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This paper mainly focuses on routing in two-dimensional mesh networks. We propose a novel faulty block model, which is cracky
rectangular block, for fault-tolerant adaptive routing. All the faulty nodes and faulty links are surrounded in this type of block,
which is a convex structure, in order to avoid routing livelock. Additionally, the model constructs the interior spanning forest for
each block in order to keep in touch with the nodes inside of each block. The procedure for block construction is dynamically and
totally distributed. The construction algorithm is simple and ease of implementation. And this is a fully adaptive block which will
dynamically adjust its scale in accordance with the situation of networks, either the fault emergence or the fault recovery, without
shutdown of the system. Based on this model, we also develop a distributed fault-tolerant routing algorithm. Then we give the
formal proof for this algorithm to guarantee that messages will always reach their destinations if and only if the destination nodes
keep connecting with these mesh networks. So the new model and routing algorithm maximize the availability of the nodes in
networks. This is a noticeable overall improvement of fault tolerability of the system.

1. Introduction

In the last decades, the goal of many researchers was to study
communication operations in networkswith fixed topologies,
including modeling architectures and routing algorithm of
parallel computers and cluster ormiddle area communication
networks (such as metropolitan networks covering a town
or a small region). The quality of such networks strongly
depends on correct and efficient execution of communication
operations.

Direct networks [1] become a popular architecture for
communication networks, especially in massively parallel
computer system. In direct networks, nodes (computers)
are connected to only a few nodes, that is, its neighbours,
according to the topology of the networks and communicate
with each other by exchangingmessages. Moreover, themesh
structure is one of the most important topology of direct
networks. Especially, low dimensional mesh networks, due
to its low node degree, are more popular than the high
dimensional mesh networks. Currently most of architecture

of parallel computers is based on two-dimensional mesh
topology, for example, Seitz et al. 1988 [2], Intel Touchstone
DELTA [3, 4], and Intel paragon.

Several models based on direct networks have been
studied ([5–9]), especially the two-dimensional mesh ([10–
16], etc.) for communication operations. The purposes of
these papers mainly focus on how to route messages in
the two-dimensional mesh. Routing is the process to send
messages from source nodes to destination nodes, passing
some intermediate nodes. A very important aspect ofmessage
routing is its ability to route from a source node to a
destination node, avoiding all faulty nodes or links.

Basically, there are two types of message routing:

(1) deterministic routing that is routing in which the
routes between given pairs of nodes are determined
in advance of transmission,

(2) adaptive routing that allows us to take any path
between its source and its final destination; that is,
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the path is adaptively constructed in the process of
routing.

The deterministic routing algorithms are simple and ease
of implementation, this is the advantage for deterministic
routing. However, adaptive routing can reduce network
latency and increase network throughput and the most
attractive point is that it can tolerant more faults than
deterministic routing [17]. Thus the latter one emerged
as an attractive field. In most papers on this field, they
often considered how to make a path between source and
destination node pairs, avoiding the faulty nodes, and most
work used the disconnected rectangular block fault model
[11]. The disconnected rectangular blocks are composed of
the faulty nodes and their neighboring nonfaulty nodes with
the principle of maintaining rectangular shape. As a result,
adaptive routing can tolerate faulty nodes by bypassing these
rectangles. However, in order to maintain its rectangular
shape, the block has to group some nonfaulty nodes inside,
called unsafe nodes in these papers. Of course, these unsafe
nodes will never be used until their corresponding blocks
recovery, and the messages will never be sent to these nodes,
while they should be (as illustrated in Figure 1).

Chien andKim [18] present a partially adaptive algorithm
for mesh networks. The basic idea is to use the algorithm to
circumfuse any convex faulty regions. If faulty regions are
not naturally convex, good nodes and links are marked as
faulty until the regions become convex. However, once the
faults are located on a boundary, in order to tolerate faults,
all nodes form that boundary will become faulty. Boppana
and Chalasani [10] use 𝑓-chain and 𝑓-ring, which is an
extension of disconnected rectangular block fault model, to
route the messages around them, and 𝑓-chain addresses the
boundary problem in the Chien and Kim’s paper. But the 𝑓-
chain and 𝑓-ring may connect with each other; this makes
the routing algorithm more complex than [18]. In [11], Su
and Shin assume a node to be the basic fault element. They
construct the blocks based only on the faulty nodes; thus they
can only tolerate faulty nodes except the faulty links. Overall,
the construction of these faulty regions is static; that is, once
these regions are constructed, all nodes including the good
ones in these regions cannot join in routing any more. The
faulty regions are not self-adaptive; that is, if some of faulty
nodes in these faulty regions are fixed well, then the faulty
regions will be held as they were, but actually they can release
some good nodes and become smaller ones keeping convex
shape.

Adaptive fault-tolerance routing technologies are also
using in WSN (Wireless Sensor Networks), MEMS (Micro-
Electro-Mechanical Systems) and SoC (System on Chip)
to increase the usability and robustness, as well as the
whole performance.Most network topology adopted in those
domains is 2D mesh. As a result, in recent years, there have
been a number of researches focusing on fault-tolerance
routing on wsn and Noc [19–22].

In this paper, we concentrate on the adaptive routing
with fault-tolerant in two-dimensional mesh. Not only we do
consider the situation of faulty nodes but also the situation
of faulty links incident with any node. However, different
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Figure 1: An example of disconnected rectangular blocks. Note that
nonfaulty nodes, such as nodes 𝑎 and 𝑏, in a block will never be used
in routing any more.

from mentioned papers, the novel cracky rectangular block
strategy introduced to tolerate faults can route messages
both bypassing the cracky rectangular block and along the
cracks in the rectangular block (just for a trope, actually
they are routed along the connected links inside the faulty
blocks). So we can route messages to the nodes both outside
and inside the faulty blocks. This is a noticeable overall
improvement of fault tolerability of the system. At the same
time, the cracky rectangular block is fully self-adaptive. It can
tolerate dynamic faults. For example, when some of faulty
nodes or faulty links in a block are fixed well, the original
block may become a smaller block or split to some smaller
ones keeping their shape rectangular. Tolerating dynamic
faults can enhance the run-time life of a multicomputer, thus
increasing reliability.

