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Network quality of experience (QoE) metrics are proposed in order to capture the overall performance of radio resource
management (RRM) algorithms in terms of video quality perceived by the end users. Metrics corresponding to average, geometric
mean, and minimum QoE in the network are measured when Max C/I, proportional fair, and Max-Min RRM algorithms are
implemented in the network. The objective is to ensure a fair QoE for all users in the network. In our study, we investigate both
the uplink (UL) and downlink (DL) directions, and we consider the use of distributed antenna systems (DASs) to enhance the
performance.The performance of the various RRMmethods in terms of the proposed network QoEmetrics is studied in scenarios
with and without DAS deployments. Results show that a combination of DAS and fair RRM algorithms can lead to significant and
fair QoE enhancements for all the users in the network.

1. Introduction

With the increased video traffic in state-of-the art cellular
networks, it is imperative to enhance the quality of service
(QoS) of video transmissions, usually represented by the
video peak signal to noise ratio (PSNR). On the other hand,
video quality of experience (QoE) is gaining significant
interest as a method to quantify the multimedia experience
of mobile users; for example, see [1]. It can be considered as
a “perceived QoS,” and reflects better than QoS the quality
of the video as seen by the mobile users. QoE measures are
based on subjective assessment of video quality by the users.
Mean opinion scores (MOS) are then collected and analyzed
in order to derive an objective QoE metric translated into a
mathematical formula similarly to QoS.

Most of the QoE investigations in the literature, for
example, [1–4], consider link level QoE, that is, the QoE
perceived by a given user in the network. The novelty in
this work is in proposing metrics for assessing the QoE

performance over the whole network, taking into account
fairness constraints in the QoE perceived by different users.
Furthermore, we study the impact of different radio resource
management (RRM) algorithms on optimizing the network
QoE performance and ensuring fairness towards the various
users in the network.

The investigation is performed under the framework of
the long term evolution (LTE) system. In LTE, orthogonal
frequency division multiple access (OFDMA) is the access
scheme for the downlink (DL), that is, the direction of
transmission from the BS to the users. In the LTE uplink
(UL), that is, the direction of transmission from the users
to the BS, single carrier frequency division multiple access
(SCFDMA), a modified form of OFDMA, is used [5]. In LTE,
the available spectrum is divided into resource blocks (RBs),
each consisting of 12 adjacent subcarriers. The assignment of
an RB takes place every 1ms, agreed to be the duration of
one transmission time interval (TTI), or the duration of two
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Figure 1: Error concealment example.

0.5ms slots [6]. The LTE standard imposes the UL constraint
that the RBs allocated to a single user should be consecutive
with equal power allocation over the RBs [5–7].

An important method to boost performance in cellular
systems is the deployment of distributed antenna systems
(DASs). DASs are used to increase the coverage and capacity
of wireless networks in a cost effective way. Although they are
used in previous generations of wireless systems, DASs are
receiving significant research attention for their deployment
in LTE; for example, see [8].The impact ofDASonLTEuplink
scheduling was studied in [9], and their uplink and downlink
performance were studied in [10] in the context of public
safety networks.

Generally, a DAS system consists of a single central
BS connected to several remote antenna heads (RAHs)
distributed throughout the cell area. The BS controlling the
RAHs could be colocated with any of the RAHs or in a
separate location. The BS could be connected to RAHs via
wired cables (e.g., fiber optic). Connection topologies include
star, chain, tree, and ring topologies [11]. Since an RAH is
composed of a remote antenna connected to the BS, this
allows centralized control to be performed by the BS as in the
conventional case while the RAHs allow extended coverage
and/ormore user capacity. In addition, for fixed coverage and
user capacity, the RAHs provide the users with better QoS
since the distance from a user to the nearest RAH will be
smaller than the distance to the central BS antenna in the
conventional case, which leads to a higher signal to noise ratio
(SNR).

Another novelty of this work is the investigation of
the role of LTE DAS systems in enhancing network QoE
performance, both in the UL and DL directions. LTE RRM
algorithms to ensure fair QoE optimization are investigated
and compared in scenarios with and without DAS deploy-
ments.

The paper is organized as follows. Video transmission
and QoS/QoE metrics are overviewed in Section 2. The
proposed network QoE metrics are derived in Section 3.
LTE resource allocation is described in Section 4. Section 5
analyzes radio resource management in LTE with different
utility functions. The simulation results are presented and
analyzed in Section 6. Finally, conclusions are drawn in
Section 7.

