (Ω, 𝐹, 𝑃) described by

𝑥̇ (𝑡) = −𝐴
𝑟
𝑡

𝑥 (𝑡) + 𝐵
𝑟
𝑡

𝑓 (𝑥 (𝑡)) + 𝐶
𝑟
𝑡

𝑓 (𝑥 (𝑡 − 𝜏
𝑟
𝑡

(𝑡))) + 𝐽

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0) ,

(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
⊺ represents the neural

state vector of the system, 𝑓(𝑥(𝑡)) = [𝑓
1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . .,

𝑓
𝑛
(𝑥
𝑛
(𝑡))]
⊺ is the nonlinear activation function with the ini-

tial condition 𝑓(0) = 0, 𝐴
𝑟
𝑡

= diag{𝑎
1
(𝑟
𝑡
), 𝑎
2
(𝑟
𝑡
), . . . , 𝑎

𝑛
(𝑟
𝑡
)}

describes the rate with each neuronwhichwould reset its pot-
ential to resting state in isolation, 𝐵

𝑟
𝑡

= [𝑏
𝑖𝑗
(𝑟
𝑡
)]
𝑛×𝑛

and 𝐶
𝑟
𝑡

=

[𝑐
𝑖𝑗
(𝑟
𝑡
)] are the connection weight matrices and the delay-

ed connection weight matrices, respectively, and 𝐽 = [𝐽
1
, 𝐽
2
,

. . . , 𝐽
𝑛
]
⊺ denotes a constant external input vector. 𝜏

𝑟
𝑡

(𝑡) are the
time-varying delays which satisfy

0 ≤ 𝜏
𝑟
𝑡

(𝑡) ≤ 𝜏
𝑟
𝑡

,

0 ≤ ̇𝜏
𝑟
𝑡

(𝑡) ≤ 𝑑
𝑟
𝑡

≤ 1,
(2)

where 𝜏
𝑟
𝑡

and 𝑑
𝑟
𝑡

are constant scalars and 𝜏 = max
𝑟
𝑡

{𝜏
𝑟
𝑡

}, 𝑑 =
max
𝑟
𝑡

{𝑑
𝑟
𝑡

}.

Remark 1. This assumption is often employed to investigate
the stability of neural networks. It is worth noting that if this
assumption is not true, corresponding time-delays are not a
continuous function belonging to a given interval; neither the
lower nor upper bounds for time-varying delays are available.
Therefore, it may lead to more conservativeness.

Let the random form process {𝑟
𝑡
, 𝑡 ≥ 0} be the Markovian

stochastic process taking values on the finite set N =

{1, 2, . . . , 𝑁} with transition rate matrix Ω = {𝜇
𝑖𝑗
}, 𝑖, 𝑗 ∈ N;

namely, for 𝑟
𝑡
= 𝑖, 𝑟
𝑡+1

= 𝑗, one has

Pr (𝑟
𝑡+ℎ

= 𝑗 | 𝑟
𝑡
= 𝑖) = {

𝜇
𝑖𝑗
ℎ + 𝑜 (ℎ) , if 𝑗 ̸= 𝑖

1 + 𝜇
𝑖𝑖
ℎ + 𝑜 (ℎ) , if 𝑗 = 𝑖,

(3)

where ℎ > 0, lim
ℎ→0

(𝑜(ℎ)/ℎ) = 0, and 𝜇 ≥ 0 (𝑖, 𝑗 ∈ N, 𝑗 ̸= 𝑖),
denote switching rate from mode 𝑖 at time 𝑡 to mode 𝑗 at
time 𝑡 + ℎ. For all 𝑖 ∈ N, 𝜇

𝑖𝑖
= −∑

𝑗=1,𝑗 ̸= 𝑖
𝜇
𝑖𝑗
. Moreover, the

Markovian process transition matrixΩ is defined as follows:

Ω =

[
[
[
[

[

𝜇
11

𝜇
12

⋅ ⋅ ⋅ 𝜇
1𝑁

𝜇
21

𝜇
22

⋅ ⋅ ⋅ 𝜇
2𝑁

...
... d

...
𝜇
𝑁1

𝜇
𝑁2

⋅ ⋅ ⋅ 𝜇
𝑁𝑁

]
]
]
]

]

. (4)

Moreover, the transition rates of jumping process in this
paper are considered to be partly accessed; that is, some
elements in matrixΩ are unknown. Therefore, the transition
rates matrix Ω which is Markovian jump system (1) may be
as follows:

Ω =

[
[
[
[

[

𝜇
11

? ⋅ ⋅ ⋅ 𝜇
1𝑁

? 𝜇
22

⋅ ⋅ ⋅ ?
...

... d
...