The rest of this paper is organized as follows. Section 2
describes the basic routing algorithm in two-dimensional
mesh. Section 3 introduces the cracky rectangular block
strategy, including the cracky rectangular block model and
the routing algorithm on it. This section also describes how
the rectangular blocks adapt themselves depending on the
situation of networks. Section 4 gives a proof that themessage
will be sent to any destination in themesh as long as themesh
keep connecting. A conclusion will be given in Section 5, and
it presents possible directions for future work.

2. Basic Routing Algorithm in
Two-Dimensional Mesh

2.1. Two-Dimensional Mesh. It is convenient to represent
a two-dimensional mesh with graph terminology. Let 𝐺 =
(𝑉, 𝐸) be undirected graph to represent a network. The set 𝑉
of vertices of graph 𝐺 represents nodes of the network. The
set 𝐸 of edges of graph 𝐺 represents links between the nodes.
Note that we keep using node and link in this paper.

The two-dimensional mesh𝑀(𝑑
1
, 𝑑
2
), where 𝑑

1
≥ 2 and

𝑑
2

≥ 2 are positive integers, is defined as follows.
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(i) A node 𝑋 of 𝑀(𝑑
1
, 𝑑
2
) is represented by 𝑋(𝑥

1
, 𝑥
2
),

0 ≤ 𝑥
1

≤ 𝑑
1

− 1, and 0 ≤ 𝑥
2

≤ 𝑑
2

− 1.

(ii) There is a link between two different nodes 𝑋(𝑥
1
, 𝑥
2
)

and 𝑌(𝑦
1
, 𝑦
2
) if and only if 𝑥

1
= 𝑦
1
and 𝑥

2
= 𝑦
2

± 1
or 𝑥
1

= 𝑦
1

± 1 and 𝑥
2

= 𝑦
2
. We denote this link by

⟨𝑋, 𝑌⟩.

For each 𝑘 and 𝑘󸀠, with 0 ≤ 𝑥 ≤ 𝑑
1

− 1 and 0 ≤ 𝑥󸀠 ≤
𝑑
2
−1, we call row 𝑘 and column 𝑘󸀠 the subgraphs of𝑀(𝑑

1
, 𝑑
2
),

respectively, induced by nodes (𝑥, 𝑘) and (𝑘󸀠, 𝑥󸀠).
The boundary of 𝑀(𝑑

1
, 𝑑
2
) is the subgraph of 𝑀(𝑑

1
, 𝑑
2
)

induced by the rows 0 and 𝑑
1
−1 and the columns 0 and 𝑑

2
−1.

Given any node V, let Γ(V) be the set of nodes adjacent to
V in 𝑀(𝑑

1
, 𝑑
2
) (called as neighbours). Given a nonboundary

node 𝑋 = (𝑥
1
, 𝑥
2
) of the two-dimensional mesh, the four

neighbours of𝑋 are denoted by𝑊(𝑋) = (𝑥
1

− 1, 𝑥
2
), 𝑆(𝑋) =

(𝑥
1
, 𝑥
2

− 1), 𝐸(𝑋) = (𝑥
1

+ 1, 𝑥
2
), and𝑁(𝑋) = (𝑥

1
, 𝑥
2

+ 1).
For each pair of nodes 𝑋 = (𝑥

1
, 𝑥
2
) and 𝑌 = (𝑦

1
, 𝑦
2
),

the distance between 𝑋 and 𝑌, denoted by 𝑑(𝑋, 𝑌), is the
length (number of links) of a shortest path between 𝑋 and
𝑌. We define the 1-distance and 2-distance between𝑋 and 𝑌,
respectively, by 𝑑

1
(𝑋, 𝑌) = |𝑥

1
− 𝑦
1
| and 𝑑

2
(𝑋, 𝑌) = |𝑥

2
− 𝑦
2
|.

From the above definition, we know that𝑑(𝑋, 𝑌) = 𝑑
1
(𝑋, 𝑌)+

𝑑
2
(𝑋, 𝑌).

2.2. A Basic Routing Function in Two-Dimensional Mesh.
Consider a network 𝐺 = (𝑉, 𝐸), in each node V, for each
message𝑚with final destination V

𝑑
, arriving on a link ⟨𝑤, V⟩;

we denote by 𝑓V(𝑤, V
𝑑
) ⊂ Γ(V) the subset of V’s neighbours

bringing 𝑚 closer to its destination if V
𝑑

̸= V; otherwise, the
message is absorbed by V. Actually it is a routing function, this
kind of routing is said to be local because it is independent
of what happened in the rest of the network and can be
computed locally by each router.

The basic routing function is a classical greedy routing
function 𝑓

𝑀
in the two-dimensional mesh 𝑀(𝑑

1
, 𝑑
2
) as

follows. Let 𝑋 = (𝑥
1
, 𝑥
2
), 𝑌 = (𝑦

1
, 𝑦
2
) be two different nodes

in 𝑀(𝑑
1
, 𝑑
2
). A message 𝑚 with destination 𝑌 received by

the router of 𝑋 arriving from node 𝑋󸀠 is sent to a node of
𝑓
𝑋

(𝑋󸀠, 𝑌), that is, a set of at most two nodes {𝑉
1
, 𝑉
2
} (and

at least one node) defined as follows. There are at most two
nodes 𝑉

1
∈ {𝑊(𝑋), 𝐸(𝑋)} and 𝑉

2
∈ {𝑁(𝑋), 𝑆(𝑋)} at distance

𝑑(𝑋, 𝑌) − 1 from 𝑌. Moreover, when |𝑓
𝑋

(𝑋󸀠, 𝑌)| = 2, if
𝑑
1
(𝑋, 𝑌) ≥ 𝑑

2
(𝑋, 𝑌) (resp., 𝑑

1
(𝑋, 𝑌) < 𝑑

2
(𝑋, 𝑌)), then the

routing function will choose to send the message to𝑉
1
(resp.,

𝑉
2
). If this is not possible (e.g., the link incident with the

chosen node is faulty), then the routing function tries to send
the message to 𝑉

2
(resp., 𝑉

1
). Moreover, if both the links

⟨𝑋, 𝑉
1
⟩ and ⟨𝑋, 𝑉

2
⟩ are faulty, then the router of 𝑋 can route

𝑚 to any node of Γ(𝑋) \ {𝑉
1
, 𝑉
2
}.