2. Video Transmission over Wireless Channels

We consider that video sequences are encoded into groups of
pictures (GOPs) according to the H.264 standard using the
joint scalable videomodel (JSVM) software. EachGOP of𝑁

𝐺

frames is considered to consist of one I-frame and𝑁
𝐺
− 1 P-

frames.When aGOP is available for real-time transmission, it
should be transmitted within a duration of 𝑇GOP. When 𝑇GOP
has elapsed, all the frames that are not received are assumed
lost, and the transmission of a new GOP begins. Due to the
interdependencies of the video frames, the loss of a frame in
a GOP leads to the loss of all subsequent frames in the GOP,
until the next I-frame is received.The loss of an I-frame leads
to the loss of all the frames in the GOP [12].

2.1. Video QoS Evaluation. To measure QoS in video trans-
mission, one of the most widely used metrics is the mean-
squared error distortion. Two types of distortion affect a
video sequence: source distortion and loss distortion. Source
distortion depends on the compression method at the source
and is beyond the scope of this paper. Loss distortion
corresponds to the distortion caused by lost frames during
transmission over the wireless channels. Hence, in this paper,
loss distortion is considered. The distortion for replacing a
frame 𝑓, of dimensions 𝑁

1
× 𝑁
2
pixels, with an estimated

frame 𝑓 can be computed as follows [12]:

𝐷(𝑓, 𝑓) =
1

𝑁1𝑁2
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∑
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2
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, (1)

where𝑓(𝑛
1
, 𝑛
2
) indicates the pixel value of frame𝑓 at position

(𝑛
1
, 𝑛
2
).The peak signal to noise ratio (PSNR) in this case can

be expressed as

𝑃SNR (𝑓, 𝑓) =
(2
𝐵
− 1)
2

𝐷(𝑓, 𝑓)

, (2)

with 𝐵 the number of bits used to encode a single pixel in the
picture frame.

The total (or cumulative) loss distortion depends on the
frame type (I-frame, P-frame) and position (in the same
GOP, the loss of a P-frame 𝑓

1
leads to more distortion than

the loss of a P-frame 𝑓
2
when 𝑓

1
< 𝑓
2
). It also depends

on the coding method used and error concealment method.
Themost common approach for error concealment is known
as the previous frame concealment method. It consists of
repeating the last correctly received frame until the next
I-frame is received [12]. An example is shown in Figure 1
assuming frame number 5 is lost. The notation 𝑋 in Figure 1
is used to indicate that frame𝑋 is used for error concealment
to replace the lost frame at a given position. In the shown
example, frame number 4 would be used to replace all the
remaining frames in the GOP. The total loss distortion when
frame 𝑓 is lost in a GOP of 𝑁

𝐺
frames with one I-frame
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and𝑁
𝐺
− 1 P-frames, using the previous frame concealment

method, can be obtained from (1) as follows:

𝐷
(𝑓)

=

𝑁
𝐺

∑

𝑦=𝑓

𝐷(𝑦, 𝑓 − 1) . (3)

The expression in (3) is obtained due to replacing all lost
frames in theGOP from frame𝑓 onwards by the last correctly
received frame 𝑓 − 1. When an I-frame is lost, it is replaced
by the last correctly received frame from the previous GOP.

2.2. Video QoE Metric. QoE is gaining significant interest as
a method to quantify the multimedia experience of mobile
users; for example, see [1–4]. A survey of QoE techniques is
presented in [1]. QoE tries to measure the QoS as it is finally
perceived by the enduser. For example, following [2], theQoE
can be related to the PSNR as follows:

𝑄 =
1

1 + 𝑒𝑏1(𝑃SNR−𝑏2)
, (4)

where 𝑏
1
and 𝑏

2
are parameters that depend on the video

characteristics and 𝑃SNR is the PSNR expressed in dB. In (4),
𝑄 = 0 indicates the best quality and 𝑄 = 1 indicates the
worst quality. The relation between QoE and QoS to PSNR
and distortion is an ongoing research activity; for example,
see [13, 14]. In [13], subjective quality assessment of video is
performed in order to determine novel QoE metrics. In [3],
an empirical QoE metric taking into account PSNR, spatial
resolution, and frame rate, in addition to spatial and temporal
variances, was derived. AQoEmetric derived in [4], based on
the metric in [2], is expressed as