? ? ⋅ ⋅ ⋅ 𝜇
𝑁𝑁

]
]
]
]

]

, (5)

where ? represents the inaccessible elements. For notational
clarity, for all 𝑖 ∈ N, we denote N = N𝑖K +N𝑖UK and we
denote that

N
𝑖

K ≡ {𝑗 : 𝜇
𝑖𝑗
is known} ,

N
𝑖

UK ≡ {𝑗 : 𝜇
𝑖𝑗
is unknown} .

(6)

Moreover, if N𝑖K ̸= 0, N𝑖K and N𝑖UK can be further
described, respectively, as

N
𝑖

K = {K
𝑖

1
,K
𝑖

2
, . . . ,K

𝑖

𝑚
} ,

N
𝑖

UK = {UK
𝑖

1
,UK

𝑖

2
, . . . ,UK

𝑖

𝑁−𝑚
} ,

(7)

where N𝑖
𝑚
∈ Z+ represents the 𝑚th known element with

the index N𝑖
𝑚
in the 𝑖th row of matrix Ω. UN𝑖

𝑁−𝑚
∈ Z+

represents the 𝑁 − 𝑚th unknown element with the index
UN𝑖
𝑁𝑚

in the 𝑖th row of matrixΩ.
SetN contains𝑁modes of system (1) and, for 𝑟

𝑡
= 𝑖 ∈N,

the systemmatrices of the 𝑖thmode are denoted by𝐴
𝑖
,𝐵
𝑖
, and

𝐶
𝑖
, which are considered to be real known with appropriate

dimensions.

Remark 2. The Markovian jump process {𝑟
𝑡
, 𝑡 ≥ 0} in

the literature is always assumed 𝜇
𝑖𝑗
ether to be completely

known (N𝑖K) or completely unknown (N𝑖UK). Therefore,
our transition probabilities matrix considered in this paper is
more general than theMarkovian jump systems and therefore
covers the existing ones.

Assumption 3. The neuron state-based nonlinear function
𝑓(𝑥(𝑡)) considered inMarkovian jump system (1) is bounded
and satisfies

0 ≤
𝑓
𝑠
(𝜍
1
) − 𝑓
𝑠
(𝜍
2
)

𝜍
1
− 𝜍
2

≤ 𝛾
𝑠
, 𝑠 = 1, 2, . . . , 𝑛 (8)

for all 𝜍
1
, 𝜍
2
∈ R, with 𝛾

𝑠
being known real constants with

𝑠 = 1, 2, . . . , 𝑛.



Abstract and Applied Analysis 3

It should be noted that by using the Brouwer fixed-point
theorem, there should exist at least the one equilibrium point
for system (1). Assuming that 𝑥∗ = [𝑥∗

1
, 𝑥∗
2
, . . . , 𝑥∗

𝑛
]
⊺ is the

equilibrium point of (1) and using the transformation 𝑧(⋅) =
𝑥(⋅)−𝑥

∗, system (1) can be converted to the following system:

𝑧̇ (𝑡) = −𝐴
𝑟
𝑡

𝑧 (𝑡) + 𝐵
𝑟
𝑡

𝑔 (𝑧 (𝑡)) + 𝐶
𝑟
𝑡

𝑔 (𝑧 (𝑡 − 𝜏
𝑟
𝑡

(𝑡))) ,

(9)

where 𝑧(𝑡) = [𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . , 𝑧

𝑛
(𝑡)]
⊺, 𝑔(𝑧(⋅)) = [𝑔

1
(𝑧
1
(𝑥(𝑡))),

𝑔
2
(𝑥(𝑡)), . . . , 𝑔

𝑛
(𝑥(𝑡))]

⊺, and 𝑔
𝑖
(𝑧
𝑖
(𝑧
𝑖
(⋅))) = 𝑓

𝑖
(𝑧
𝑖
(⋅) + 𝑥∗

𝑖
) −

𝑓
𝑖
(𝑥∗
𝑖
), 𝑖 = 1, 2, . . . , 𝑛. According to Assumption 3, one can

obtain that

0 ≤
𝑔
𝑖
(𝑧
𝑖
(𝑡))

𝑧
𝑖
(𝑡)

≤ 𝛾
𝑖
, 𝑔
𝑖
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛. (10)

Definition 4 (see [33]). The nominal time-delayedMarkovian
jumping neural networks (1) are said to be stochastically
finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇), if

E
󵄩󵄩󵄩󵄩𝑥 (𝑡1)

󵄩󵄩󵄩󵄩
2

≤ 𝑐
1
󳨐⇒ E

󵄩󵄩󵄩󵄩𝑥 (𝑡2)
󵄩󵄩󵄩󵄩
2

≤ 𝑐
2
,

𝑡
1
∈ [−𝜏, 0] , 𝑡

2
∈ [0, 𝑇] . (11)

Definition 5 (see [34]). Let 𝑉(𝑥
𝑡
, 𝑟
𝑡
) be a stochastic positive

functional and define its weak infinitesimal operator as

£𝑉 (𝑥
𝑡
, 𝑟
𝑡
= 𝑖)

= lim
Δ→0

1

Δ
[E {𝑉 (𝑥

𝑡+Δ
, 𝑟
𝑡+Δ
) | 𝑥
𝑡
, 𝑟
𝑡
= 𝑖} − 𝑉 (𝑥

𝑡
, 𝑟
𝑡
= 𝑖)] .