2.3. Blocking Situation and Its Traditional Solution. Consider
now that a unique message 𝑚 is transmitted to the two-
dimensional mesh𝑀(𝑑

1
, 𝑑
2
). As we will show below, in case

of some link faults which do not disconnect the network,
using the basic two-dimensional routing function does not
guarantee that 𝑚 will reach its destination. It can be blocked
in a part of the network.
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Figure 2: (a) Livelock situation in𝑀(𝑑
1
, 𝑑
2
): node 𝑠 tries to send a

message𝑚 to node𝑑, but𝑚 is in a livelock induced by nodes 𝑏, 𝑒, and
𝑓 caused by the faulty links. (b) Cracky rectangular block solves the
livelock problem, and the message 𝑚 will be sent to its destination
along the node sequences 𝑠, 𝑎, 𝑏, 𝑎, 𝑔, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑐, and 𝑑.

As shown in Figure 2(a), the basic routing function
can unfortunately lead to blocking situations due to some
properties of the structure of the faulty links. Clearly, in this
example the message will always in the subgraph induced by
nodes 𝑏, 𝑒, and 𝑓 and will never reach its destination node
𝑑. Actually, this message 𝑚 is in livelock situation, which
keeps a message moving indefinitely without reaching the
destination.

It is well known that the adaptive routing may cause
livelock problems. Therefore routing without livelock is one
of the most important design issues for communication
operations in multicomputer systems (note that we only
consider the livelock situation in this paper, and we can
solve the deadlock problemwith some sophisticatedmethods
[1, 23, 24]). Contemporary, this livelock situation is well
addressed by the traditional disconnected rectangular block
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faulty model (rectangular block for short). However, the
usability and robustness of the mesh network will gradually
decrease, while the number of faulty nodes increases in this
model. As [25]’s experiment shows that the distribution of
faulty nodes has the tendency to make the whole mesh to
be one “big block.” It can be seen from the experiments
that, with the rectangular model, there is only one faulty
block left when the faulty rate of nodes is 15 percent and the
size of two-dimensional mesh is 100 × 100. In consequence
the whole mesh becomes useless because this big faulty
block occupies the entire mesh region, and we call this as
“big block” problem. The novel cracky rectangular faulty
block strategy, which we will introduce in the next section,
makes full use of nonfaulty nodes/links in the mesh. All
the nonfaulty nodes/links that would have been included in
original rectangular faulty blocks now can become candidate
routing nodes/links.

3. Adaptive Fault-Tolerant Strategy with
Cracky Rectangular Block

In order to solve the livelock situation and the big block
problem, we propose a novel strategy for fault-tolerant
routing.We use the cracky rectangular block to avoid livelock
and traverse block’s every connecting internal node if needed.
Therefore, we can transmit eachmessage to any node not only
outside of a block but also inside of the block like Figure 2(b),
and the message can reach the inside nodes 𝑓, 𝑏, and 𝑒 which
are forbidden in the original rectangular block.

Formally, a rectangular block 𝐶((𝑙
1
, ℎ
1
), (𝑙
2
, ℎ
2
)) is a sub-

mesh𝑀(ℎ
1
−𝑙
1
+1, ℎ
2
−𝑙
2
+1) of the mesh𝑀(𝑑

1
, 𝑑
2
) induced

by the nodes 𝑥 = (𝑥
1
, 𝑥
2
) with 𝑙

𝑖
≤ 𝑥
𝑖
≤ ℎ
𝑖
, for each 𝑖 ∈ {1, 2}.

Let 𝑢 = (𝑢
1
, 𝑢
2
) be a node. By definition, if, for each 𝑖 ∈ {1, 2},

we have 𝑙
𝑖
− 1 ≤ 𝑢

𝑖
≤ ℎ
𝑖
− 1, then 𝑢 belongs to the inside part

of the rectangular block𝐶. Else, if 𝑖 = 1, 𝑗 = 2 (or 𝑖 = 2, 𝑗 = 1)
and 𝑢

𝑖
∈ {ℎ
𝑖
, 𝑙
𝑖
} and 𝑙

𝑗
≤ 𝑢
𝑗

≤ ℎ
𝑗
, then 𝑢 belongs to the border

of the rectangular block.
A cracky rectangular block (cracky block for short) is a

rectangular block with spanning forest internal induced by
all the connecting nodes inside of this block, all the roots of
that forest belong to the border of the cracky block, and the
spanning forest connects all the internal nodes to their roots
if and only if those nodes still keep connecting.

Figure 3 presents two instances of the cracky block in a
two-dimensional mesh, which are 𝐴 and 𝐵, respectively. 𝐴
is a general cracky block, while 𝐵 is a cracky block which is
induced by the faulty links on the boundary of the mesh, and
it is an incomplete cracky block.

3.1. Construction of the Cracky Rectangular Block. Each
node’s activities are based on message-driven mechanism.
There are two types of messages routed in mesh. One is entity
message (message for short), which is routed between any
node pair. The other one is system message, this type of mes-
sage can only be sent between neighbours, and their contents
are mainly about the status of themselves, such as the node’s
faulty degree and it’s detailed situation of faulty links. The
first one is the entity for computing or communication, and
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Figure 3: 𝐴 and 𝐵 are two cracky rectangular blocks. 𝐴 is a general
cracky block, while 𝐵 is a cracky block which is induced by the faulty
links on the boundary of the mesh, and it is an incomplete cracky
block. As nodes 𝑎, 𝑏, and 𝑑 in the cracky blocks 𝐴 and 𝐵 are faulty
nodes, 𝑓 and 𝑖 are border nodes, and any node outside of 𝐴 and
𝐵 is good node. With the cracky rectangular block, not only good
node 𝑠󸀠󸀠 keeps connecting with another good node 𝑔 as general, but
also the good nodes 𝑠, 𝑠󸀠 can send messages to faulty nodes 𝑎, 𝑑,
respectively; what ismore, those faulty nodes can communicate with
each other, such as nodes 𝑏 and 𝑐.

the later one concentrates on maintaining the usability and
robustness of networks; in other words, it is for constructing
the cracky blockwhen some faults occur in thismesh in order
to avoid the livelock situation as mentioned above.