𝑄𝑚 = 𝑄max (1 −
1

1 + 𝑒𝑏1(𝑃SNR−𝑏2)
) ⋅

1 − 𝑒
−𝑏
3
(𝑓/𝑓max)

1 − 𝑒−𝑏3
, (5)

where 𝑏3 is another parameter that depends on the video
characteristics, 𝑄max is a constant corresponding to max-
imum quality, 𝑓 is the frame rate at which the video is
displayed, and 𝑓max is the maximum frame rate. The QoE
derivations take into account user experience while playing
the video and are not inherently designed to assess the
transmission over wireless channels. Using the previous
frame error concealment method, the same frame rate can
be maintained after error concealment (i.e., 𝑓 = 𝑓max), and
hence (5) can be simplified to

𝑄𝑚 = 𝑄max (1 −
1

1 + 𝑒𝑏1(𝑃SNR−𝑏2)
) . (6)

Hence, in this paper, we use (6) with 𝑄max = 100, thus
displaying QoE on a scale from 0 to 100.

In practice, during the streaming of a stored video at
the streaming server or BS, the video characteristics can be
extracted offline and used to determine 𝑏

1
, 𝑏
2
, and 𝑏

3
in

the QoE metrics. Although these parameters are difficult to
extract during the streaming of a live video, an approach for
their dynamic real-time estimation is presented in [4].

3. Network QoE

The QoE metric of (6) is an “individual” metric reflecting
the QoE experience of a particular user. The objective of this
paper is to investigate radio resource management (RRM)
algorithms that ensure a fair QoE satisfaction for all users
in the network. Hence, “network” QoE metrics reflecting
the overall performance of RRM algorithms in terms of
enhancing QoE for all users in the network need to be
derived. This section presents novel network QoE metrics
that could help assess the fairness of RRM algorithms in
ensuring QoE satisfaction.

3.1. Proposed Network QoE Metrics. The first metric is the
average QoE. It is given by

𝑄
(avg)
𝑚

=
1

𝐾

𝐾

∑

𝑘=1

𝑄
𝑚,𝑘

, (7)

where𝑄
𝑚,𝑘

is the QoEmetric of user 𝑘, expressed as in (6) for
example. The metric in (7) reflects the average performance
in the network. However, in some instances, 𝑄(avg)

𝑚
could be

relatively high when some users have very high QoE while
others have a relatively low QoE. Consequently, this could
mask the unfairness towards users with low QoE.

A possible solution to this problem is to derive RRM
algorithms maximizing the minimum QoE in the network
given by

𝑄
(min)
𝑚

= min
𝑘

𝑄𝑚,𝑘. (8)

This allows enhancing the worst case performance. However,
this could come at the expense of users with good channel
conditions (and who could achieve high QoE) that will be
unfavored by the RRM algorithms in order to increase the
QoE of worst case users.

A tradeoff between the metrics in (7) and (8) could be the
use of the geometric mean QoE, given by

𝑄
(gm)
𝑚

= (

𝐾

∏

𝑘=1

𝑄
𝑚,𝑘

)

1/𝐾

. (9)

Themetric (9) is fair, since a user with aQoE close to zero will
make the whole product in𝑄(gm)

𝑚
go to zero. Hence, any RRM

algorithm maximizing 𝑄
(gm)
𝑚

would avoid having any user
with very lowQoE. In addition, themetric (9) will reasonably
favor users with good wireless channels (capable of achieving
high QoE), since a high QoE will contribute in increasing the
product in (9).

3.2. QoE Optimization. Using the metrics derived in (7)–(9),
the objective is tomaximize a networkQoEmetric as follows:

max
𝛼
(DL)
𝑘
𝑙
,𝑖,𝑙
,𝛼
(UL)
𝑘
𝑙
,𝑖,𝑙
,𝑃
(DL)
𝑙
,𝑃
(UL)
𝑘
𝑙

𝑄
(net)
𝑚

, (10)
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(a) (b)

Figure 2: Deployment scenarios: (a) BS only; (b) DAS with one BS and six RAHs.

subject to

𝑃
(UL)
𝑘
𝑙

≤ 𝑃
(UL)
𝑘
𝑙
,max; ∀𝑘

𝑙
= 1, . . . , 𝐾

𝑙
; ∀𝑙 = 1, . . . , 𝑁BS, (11)

𝑃
(DL)
𝑙

≤ 𝑃
(DL)
𝑙,max; ∀𝑙 = 1, . . . , 𝑁BS, (12)