(12)

3. Finite-Time 𝐻
∞

Performance Analysis

In this section, onemethodwould be employed to analyze the
finite-time stability of Markovian jump systems with partial
information on transition probabilities.

Theorem 6. Given a time constant 𝑇 > 0, the delayed Mark-
ovian jumping neural networks (1) are stochastically finite-time
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇), if there exist a positive con-

stant 𝜂 > 0, mode-dependent symmetric positive-definite matr-
ices 𝑃
𝑖
> 0, 𝑄

1𝑖
> 0, 𝑄

2𝑖
> 0,𝑊

1
> 0,𝑊

2
> 0 (𝑖 ∈ N), a set of

symmetric matrices 𝑆
𝜐
(𝜐 = 1, 2, . . . , 𝑁), any appropriately di-

mensioned matrices𝑀
𝑖
,𝑁
𝑖
(𝑖 ∈ N), Γ

𝑠
, and scalars 𝜆

𝑙
(𝑙 = 1,

2, . . . , 6) such that the following matrix inequalities hold:

∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
1𝑗
− (1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)𝑊
1
+ ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
1𝑖
< 0,

𝑄
1𝑗
−𝑊
1
+ 𝑄
1𝑖
< 0, 𝑗 ∈N

𝑖

UK, 𝑗 ̸= 𝑖,

𝑄
1𝑗
−𝑊
1
+ 𝑄
1𝑖
< 0, 𝑗 ∈N

𝑖

UK, 𝑗 = 𝑖,

∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
2𝑗
− (1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)𝑊
2
+ ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
2𝑖
< 0,

𝑄
2𝑗
−𝑊
2
+ 𝑄
2𝑖
< 0, 𝑗 ∈N

𝑖

UK, 𝑗 ̸= 𝑖,

𝑄
2𝑗
−𝑊
2
+ 𝑄
2𝑖
< 0, 𝑗 ∈N

𝑖

UK, 𝑗 = 𝑖,

Σ
𝑖
= 𝑒
1
(1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)(−𝑃

𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
) 𝑒
⊺

1

+ 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑃
𝑗
𝑒
⊺

1
+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3
+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
− ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2
+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3

− (1 − 𝑑
𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1
+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1

− 𝑒
3
𝑀
𝑖
𝑒
⊺

3
+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4

− 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑆
𝜐
𝑒
⊺

1
< 0,

𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1
+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
< 0,

𝑗 ∈N
𝑖

UK, 𝑗 ̸= 𝑖,

𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1
+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
> 0,

𝑗 ∈N
𝑖

UK, 𝑗 = 𝑖,

(13)

𝑐
1
𝑒
𝜂𝑇

(𝜆
2
+ 𝜏𝜆
3
+ 𝜏𝛾
2

𝑠
𝜆
4
+ 𝜏
2

𝜆
5
+ 𝜏
2

𝛾
2

𝑠
𝜆
6
) < 𝜆
1
𝑐
2
, (14)

where

𝜆
1
= max
𝑖∈N

𝜆min (𝑃𝑖) , 𝜆
2
= max
𝑖∈N

𝜆max (𝑃𝑖) ,

𝜆
3
= max
𝑖∈N

𝜆max (𝑄1𝑖) , 𝜆
4
= max
𝑖∈N

𝜆max (𝑄2𝑖) ,

𝜆
5
= 𝜆max (𝑊1) , 𝜆

6
= 𝜆max (𝑊2) , 𝛾

𝑠
= max
𝑠

(𝛾
𝑠
) .