In the beginning, all the nodes work well; that is, there
does not exist any faulty node or faulty link. Any node
can both receive the message from any of its neighbours,
and vice versa, of course, depending on the basic routing
strategy. When some nodes or links are ruined because of
some reasons, these failed nodes or nodes incident with failed
links will judge their current status immediately, and then
they send the system messages as soon as possible including
their status to its connected neighbours to tell themwhat have
happened in detail. For neighbours, once they receive the
system messages, they judge their current status depending
on their latest status and the received system messages at
once. Of course, they will notice their connected neighbours
about current status if and only if the current status is different
from previous status. Finally, the construction of a stable
cracky block is implemented by the above system messages
exchange.

Before exposing our distributed algorithm to construct
the cracky block, we will give some definitions first. For a
two-dimensional mesh𝑀(𝑑

1
, 𝑑
2
), the faulty degree of a node

𝑋 = (𝑥
1
, 𝑥
2
) is the number of failed links incident with 𝑋,

and we denote it by 𝑓(𝑋). From the observation of a cracky
block, there are three types of nodes in amesh network: faulty
node, good node, and border node. A faulty node 𝑋 belongs
to the interior of a cracky block and 0 ≤ 𝑓(𝑋) ≤ 4, and
oppositely, a good node allocates outside of any cracky blocks
and 𝑓(𝑋) = 0. Of course a border node belongs to the border
of a cracky blockwith 0 ≤ 𝑓(𝑋) ≤ 1. For example, in Figure 3,
𝑎, 𝑏, and 𝑑 in the cracky blocks 𝐴 and 𝐵 are faulty nodes, 𝑓
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Input: 𝑓(V): faulty degree of node V.
Output: 𝑠(V): status of node V.
(1) procedure Initial status(V)
(2) if𝑓(V) = 0 then
(3) 𝑠(V) ← 1
(4) else if𝑓(V) = 1 then
(5) 𝑠(V) ← depending on Table 1
(6) else if𝑓(V) ≥ 2 then
(7) 𝑠(V) ← 0
(8) end if
(9) 𝑛𝑜𝑡𝑖𝑐𝑒 𝑠𝑡𝑎𝑡𝑢𝑠(V)

(10) end procedure
Input: 𝑠(V): the current status of node V,𝑀(V): the system message received by node V.
Output: 𝑠(V): the updated status of node V.
(11) procedure Update status(V)
(12) if 𝑠(V) ̸= 𝑀(V) ∩ 𝑠(V) then
(13) 𝑠(V) ← 𝑀(V) ∩ 𝑠(V)
(14) 𝑛𝑜𝑡𝑖𝑐𝑒 𝑠𝑡𝑎𝑡𝑢𝑠(V)
(15) end if
(16) end procedure
Input: 𝑠(V): the updated status of node V.
Output:𝑀(V): the system message to be sending to𝑁∗(V).
(17) procedure Notice status(V)
(18) if 𝑠(V) = 0 then
(19) send system message𝑀(V) to𝑁∗(V)
(20) else if 𝑠(V) ∈ {{𝐸}, {𝑊}} then
(21) send system message𝑀(V) to both𝑁(V) and 𝑆(V) if exist
(22) else if 𝑠(V) ∈ {{𝑁}, {𝑆}} then
(23) send system message𝑀(V) to both 𝐸(V) and𝑊(V) if exist
(24) end if
(25) end procedure

Algorithm 1: Let V be any node in the two-dimensional mesh, let 𝑓(V) be the faulty degree, let 𝑠(V) be the status, and let𝑀(V) be the content
of received system message.

Table 1: Given a node V with 𝑓(V) = 1, judging its 𝑠(V) according to
its incident failed links.

𝑠(V) 𝑓(V) = 1

{𝑁} The link ⟨V, 𝑆(V)⟩ failed
{𝐸} The link ⟨V, 𝑊(V)⟩ failed
{𝑆} The link ⟨V, 𝑁(V)⟩ failed
{𝑊} The link ⟨V, 𝐸(V)⟩ failed

and 𝑖 are border nodes, and any node outside of 𝐴 and 𝐵 is
good node.

Given any node𝑋, let𝑁∗(𝑋) be the set of neighbors 𝑌 of
𝑋 such that the link ⟨𝑋, 𝑌⟩ is not faulty. Moreover, we set an
order in𝑁∗(𝑋) as follows: 𝑢

0
, 𝑢
1
, . . . , 𝑢

|𝑁
∗
(𝑋)|−1

. Let𝑋
𝑝
be the

node who sends message to node 𝑋, and let 𝑋
𝑠
be the node

who will receive the message sent by𝑋.
We denote by 𝑠(𝑋) the status of 𝑋, and 𝑠(𝑋)

is one of the elements of status set 𝑆𝑇𝐴𝑇𝑈𝑆 =
{{𝐸}, {𝑆}, {𝑊}, {𝑁}, {𝑁, 𝐸}, {𝑆, 𝐸}, {𝑆, 𝑊}, {𝑁, 𝑊}}. The status
of a node will indicate which type of node it is. In detail, there
are twomore status of𝑋, which are empty set 0 and universal
set 1. And 𝑠(𝑋) = 0 shows that the node is a faulty node,
𝑠(𝑋) = 1 identifies a good node, and if 𝑠(𝑋) ∈ 𝑆𝑇𝐴𝑇𝑈𝑆,

then 𝑋 must be a border node. For example, if 𝑠(𝑋) = {𝑁},
then the node 𝑋 locates at the north border of a cracky
block, like 𝑓 in Figure 3, or if 𝑠(𝑋) = {𝑁, 𝐸}, then 𝑋 is at
the northeast corner, just like 𝑖. Totally, the system message
can be sent to four neighbours, and 𝑋