𝐾
𝑙

∑

𝑘
𝑙
=1

𝛼
(UL)
𝑘
𝑙
,𝑖,𝑙

≤ 1; ∀𝑖 = 1, . . . , 𝑁
(UL)
sub ; ∀𝑙 = 1, . . . , 𝑁BS, (13)

𝐾
𝑙

∑

𝑘
𝑙
=1

𝛼
(DL)
𝑘
𝑙
,𝑖,𝑙

≤ 1; ∀𝑖 = 1, . . . , 𝑁
(DL)
sub ; ∀𝑙 = 1, . . . , 𝑁BS, (14)

where 𝑄(net)
𝑚

is one of the metrics in (7)–(9). In addition, 𝐾
𝑙

is the number of users in cell 𝑙, 𝑁BS is the number of base
stations (BSs), 𝑃(UL)

𝑘
𝑙

is the transmit power of user 𝑘𝑙 in cell
𝑙 in the uplink (UL), 𝑃(UL)

𝑘
𝑙
,max is its maximum transmit power,

𝑃
(DL)
𝑙

is the transmit power of BS 𝑙 in the downlink (DL), and
𝑃
(DL)
𝑙,max is its maximum transmit power. Furthermore, 𝑁(UL)sub

and 𝑁
(DL)
sub are the numbers of OFDMA subcarriers in the

UL and DL, respectively. Finally, 𝛼(UL)
𝑘
𝑙
,𝑖,𝑙

and 𝛼(DL)
𝑘
𝑙
,𝑖,𝑙

are indicator
variables for the UL and DL, respectively. They are set to one
if subcarrier 𝑖 is allocated to user 𝑘

𝑙
in cell 𝑙 and set to zero

otherwise.
The constraints in (11) and (12) indicate that the transmit

power cannot exceed the maximum power for the UL and
DL, respectively. The constraints in (13) and (14) correspond
to the exclusivity of subcarrier allocations in each cell for the
UL and DL, respectively, since, in each cell, a subcarrier can
be allocated at most to a unique user at a given scheduling
instant.

It should be noted that, using individual QoS metrics
instead of individual QoE metrics in (7)–(9), these equations
become novel definitions of network QoS metrics instead
of network QoE metrics. Indeed, Section 6.2 presents a
performance comparison when network QoS (considered to

be video PSNR in this paper) and network QoE metrics are
used.

4. LTE Resource Allocation

In this Section, we describe the approach used in this paper
for LTE resource allocation.

4.1. SystemModel. The systemmodel is displayed in Figure 2,
where Scenario (a) shows a traditional BS at the cell center,
whereas Scenario (b) shows aDASdeploymentwith sixRAHs
deployed throughout the cell area. Consequently, Scenario (b)
consists of seven RAHs: one located at the cell center and
six located at a distance of 2𝑅

𝑐
/3, with 60 degrees angular

separation between them.
In this work, we consider a single cell, and we compare

the LTE performance in the presence and absence of DASs,
for the scenarios presented in Figure 2. In the comparisons,
we consider the same coverage area and the same number of
users in the cell in the case of a single centralized BS (Scenario
(a) in Figure 2) and in the case of DASs (Scenario (b) in
Figure 2). We also consider the same number of subcarriers
in both scenarios.

In the DL, users stream video files coming from the BS
in real time. We also consider video transmission in the UL,
which could correspond, in practice, to wireless transmission
of videos captured by surveillance cameras, to police, or other
public safety teams sending real-time videos to a command
center during an incident or pursuit, among other possible
applications.

In the DAS scenario, the presence of RAHs is transparent
to the users who act as if there was only a single central
BS in the cell. The communication between the central BS
and RAHs is via fiber optic (or microwave links having a
nonoverlapping spectrum with LTE) and consequently does
not consume any LTE radio resources.The presence of RAHs
contributes in enhancing the channel states of the different
users by providing each user with an antenna that is closer to
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it than the central BS antenna.Hence, the channel gain of user
𝑘 over subcarrier 𝑖 on the link with RAH 𝑥 can be expressed
as follows:

𝐻
(𝑥)

𝑘,𝑖,dB = (−𝜅 − 𝜐log
10
𝑑
(𝑥)

𝑘
) − 𝜉𝑘,𝑖 + 10log10𝐹𝑘,𝑖, (15)

where the first factor captures propagation loss, with 𝜅 the
path loss constant, 𝑑(𝑥)

𝑘
the distance in km from mobile 𝑘 to

RAH 𝑥, and 𝜐 the path loss exponent. The second factor, 𝜉
𝑘,𝑖
,

captures log-normal shadowing with zero mean and a stan-
dard deviation 𝜎

𝜉
, whereas the last factor, 𝐹

𝑘,𝑖
, corresponds to

Rayleigh fading power with a Rayleigh parameter 𝑏 such that
𝐸{|𝑏|
2
} = 1.