(15)

Proof. We consider the following the stochastic Lyapunov-
Krasovskii functional:

𝑉 (𝑧
𝑡
, 𝑟
𝑡
) =

4

∑
𝑙=1

𝑉
𝑙
(𝑧
𝑡
, 𝑟
𝑡
) , (16)

where

𝑉
1
(𝑧
𝑡
, 𝑟
𝑡
) = 𝑧
⊺

(𝑡) 𝑃
𝑟
𝑡

𝑧 (𝑡) ,

𝑉
2
(𝑧
𝑡
, 𝑟
𝑡
) = ∫
𝑡

𝑡−𝜏
𝑟𝑡
(𝑡)

𝑧
⊺

(𝑠) 𝑄
1𝑟
𝑡

𝑧 (𝑠) 𝑑𝑠,

𝑉
3
(𝑧
𝑡
, 𝑟
𝑡
) = ∫
𝑡

𝑡−𝜏
𝑟𝑡
(𝑡)

𝑔
⊺

(𝑧 (𝑠)) 𝑄
2𝑟
𝑡

𝑔 (𝑧 (𝑠)) 𝑑𝑠,

𝑉
4
(𝑧
𝑡
, 𝑟
𝑡
) = ∫
0

−𝜏

∫
𝑡

𝑡+𝜃

𝑧
⊺

(𝑠)𝑊
1
𝑧 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫
0

−𝜏

∫
𝑡

𝑡+𝜃

𝑔
⊺

(𝑧 (𝑠))𝑊
2
𝑔 (𝑧 (𝑠)) 𝑑𝑠 𝑑𝜃

(17)
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with 𝑃
𝑖
, 𝑄
1𝑖
, 𝑄
2𝑖
, (𝑖 = 1, 2, . . . , 𝑁),𝑊

1
, and𝑊

2
being positive

definite matrices and
𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
< 𝑊
1
, (18)

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
2𝑗
< 𝑊
2
. (19)

For notational simplicity, let

𝜉 (𝑡) = [𝑧
⊺

(𝑡) , 𝑧
⊺

(𝑡 − 𝜏
𝑖
(𝑡)) , 𝑔

⊺

(𝑧 (𝑡)) , 𝑔
⊺

(𝑧 (𝑡 − 𝜏
𝑖
(𝑡)))]
⊺

,

𝑒
𝑠
= [0, . . . , 0,⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠−1

𝐼, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
4−𝑠

]

⊺

, 𝑠 = 1, . . . , 4.

(20)

Let £ be the infinitesimal generator of random process
{𝑧
𝑡
, 𝑡 ≥ 0}; then for each 𝑟

𝑡
= 𝑖, 𝑖 ∈N, we can obtain that

£𝑉
1
(𝑧
𝑡
, 𝑖) = 2𝑧

⊺

(𝑡) 𝑃
𝑖
𝑧̇ (𝑡) + 𝑧

⊺

(𝑡)

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑃
𝑗
𝑧 (𝑡)

= 𝜉
⊺

(𝑡) 𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑃
𝑗
)𝑒
⊺

1
𝜉 (𝑡)

+ 2𝜉
⊺

(𝑡) 𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3
𝜉 (𝑡) + 2𝜉

⊺

(𝑡) 𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
𝜉 (𝑡) ,

£𝑉
2
(𝑧
𝑡
, 𝑖) = lim
Δ→0

+

1

Δ
E

× {[∫
𝑡+Δ

𝑡+Δ−𝜏
𝑟
𝑡+Δ
(𝑡+Δ)

𝑧
⊺

(𝑠) 𝑄
1𝑟
𝑡+Δ

𝑧 (𝑠) 𝑑𝑠 | 𝑟
𝑡
= 𝑖]

−∫
𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑧
⊺

(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠}

= lim
Δ→0

+

1

Δ

{

{

{

∫
𝑡+Δ

𝑡+Δ−𝜏
𝑖
(𝑡+Δ)−∑

𝑁

𝑗=1(𝜇𝑖𝑗Δ+𝑜(Δ))𝜏𝑗(𝑡+Δ)
𝑧
⊺

(𝑠)

× [

[

𝑄
1𝑖
+

𝑁

∑
𝑗=1

(𝜇
𝑖𝑗
Δ + 𝑜 (Δ))]

]

𝑧 (𝑠) 𝑑𝑠

−∫
𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑧
⊺

(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠

}

}

}

= lim
Δ→0

+

1

Δ
{∫
𝑡+Δ

𝑡+Δ−𝜏
𝑖
(𝑡+Δ)−∑

𝑁

𝑗=1(𝜇𝑖𝑗Δ+𝑜(Δ))𝜏𝑗(𝑡+Δ)

× 𝑧
⊺

(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠

−∫
𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑧
⊺

(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠}

+ lim
Δ→0

+

1

Δ
∫
𝑡+Δ

𝑡+Δ−𝜏
𝑖
(𝑡+Δ)−∑

𝑁

𝑗=1(𝜇𝑖𝑗Δ+𝑜(Δ))𝜏𝑗(𝑡+Δ)
𝑧
⊺

(𝑠)

×

𝑁

∑
𝑗=1

(𝜇
𝑖𝑗
Δ + 𝑜 (Δ))