𝑠
will be 𝐸, 𝑆, 𝑊, and

𝑁 according to 𝐸(𝑋), 𝑆(𝑋), 𝑊(𝑋), and 𝑁(𝑋). A system
message sent by node 𝑋 is 𝑀(𝑋) = {𝑋

𝑠
} ∪ 𝑠(𝑋) which

includes the destination neighbour and sender’s current
status. For example,𝑀(𝑋) = {𝐸, 𝑁}means that this message
will send to 𝐸(𝑋) and 𝑠(𝑋) = 𝑁. We define an operation
to implement the status judgment of a node who receives
a novel system message. The corresponding algorithm to
update the status for any node in mesh network is given by
Algorithm 1.

At the beginning of the construction, every node should
run the procedure initial status respectively to make sure
its status 𝑠(𝑣) according to its faulty degree 𝑓(𝑣). After
finishing the above procedure, node will run the procedure
notice status to send system messages to neighbours accord-
ing to its status 𝑠(𝑣). Once a neighbour node receives this type
of message, it will run the procedure update status to refresh
its latest status. Actually, this process will be repeated until
every node’s status getting stable. Finally, there will emerge
some cracky blocks in the mesh. For example, Figure 4 shows
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Input: V: node V is in a cracky rectangle block.
Output: 𝑙(V): {ℎ, 𝑓}, 𝑝𝑟𝑒𝑑(V): predecessor of V.
(1) procedureHungNodeOnForest(V)
(2) if V is a 𝑔𝑜𝑜𝑑 or 𝑏𝑜𝑟𝑑𝑒𝑟 node then
(3) 𝑙(V) ← ℎ
(4) return
(5) else if V is a faulty node then
(6) 𝑙(V) ← 𝑓
(7) end if
(8) 𝑢

𝑖
∈ 𝑁∗(V)

(9) check 𝑙(𝑢
𝑖
) for all 𝑢

𝑖
until ∃𝑢 ∈ 𝑁∗(V) s.t. 𝑙(𝑢) = ℎ

(10) 𝑙(V) ← ℎ
(11) pred(V) ← 𝑢
(12) end procedure

Algorithm 2: Let V be a node in a cracky rectangle block, making it hung when it is possible.
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Figure 4: Construction of a cracky block depends on system
message exchange.The dash line represents faulty link, and the bold
line makes up the border of a cracky block. The arrow refers to the
system message.

a distributed process to construct a cracky block. We just
pick up four nodes, 𝐴, 𝐵, 𝐶, and 𝐷, to describe how the
algorithmperforms. During the first phase, node𝐶will initial
its status 𝑠(𝐶) = 0 because of 𝑓(𝐶) = 2; meanwhile 𝑠(𝐴) =
1, 𝑠(𝐵) = 1, 𝑠(𝐷) = 1 as a result of 𝑓(𝐴) = 0, 𝑓(𝐵) = 0,
and 𝑓(𝐶) = 0 separately. In the second phase, according to
the algorithm only node 𝐶 will send system message to its
connected neighbours which are nodes𝐵 and𝐷. Finally node
𝐴 receives two systemmessages andwill refresh its new status
by 𝑠(𝐴) = (1 ∩ {𝑁, 𝑊}) ∩ {𝑊, 𝑁} = {𝑁, 𝑊}, so it will be the
northwest of a cracky block for thismoment. For nodes𝐵 and
𝐷, 𝑠(𝐵) = 1 ∩ {𝑊} = {𝑊} and 𝑠(𝐷) = (1 ∩ {𝐸}) ∩ {𝑁} = 0 are
a west border node and a faulty node. When the algorithm
stops, there is a border of crack block as shown in Figure 4 by
the bold line. The macroconstruction of a block depends on
the microdistributed message exchange activities of relative
nodes.

Then we will construct the spanning forest for the faulty
nodes. We say that the faulty node is hung if and only if

it chooses exactly one neighbor as predecessor. Denote by
pred(V) the predecessor of V, and Succ(V) = {V󸀠 ∈ Γ(V) : V󸀠

is a faulty node and V = pred(V󸀠)}. We consider an order over
the elements of Succ(V).We denote by succ

𝑖
(V) the 𝑖th element

of Succ(V), with 1 ≤ 𝑖 ≤ 𝑘V = |Succ(V)|. A node V is said to
be final if Succ(V) = 0. A node which is not hung is free. We
denote by 𝑙(V) these two boolean states {ℎ, 𝑓}, which refers
to the hung and free status for each node inside of the block.
After running Algorithm 2, the spanning forest for the block
will be accomplished; like 𝐴 and 𝐵 in Figure 3, every node
inside of blocks 𝐴 and 𝐵 will find only one predecessor and
be marked as hung.

3.2.TheCracky Rectangular Block Is Stable. Anode V is said to
be stable if pred(V)’s status can never change to a free status,
during the running time of the algorithm. In particular the
nodes of the cracky block are stable. A cracky block 𝐶 is said
to be stable if all the nodes belonging to 𝐶 are stable.

To prove that the cracky block is stable, we assume that
there exists a set 𝑆 of nonstable nodes. If 𝑆 = {V}, then V is
free and can never become stable during the running time
of Algorithm 2, so in this case there is no stable node in the
neighborhood of V because otherwise V will choose this node
as predecessor. Using the same argument for each node 𝑤
of 𝑁∗(V), there is no stable node in the neighborhood of 𝑤.
But since the graph is connected, V is necessarily joined by
a path to a node 𝑢 of the border of the block. So we are in
contradiction with the fact that the nodes of the border are
stable. If |𝑆| ≥ 2, then since the graph is connected there exists
at least one node 𝑢 in 𝑆 which is adjacent to a node V ∉ 𝑆.
Clearly, V is stable. From the second loop of the algorithm
and since there is an order in the neighbors of 𝑢 for the choice
of its predecessor, there exists a step in the algorithm which
leads the node 𝑢 to choose V as predecessor. After this step, let
𝑆 ← 𝑆 \ {𝑢}. Using the same arguments, after some steps of
the algorithm, the set 𝑆 would be empty. So all the nodes are
stable.

3.3. Adaptive Routing with the Cracky Rectangular Blocks. In
this section, we will give the global fault-tolerant routing
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Input: V: node V routing messages, V
𝑝
: the node who sends messages to node V.

Output: V
𝑠
: the node who will receive the messages.

(1) procedure Routing(V)
(2) if V is a good node then
(3) basic routing function with node V
(4) else if V is a faulty node then
(5) if (V is final) or (V

𝑝
) = succ

𝜅V
(V) then

(6) V
𝑠

← pred(V)
(7) else if V

𝑝
= succ

𝑖
(V) and 𝑖 < 𝜅V then

(8) V
𝑠

← succ
𝑖+1

(V)
(9) else if V

𝑝
= pred(V) then

(10) V
𝑠

← succ1(V)
(11) end if
(12) else if V is a border node then
(13) routing according to Table 2.
(14) else if V is a node belongs to the border of mesh then
(15) if V is final then
(16) V

𝑠
← V
𝑝

(17) else
(18) V

𝑠
← succ

1
(V)

(19) succ1(V) ← V
𝑝

(20) end if
(21) end if
(22) end procedure

Algorithm 3: The novel routing algorithm based on cracky rectangular blocks.

strategy. Primarily, once amessage encounters a cracky block,
this message will bypass the cracky block, which encloses the
faulty nodes/links, along its border node in a clockwise (or
counter-clockwise) manner. Especially, the message should
traverse the interior spanning tree rooted with the border
node by Depth-First-Search, while it bypasses the cracky
block. Finally, the message will leave the cracky block from
one of its corners which is the nearest from the destination
and keeps going with the basic routing function; otherwise
themessage will be absorbed by the interior node whichmust
be the destination node.

We now give the complete local routing function we run
in each node V of 𝑀(𝑑

1
, 𝑑
2
), as shown in Algorithm 3. This

algorithm is based on the basic routing function we have
defined in Section 2.

The cracky rectangular block and the adaptive fault-
tolerant algorithmmake up the fault-tolerant strategy, andwe
can use Algorithm 3 to send a message from any connected
node to arbitrary connected node. For example, in Figure 3,
the good node 𝑠 wants to send a message to the node 𝑎, but
node 𝑎 is a faulty node and locates interior the cracky block𝐴,
the algorithm will send this message along the path shown in
the figure, and the faulty node 𝑏 sending message to another
faulty node 𝑐 also can be accomplished by the algorithm; if
a good node 𝑠󸀠󸀠 wants to communicate with another good
node 𝑔, the routing path will like the situation depicted in
the figure.

3.4. Self-Adaptive and Faulty Boundary Independency of
Cracky Rectangular Block. For high performance and usabil-
ity, the cracky blocks should be self-adaptive. As we know,
the emergency of cracky blocks in a mesh is the result of

nodesmanaging themselves distributedly and independently.
The status of an isolated node is closely related to their
neighbours. Therefore the size and shape of a block are
dynamic according to faulty nodes. In other words, if some
of the faulty nodes have been fixed, the original block may
become a smaller one or split up into smaller ones. On the
contrary, if some good nodes or links fail, there will be some
new cracky blocks or some of the original cracky blocks grow
huge as a result.

Given a two-dimensional mesh𝑀(𝑑
1
, 𝑑
2
), let V(V

1
, V
2
) be

a faulty node in cracky block 𝐶((𝑙
1
, ℎ
1
), (𝑙
2
, ℎ
2
)). Let𝑋(𝑥

𝑖
, V
1
)

with 𝑙
1

≤ 𝑥
𝑖

≤ ℎ
1
, and let 𝑌(V

2
, 𝑥
𝑗
) with 𝑙

2
≤ 𝑥
𝑗

≤ ℎ
2
. There

is a fact that when V has been repaired such that 𝑓(V) = 0,
then we should make sure if 𝑓(𝑋) = 0 (resp., 𝑓(𝑌) = 0). If
they are, then 𝑋 (resp., 𝑌) may be cancelled from the block
𝐶 and 𝐶 will become four smaller ones at most. In addition,
these new cracky blocks still keep stable. The cancelled row
or column may becoming the new border belonging to those
new cracky blocks, alternatively becoming the good ones
outside any blocks, so they will still keeping hung, certainly
their successors will also keeping hung. To implement the
above, when a node with its incident links is fixed well, we
just send a recovery signal to its four neighbours to rerun
the procedure initial status in Algorithm 1. Recursively, the
recovery signal will be sent to nodes which connected with
the faulty nodes received the signal until it meets the good
node outside the cracky block.

For example, Figure 5(a) shows a cracky block, and 𝑎, 𝑐
are two faulty nodes with 𝑓(𝑎) = 2, 𝑓(𝑐) = 1, and 𝑓(𝑏) =
0. When the two nodes 𝑎 and 𝑐 have been repaired, they all
changed to good nodes with 𝑓(𝑎) = 𝑓(𝑐) = 0. The cracky
block will become like Figure 5(b), and 𝑎, 𝑏, and 𝑐 become the
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(a) Cracky block

a

b

c

(b) Cracky block after nodes 𝑎, 𝑏, and 𝑐 fixed well

Figure 5: A sample of self-adaptive block.

new border and the cracky still keeps stable (note that we do
not give the detail because of the page limitation).