× 𝑄
1𝑗
𝑧 (𝑠) 𝑑𝑠

= lim
Δ→0

+

1

Δ
∫
𝑡+Δ

𝑡

𝑧
⊺

(𝑠) 𝑄
1𝑖
𝑧 (𝑠) 𝑑𝑠

+ lim
Δ→0

+

1

Δ
∫
𝑡+Δ

𝑡+Δ−𝜏
𝑖
(𝑡+Δ)−∑

𝑁

𝑗=1(𝜇𝑖𝑗Δ+𝑜(Δ))𝜏𝑗(𝑡+Δ)

× 𝑧
⊺

(𝑠)

𝑁

∑
𝑗=1

(𝜇
𝑖𝑗
Δ + 𝑜 (Δ))

× 𝑄
1𝑗
𝑧 (𝑠) 𝑑𝑠

= 𝜉
⊺

(𝑡) 𝑒
1
𝑄
1𝑖
𝑒
⊺

1
𝜉 (𝑡) − (1 − ̇𝜏

𝑖
(𝑡) −

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
(𝑡))

× 𝜉
⊺

(𝑡) 𝑒
2
𝑄
1𝑖
𝑒
⊺

2
𝜉 (𝑡)

+ ∫
𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑧
⊺

(𝑠)(

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
)𝑧 (𝑠) 𝑑𝑠

≤ 𝜉
⊺

(𝑡) 𝑒
1
𝑄
1𝑖
𝑒
⊺

1
𝜉 (𝑡) − (1 − 𝑑

𝑖
−

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
(𝑡))

× 𝜉
⊺

(𝑡) 𝑒
2
𝑄
1𝑖
𝑒
⊺

2
𝜉 (𝑡)

+ ∫
𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑧
⊺

(𝑠)(

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
)𝑧 (𝑠) 𝑑𝑠.

(21)

Similar to the process above, it yields

£𝑉
3
(𝑧
𝑡
, 𝑖) ≤ 𝜉

⊺

(𝑡) 𝑒
3
𝑄
2𝑖
𝑒
⊺

3
𝜉 (𝑡) − (1 − 𝑑

𝑖
) 𝜉
⊺

(𝑡) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
𝜉 (𝑡)

+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
(𝑡) 𝜉
⊺

(𝑡) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
𝜉 (𝑡)

+ ∫
𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑔
⊺

(𝑧 (𝑠))(

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
2𝑖
)𝑔 (𝑧 (𝑠)) 𝑑𝑠,

£𝑉
4
(𝑧
𝑡
, 𝑖) = 𝜏𝜉

⊺

(𝑡) 𝑒
1
𝑊
1
𝑒
⊺

1
𝜉 (𝑡) − ∫

𝑡

𝑡−𝜏

𝑧
⊺

(𝑠)𝑊
1
𝑧 (𝑠) 𝑑𝑠

+ 𝜏𝜉
⊺

(𝑡) 𝑒
3
𝑊
2
𝑒
⊺

3
𝜉 (𝑡)

− ∫
𝑡

𝑡−𝜏

𝑔
⊺

(𝑧 (𝑠))𝑊
2
𝑔 (𝑧 (𝑠)) 𝑑𝑠.

(22)

From (18) and (19), we obtain that

∫
𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑧
⊺

(𝑠)(

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
)𝑧 (𝑠) 𝑑𝑠

≤ ∫
𝑡

𝑡−𝜏

𝑧
⊺

(𝑠)(

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
1𝑗
)𝑧 (𝑠) 𝑑𝑠

≤ ∫
𝑡

𝑡−𝜏

𝑧
⊺

(𝑠)𝑊
1
𝑧 (𝑠) 𝑑𝑠,



Abstract and Applied Analysis 5

∫
𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑔
⊺

(𝑧 (𝑠))(

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
2𝑗
)𝑔 (𝑧 (𝑠)) 𝑑𝑠

≤ ∫
𝑡

𝑡−𝜏

𝑔
⊺

(𝑧 (𝑠))(

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑄
2𝑗
)𝑔 (𝑧 (𝑠)) 𝑑𝑠

≤ ∫
𝑡

𝑡−𝜏

𝑔
⊺

(𝑧 (𝑠))𝑊
2
𝑔 (𝑧 (𝑠)) 𝑑𝑠.

(23)
Also, it results from (10) that for any appropriately

dimensioned matrices 𝑀
𝑖
, 𝑁
𝑖
, (𝑖 = 1, 2, . . . , 𝑁), one can

obtain
0 ≤ 𝜉
⊺

(𝑡) 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1
𝜉 (𝑡) − 𝜉

⊺

(𝑡) 𝑒
3
𝑀
𝑖
𝑒
⊺

3
𝜉 (𝑡) ,

0 ≤ 𝜉
⊺

(𝑡) 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
𝜉 (𝑡) − 𝜉

⊺

(𝑡) 𝑒
4
𝑁
𝑖
𝑒
⊺

4
𝜉 (𝑡) .