Our adaptive fault-tolerant routing strategy is faulty
boundary independency; that is, if there exists a fault occur-
ring on the boundary of themesh, the strategy is still running.
Lines 14 to 21 in Algorithm 3 give a solution to this situation.
When some of the boundary nodes of mesh have failed, then
the corresponding cracky block will be constructed like 𝐵 in
Figure 3. As shown, it is an incomplete cracky block. If 𝑠󸀠

wants to send a message to 𝑑, the message will first go to
node ℎ according the basic routing function. Because ℎ is
the border node of 𝐵, the message will be sent to 𝑒 which is
a boundary node of the mesh. When the message traverses
all the successors of 𝑒, it will be rebound to the node ℎ to
continue routing and finally find its destination. To sum up,
the message will continue routing when it encounters a mesh
boundary because of the rebound function.

4. The Cracky Rectangular Model Is Creditable

The next two propositions show that, with the above algo-
rithm, each message will reach its destination, if a message
arrives in a node of a cracky block 𝐶;

(i) if its destination is in 𝐶, it will reach it;
(ii) if its destination is out of 𝐶, it will leave 𝐶 closer to its

destination than before.

This is shown by the next two results.

Proposition 1. Consider a cracky block 𝐶. By using
Algorithm 3, if a message 𝑚 has its destinations 𝑌 in 𝐶
and if it arrives in a node of the cracky block, then it will reach
its destination.

Proof. Consider a subgraph 𝑆 of the mesh induced by the
nodes of a cracky block 𝐶 = 𝐶((𝑙

1
, ℎ
1
), (𝑙
2
, ℎ
2
)). By definition

of Algorithm 3, a message moving on 𝑆 follows a circuit
crossing each node at least once.

Consider a message 𝑚 moving in the mesh, with desti-
nation 𝑋(𝑥

1
, 𝑥
2
) ∈ 𝑉(𝐶), reaching a node 𝑋󸀠 ∈ 𝑉(𝐶). By

definition of the routing function, since 𝑙
1

≤ 𝑥
1

≤ ℎ
1
and

𝑙
2

≤ 𝑥
2

≤ ℎ
2
, then 𝑚 will never want to take an arc out

from the 𝐶. Thus, it follows the circuit of 𝑆 induced by the
algorithm. So,𝑚 will arrive in node𝑋.

Proposition 2. Consider a cracky block 𝐶. By using the
algorithm, if a message 𝑚 has its destination 𝑌 outside 𝐶 and
if it arrives in node of the cracky block, then it will leave 𝐶 and
be closer to its destination than before.

Proof. Let 𝑚(𝑌) be a message with destination 𝑌(𝑦
1
, 𝑦
2
).

Suppose that 𝑚(𝑌) moves from a node 𝑋(𝑥
1
, 𝑥
2
) to another

node 𝑋󸀠 = (𝑥󸀠
1
, 𝑥󸀠
2
) by the dimension 𝑖 according to the

routing algorithm; that is, |𝑥
𝑖
−𝑦
𝑖
| = max{|𝑥

𝑗
−𝑦
𝑗
| : 1 ≤ 𝑗 ≤ 2}

and |𝑥
𝑖
− 𝑦
𝑖
| − 1 = |𝑥󸀠

𝑖
− 𝑦
𝑖
|. We claim that, in the following

routings, except the special case that𝑚moves along a quasi-
Hamiltonian cycle of a cracky block, the routing of 𝑚 will
never augment the 𝑖-dimension distance.

To prove the claim, it is clear that by the routing
algorithm, if 𝑚 do not meet a cracky block, it cannot move
from a node 𝑍 = (𝑧

1
, 𝑧
2
) to another one 𝑍󸀠 = (𝑧󸀠

1
, 𝑧󸀠
2
) with

|𝑧
𝑖

− 𝑦
𝑖
| = |𝑥󸀠

𝑖
− 𝑦
𝑖
| = |𝑥

𝑖
− 𝑦
𝑖
| − 1 = |𝑧󸀠

𝑖
− 𝑦
𝑖
| − 1.

Suppose now that𝑚moves from𝑈󸀠 = (𝑢󸀠
1
, 𝑢󸀠
2
) tomeet a node

𝑈 = (𝑢
1
, 𝑢
2
), with |𝑢

𝑖
− 𝑦
𝑖
| ≤ |𝑥

𝑖
− 𝑦
𝑖
| − 1, of a cracky block

𝐶 = ((𝑎
1
, 𝑏
1
), (𝑎
2
, 𝑏
2
)) by the dimension 𝑠 and suppose that it

leaves 𝐶 by a node𝑊 = (𝑤
1
, 𝑤
2
) to a node𝑊󸀠 = (𝑤󸀠

1
, 𝑤󸀠
2
) by

the dimension 𝑡. According to the routing algorithm, without
loss of generality, we may assume that the movement of 𝑚
from 𝑋󸀠 to 𝑈󸀠 does not augment the 𝑠-dimension distance;
that is, |𝑢󸀠

𝑠
− 𝑦
𝑠
| ≤ |𝑥󸀠
𝑠
− 𝑦
𝑠
|. By the routing function, we have

󵄨󵄨󵄨󵄨󵄨𝑤
󸀠

𝑖
− 𝑦
𝑖

󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑤𝑖 − 𝑦

𝑖

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑤𝑡 − 𝑦

𝑡

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑢𝑡 − 𝑦

𝑡

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨𝑢
󸀠

𝑡
− 𝑦
𝑡

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨𝑢
󸀠

𝑠
− 𝑦
𝑠

󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨𝑥
󸀠

𝑠
− 𝑦
𝑠

󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥𝑠 − 𝑦

𝑠

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑦

𝑖

󵄨󵄨󵄨󵄨 .
(∗)

Assume that |𝑤󸀠
𝑖

− 𝑦
𝑖
| = |𝑥

𝑖
− 𝑦
𝑖
|. We have all equalities

in (∗), in particular |𝑢
𝑡
− 𝑦
𝑡
| = |𝑢󸀠

𝑠
− 𝑦
𝑠
|. For any 𝑙, 1 ≤ 𝑙 ≤ 2,

it follows that |𝑢
𝑙
− 𝑦
𝑙
| ≤ |𝑢󸀠

𝑙
− 𝑦
𝑙
| ≤ |𝑢󸀠

𝑠
− 𝑦
𝑠
| = |𝑢

𝑡
− 𝑦
𝑡
|,

which implies that 𝑚 would leave 𝐶 from the node 𝑈 by the
𝑡-dimension and hence𝑊 = 𝑈. This gives

󵄨󵄨󵄨󵄨󵄨𝑤
󸀠

𝑖
− 𝑦
𝑖

󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑤𝑖 − 𝑦

𝑖

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑢𝑖 − 𝑦

𝑖

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑦

𝑖

󵄨󵄨󵄨󵄨 − 1, (1)

a contradiction.Therefore we have |𝑤󸀠
𝑖
−𝑦
𝑖
| ≤ |𝑥
𝑖
−𝑦
𝑖
|−1 and

the claim holds.
Consequently, if 𝑚 leaves a cracky block 𝐶, it will never

be sent back to 𝐶.
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Table 2: The routing table for border nodes of cracky blocks.

V’s border position is west V’s border position is east
V
𝑝

= 𝑊(V) (V
𝑠

← 𝐸(V) and succ1(V) ← 𝑁(V)) if (a) V
𝑠

← succ1(V)
V
𝑠

← 𝑁(V) if (b)
V
𝑝

= 𝑆(V) (V
𝑠

← 𝐸(V) and succ1(V) ← 𝑁(V)) if (a) (V
𝑠

← 𝑊(V) and succ1(V) ← 𝑁(V)) if (a)
V
𝑠

← 𝑁(V) if (b) V
𝑠

← 𝑁(V) if (b)
V
𝑝

= 𝐸(V) V
𝑠

← succ1(V) (V
𝑠

← 𝑊(V) and succ1(V) ← 𝑆(V)) if (a)
V
𝑠

← 𝑆(V) if (b)
V
𝑝

= 𝑁(V) (V
𝑠

← 𝐸(V) and succ1(V) ← 𝑆(V)) if (a) (V
𝑠

← 𝑊(V) and succ1(V) ← 𝑆(V)) if (a)
V
𝑠

← 𝑆(V) if (b) V
𝑠

← 𝑆(V) if (b)
V’s border position is south V’s border position is north

V
𝑝

= 𝑊(V) (V
𝑠

← 𝑁(V) and succ1(V) ← 𝐸(V)) if (a) (V
𝑠

← 𝑆(V) and succ1(V) ← 𝐸(V)) if (a)
V
𝑠

← 𝐸(V) if (b) V
𝑠

← 𝐸(V) if (b)
V
𝑝

= 𝑆(V) (V
𝑠

← 𝑁(V) and succ1(V) ← 𝑊(V)) if (a) V
𝑠

← succ1(V)
V
𝑠

← 𝑊(V) if (b)
V
𝑝

= 𝐸(V) (V
𝑠

← 𝑁(V) and succ1(V) ← 𝑊(V)) if (a) (V
𝑠

← 𝑆(V) and succ1(V) ← 𝑊(V)) if (a)
V
𝑠

← 𝑊(V) if (b) V
𝑠

← 𝑊(V) if (b)
V
𝑝

= 𝑁(V) V
𝑠

← succ1(V) (V
𝑠

← 𝑆(V) and succ1(V) ← 𝐸(V)) if (a)
V
𝑠

← 𝐸(V) if (b)
V’s border position is NE

corner
V’s border position is SE

corner
V’s border position is SW

corner
V’s border position is NW

corner
V
𝑝

= 𝑊(V) V
𝑠

← V
𝑖
if (c) V

𝑠
← V
𝑖
if (c) (d) (d)

V
𝑠

← 𝑆(V) V
𝑠

← 𝑁(V)
V
𝑝

= 𝑆(V) V
𝑠

← V
𝑖
if (c) (d) (d) V

𝑠
← V
𝑖
if (c)

V
𝑠

← 𝑊(V) V
𝑠

← 𝐸(V)
V
𝑝

= 𝐸(V) (d) (d) V
𝑠

← V
𝑖
if (c) V

𝑠
← V
𝑖
if (c)

V
𝑠

← 𝑁(V) V
𝑠

← 𝑆(V)
V
𝑝

= 𝑁(V) (d) V
𝑠

← V
𝑖
if (c) V

𝑠
← V
𝑖
if (c) (d)

V
𝑠

← 𝑊(V) V
𝑠

← 𝐸(V)
(a): is not final.
(b): is final.
(c): let the destination node of the message be 𝑌, if ∃V𝑖 ∈ Γ(V) and V𝑖’s status is good, s.t. 𝑑(V𝑖, 𝑌) = 𝑑(V, 𝑌) − 1.
(d): using the basic routing function.

5. Concluding Remarks

In this paper, we propose a cracky rectangular fault
block model for faulty-tolerant adaptive routing in two-
dimensional mesh interconnection networks. This model
improves the widely used rectangular model by taking into
consideration the faulty links instead of faulty nodes in the
process of constructing cracky blocks. It has been shown
that we construct the spanning forest, which rooted with the
border node, for all connected node in the cracky blocks.
Thus the message can traverse all the nodes inside of the
block by a kind of Depth-First-Search. As a result in the
cracky block model, all faulty nodes that would have been
useless now can be used for routing. Meanwhile the cracky
block manages the size and scale in a self-adaptive mode;
that is, the number or size of cracky block will gradually
grow huge because of the increasing of faulty nodes/links,
and contrarily, they will decrease for the fixed nodes/links.
Based on the cracky block model, an algorithm is proposed
to route message in the two-dimensional mesh without
livelock. The novel strategy for fault-tolerant routing is faulty
boundary independency, and it can apply the faulty occurring
on the mesh boundary. The novel strategy for fault-tolerant

routing improves the robustness and performance of two-
dimensional mesh interconnection networks.

In the future, we will extend this strategy to multidi-
mensional mesh networks, we have already testified that the
construction method is suitable for multidimensional mesh
networks, and then we will attempt to extend the routing
algorithm to find a circuit on the multidimensional cracky
blocks. In addition, we will add routing table to the cracky
blocks to minimize the totally routing hops. These will come
up in our next paper.
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