(24)

From (16)–(24), we have
£𝑉 (𝑧
𝑡
, 𝑖) ≤ 𝜉

⊺

(𝑡) Ξ
𝑖
𝜉 (𝑡) , (25)

where

Ξ
𝑖
= 𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑃
𝑗
)𝑒
⊺

1

+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3
+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
−

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2

+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3
− (1 − 𝑑

𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1

+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1
− 𝑒
3
𝑀
𝑖
𝑒
⊺

3

+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4
.

(26)

By the fact that ∑
𝑗∈N 𝜇𝑖𝑗 = 0, we can rewrite Ξ

𝑖
as

Ξ
𝑖
= 𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝑃
𝑗
)𝑒
⊺

1

+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3
+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
−

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2

+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3
− (1 − 𝑑

𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1

+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1
− 𝑒
3
𝑀
𝑖
𝑒
⊺

3

+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4

− 𝑒
1

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
(𝑃
𝑖
𝐴
𝑖
+ 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑆
𝜐
) 𝑒
⊺

1
.

(27)

Thus, from (6), we have

Ξ
𝑖
= 𝑒
1
(1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)(−𝑃

𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
) 𝑒
⊺

1

+ 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑃
𝑗
𝑒
⊺

1
+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3

+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
− ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2
+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3

− (1 − 𝑑
𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1
+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1

− 𝑒
3
𝑀
𝑖
𝑒
⊺

3
+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4

− 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑆
𝜐
𝑒
⊺

1

+ ∑

𝑗∈N𝑖
UK

𝜇
𝑖𝑗
[𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1

+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
] .

(28)

Then, for 𝑗 ∈ N𝑖UK and if 𝑖 ∈ N𝑖K, Ξ
𝑖
< 0 can be

guaranteed. On the other hand, for 𝑗 ∈N𝑖UK and if 𝑖 ∉ N𝑖K,
Ξ
𝑖
can be further expressed as

Ξ
𝑖
= 𝑒
1
(1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)(−𝑃

𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
) 𝑒
⊺

1

+ 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑃
𝑗
𝑒
⊺

1
+ 2𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
⊺

3

+ 2𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
4
+ 𝑒
1
𝑄
1𝑖
𝑒
⊺

1

− (1 − 𝑑
𝑖
− ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝜏
𝑗
)𝑒
2
𝑄
1𝑖
𝑒
⊺

2
+ 𝑒
3
𝑄
2𝑖
𝑒
⊺

3

− (1 − 𝑑
𝑖
) 𝑒
4
𝑄
2𝑖
𝑒
⊺

4
+

𝑁

∑
𝑗=1

𝜇
𝑖𝑗
𝜏
𝑗
𝑒
4
𝑄
2𝑖
𝑒
⊺

4

+ 𝜏𝑒
1
𝑊
1
𝑒
⊺

1
+ 𝜏𝑒
3
𝑊
2
𝑒
⊺

3
+ 𝑒
1
Γ
𝑠
𝑀
𝑖
Γ
𝑠
𝑒
⊺

1

− 𝑒
3
𝑀
𝑖
𝑒
⊺

3
+ 𝑒
2
Γ
𝑠
𝑁
𝑖
Γ
𝑠
𝑒
⊺

2
− 𝑒
4
𝑁
𝑖
𝑒
⊺

4

− 𝑒
1
∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑆
𝜐
𝑒
⊺

1

+ ∑

𝑗∈N𝑖
UK
,𝑗 ̸= 𝑖

𝜇
𝑖𝑗
[𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1

+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
] + 𝜇
𝑖𝑖

× [𝑒
1
(−𝑃
𝑖
𝐴
𝑖
− 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝑃
𝑗
− 𝑆
𝜐
) 𝑒
⊺

1

+ 𝑒
2
𝜏
𝑗
𝑄
2𝑖
𝑒
⊺

2
] .

(29)
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Similarly, (18) and (19) can be rewritten, respectively, as

{

{

{

∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
1𝑗
− (1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)𝑊
1
+ ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
1𝑖

}

}

}

+ ∑

𝑗∈N𝑖
UK
,𝑗 ̸= 𝑖

𝜇
𝑖𝑗
[𝑄
1𝑗
−𝑊
1
+ 𝑄
1𝑖
]

+ 𝜇
𝑖𝑖
[𝑄
1𝑗
−𝑊
1
+ 𝑄
1𝑖
] < 0,

{

{

{

∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
2𝑗
− (1 + ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
)𝑊
2
+ ∑

𝑗∈N𝑖
K

𝜇
𝑖𝑗
𝑄
2𝑖

}

}

}

+ ∑

𝑗∈N𝑖
UK
,𝑗 ̸= 𝑖

𝜇
𝑖𝑗
[𝑄
2𝑗
−𝑊
2
+ 𝑄
2𝑖
]

+ 𝜇
𝑖𝑖
[𝑄
2𝑗
−𝑊
2
+ 𝑄
2𝑖
] < 0.

(30)

It is well known that 𝜇
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝜇
𝑖𝑗
< 0; according to

(6), one can also obtain

£𝑉 (𝑧
𝑡
, 𝑖) < 0. (31)

On the other hand, from (32) and the needed constant 𝜂 > 0,
it yields that

E {£𝑉 (𝑧
𝑡
, 𝑟
𝑡
)} < 𝜂E {𝑉 (𝑧

𝑡
, 𝑟
𝑡
)} , (32)

from which we can easily get that

𝑒
−𝜂𝑡

E {𝑉 (𝑧
𝑡
, 𝑟
𝑡
)} < E {𝑉 (𝑧

0
, 𝑟
0
)} . (33)

Note that 0 ≤ 𝑡 ≤ 𝑇; we can obtain the following inequality:

E {𝑉 (𝑧
𝑡
, 𝑟
𝑡
)} < 𝑒

𝜂𝑡

E {𝑉 (𝑥
0
, 𝑟
0
)}

= 𝑒
𝜂𝑡

[𝑧
⊺

(0) 𝑃
𝑟
𝑡

𝑧 (0) + ∫
−𝜏
𝑟𝑡
(𝑡)

𝑧
⊺

(𝑠) 𝑄
1𝑟
𝑡

𝑧 (𝑠) 𝑑𝑠

+ ∫
−𝜏
𝑟𝑡
(𝑡)

𝑔
⊺

(𝑧 (𝑠)) 𝑄
2𝑟
𝑡

𝑔 (𝑧 (𝑠)) 𝑑𝑠

+ ∫
0

−𝜏

∫
0

𝜃

𝑧
⊺

(𝑠)𝑊
1
𝑧 (𝑠) 𝑑𝑠

+∫
0

−𝜏

∫
0

𝜃

𝑔
⊺

(𝑧 (𝑠))𝑊
1
𝑔 (𝑧 (𝑠)) 𝑑𝑠]

< 𝑒
𝛼𝑡

[max
𝑖∈N

𝜆max (𝑃𝑖) + 𝜏max
𝑖∈N

𝜆max (𝑄1𝑖)

+ 𝜏𝛾
2

𝑠
max
𝑖∈N

𝜆max (𝑄2𝑖)

+𝜏
2

𝜆max (𝑊1) + 𝜏
2

𝛾
2

𝑠
𝜆max (𝑊2) ]

× sup
−𝜏≤𝑠≤0

{𝑥
⊺

(𝑠) 𝑥 (𝑠)}

≤ 𝑐
1
𝑒
𝜂𝑇

(𝜆
2
+ 𝜏𝜆
3
+ 𝜏𝛾
2

𝑠
𝜆
4
+ 𝜏
2

𝜆
5
+ 𝜏
2

𝛾
2

𝑠
𝜆
6
) .

(34)

On the other hand, from (16), we can get

E {𝑧
⊺

(𝑡) 𝑃
𝑖
𝑧 (𝑡)} ≥ max

𝑖∈N
𝜆min (𝑃𝑖)E‖𝑧(𝑡)‖

2

. (35)

Then, we can obtain

E‖𝑧(𝑡)‖
2

<
𝑐
1
𝑒𝜂𝑇 (𝜆

2
+ 𝜏𝜆
3
+ 𝜏𝛾
2

𝑠
𝜆
4
+ 𝜏2𝜆

5
+ 𝜏2𝛾
2

𝑠
𝜆
6
)

𝜆
1

.

(36)

By condition (14), we can obtain

E‖𝑧(𝑡)‖
2

< 𝑐
2
. (37)

By Definition 4, we conclude that Markovian jump sys-
tem (1) is stochastically finite-time bounded with respect to
(𝑐
1
, 𝑐
2
, 𝑇).

Remark 7. In this paper, it is in contrast with existing
results for delay-dependent Markovian jump systems with
partly unknown transition probabilities, and another differ-
ent method is presented to tackle the unknown elements
in the transition matrix. Compared with [33], some slack
matrix variables 𝑆

𝜐
are introduced in this paper based on

the probability identity ∑𝑁
𝑗=1
𝜇
𝑖𝑗
= 0, which leads to less

conservativeness than [33].

Remark 8. Theorem 6 develops a finite-time bounded
criterion of Markovian jumping neural networks with
time-varying delays and partially known transition rates.
Theorem 6 makes full use of the information of the
subsystems’ upper bounds of the time-varying delays, which
also brings us the less conservativeness.

Remark 9. In our paper, 𝜏
𝑖
(𝑡) and ̇𝜏

𝑖
(𝑡)may indicate the differ-

ent upper bounds during various time-delay intervals which
satisfies condition (2), respectively. However, in existing
work, for example, [17], 𝜏

𝑖
(𝑡) and ̇𝜏

𝑖
(𝑡) are always extended to

𝜏
𝑖
(𝑡) ≤ 𝜏 = max{𝜏

𝑖
, 𝑖 ∈ N} and 0 ≤ ̇𝜏

𝑖
(𝑡) ≤ 𝑑 =

max{𝑑
𝑖
, 𝑖 ∈N}, respectively, whichmay inevitably lead to the

conservativeness. Therefore, in order to reduce the conser-
vatism, the cases above are taken into account by employing
the stochastic Lyapunov-Krasovskii functional (16).

4. Illustrative Example

Example 1. Consider a class of delayed Markovian jumping
neural networks (9) with two operation modes in [33]:

𝐴
1
= [

2 0

0 1
] , 𝐴

2
= [

3 0

0 2
] , 𝐵

1
= [

0.5 1

−0.2 0.5
] ,

𝐵
2
= [

1.1 1

−0.2 0.1
] , 𝐶

1
= [

0.9 0.1

−0.1 0.1
] ,

𝐶
2
= [

0.3 −0.8

0.1 0.2
] , Γ

𝑠
= 𝐼
2
.

(38)

The mode switching is governed by a Markov chain that
has the following transition rate matrix:

Ω = [
−0.5 0.5

0.3 −0.3
] . (39)
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In this paper, let the initial values for 𝑐
1
= 0.25, 𝑇 =

2, 𝜂 = 1, and time-varying delay be 𝜏
1
(𝑡) = 𝜏

2
(𝑡) =

0.2 × | cos 𝑡|, which means that 𝜏 = 0.2 and 𝑑 = 0.2.
Through Theorem 6 and optimization over value 𝑐

2
, it yields

that delayed Markovian jumping neural networks (9) are
finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇) with minimal

𝑐
2
= 5.0312 while minimal 𝑐

2
in [33] is 5.4296, which shows

the less conservative result in this paper.

Example 2. Consider a class of delayed Markovian jumping
neural networks (9) with partially known transition rates and
operation modes described as follows:

𝐴
1
= [

2 0

0 2
] , 𝐴

2
= [

2.2 0

0 1.5
] , 𝐴

3
= [

2.3 0

0 2.5
] ,

𝐵
1
= [

1 1

−1 −1
] , 𝐵

2
= [

1 0.6

0.1 0.3
] ,

𝐵
3
= [

0.3 0.2

0.4 0.1
] , 𝐶

1
= [

0.88 1

1 1
] ,

𝐶
2
= [

1 −0.1

0.1 0.2
] , 𝐶

3
= [

0.5 0.7

0.7 0.4
] , Γ

𝑠
= 𝐼
2
.

(40)

The three cases of the transition rates matrices are
considered as

Case I: Ω = [

[

−0.8 0.3 0.5

0.1 −0.8 0.7

0.7 0.4 −1.1

]

]

,

Case II: Ω = [

[

−0.8 ? ?

0.1 −0.8 0.7

0.7 0.4 −1.1

]

]

,

Case III: Ω = [

[

−0.8 ? ?

? −0.8 ?

0.7 0.4 −1.1

]

]

.

(41)

With the same mode switching rates, initial values and
time-varying delays, through Theorem 6 and optimization
over value 𝑐

2
, it yields that in Case I, 𝑐

2
= 4.8124; in Case

II, 𝑐
2
= 4.6121; in Case III, 𝑐

2
= 4.5372. Therefore, the

delayed Markovian jumping neural networks (9) are finite-
time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇).

Remark 10. The accessibility of the jumping process {𝑟
𝑡
, 𝑡 ≥

0} in the existing literature is commonly assumed to be
completely accessible or completely unaccessible. Note that
the transition probabilities are still viewed as accessible
in this paper. Therefore, the transition probabilities matrix
considered in this paper is more general assumption than
Markovian jump systems.

5. Conclusions

Unlike most existing research results focusing on Lyapunov
stability property of Markovian jump system, our paper
investigated finite-time stability which concerns the bound-
edness of state during the delayed Markovian jump interval.
In this paper, we have examined the problems of finite-time

boundedness for a class of delayedMarkovian jumping neural
networkswith partly unknown transition probabilities. Based
on the analysis result, the static state feedback finite-time
boundedness is given. Although the derived result is not
in LMIs form, we can turn it into LMIs feasibility problem
by fixing some parameters. At last, numerical examples are
also given to demonstrate the effectiveness of the proposed
approach.
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