In the traditional scenario (Scenario (a)), denoting by
𝑥 = 1 the radio head colocated with the BS at the cell center,
the channel gain between the BS and user 𝑘 over subcarrier 𝑖
is expressed as 𝐻

𝑘,𝑖
= 𝐻
(1)

𝑘,𝑖
. With DASs, it will transparently

“appear” to user 𝑘 that its channel gain with the BS over
subcarrier 𝑖 is

𝐻
𝑘,𝑖
= argmax

𝑥
𝐻
(𝑥)

𝑘,𝑖
. (16)

It should be noted that the above analysis applies to both
the UL and DL, depending on whether 𝑖 is an UL or DL
subcarrier, respectively.

4.2. Throughput Calculations in the Uplink. Let 𝑃(UL)
𝑘,𝑖

be the
power transmitted by user 𝑘 over subcarrier 𝑖, 𝑃(UL)

𝑘,max be
the maximum transmission power of user 𝑘, and 𝑅

(UL)
𝑘

be
its achievable throughput in the UL. Then, the SCFDMA
throughput of user 𝑘 is given by

𝑅
(UL)
𝑘

= 𝐵
(UL)
sub


I
(UL)
sub,𝑘


⋅ log
2
(1 + 𝛽𝛾

(UL)
𝑘

(P(UL)k ,I
(UL)
sub,𝑘
𝑙

)) ,

(17)

where 𝐵(UL)sub is the UL subcarrier bandwidth, |I(UL)sub,𝑘| is the
cardinality ofI(UL)sub,𝑘,𝑁

(UL)
sub is the number of UL subcarriers,

and P(UL)k represents a vector of the transmitted power on
each subcarrier, 𝑃𝑘,𝑖. 𝛽 is called the SNR gap. It indicates
the difference between the SNR needed to achieve a certain
data transmission rate for a practicalM-QAM system and the
theoretical limit (Shannon capacity) [15]. It is given by

𝛽 =
−1.5

ln (5𝑃
𝑏
)
, (18)

where 𝑃
𝑏

denotes the bit error rate (BER). Finally,
𝛾
(UL)
𝑘

(P(UL)k ,I
(UL)
sub,𝑘) is the SNR of user 𝑘 after minimum

mean squared error (MMSE) frequency domain equalization
at the receiver [5]:

𝛾
(UL)
𝑘

(P(UL)k ,I
(UL)
sub,𝑘)

= (
1

(1/

I
(UL)
sub,𝑘


) ∑
𝑖∈I
(UL)
sub,𝑘

(𝛾
(UL)
𝑘,𝑖

/ (𝛾
(UL)
𝑘,𝑖

+ 1))

− 1)

−1

.

(19)

In (19), 𝛾(UL)
𝑘,𝑖

is the UL SNR of user 𝑘 over subcarrier 𝑖. It is
given by

𝛾
(UL)
𝑘,𝑖

=

𝑃
(UL)
𝑘,𝑖

𝐻
𝑘,𝑖

𝜎
2

BS,𝑖
, (20)

where𝐻
𝑘,𝑖

is the channel gain over UL subcarrier 𝑖 allocated
to user 𝑘 and 𝜎2BS,𝑖 is the noise power at the receiver of the BS
(i.e., the receiver of the RAH that is nearest to user 𝑘).

The LTE standard imposes the constraint that the RBs
allocated to a single user should be consecutive with equal
power allocation over the subcarriers of those RBs [5–7].
The contiguous RB constraint is enforced by Step 4 of the
algorithm in Section 4.4. To ensure equal power allocation,
we set

𝑃
(UL)
𝑘,𝑖

=

𝑃
(UL)
𝑘,max


I
(UL)
sub,𝑘



. (21)

4.3. Throughput Calculations in the Downlink. The DL
achievable throughput of user 𝑘 over RB 𝑛 is given by

𝑅
(DL)
𝑘,𝑛

= ∑

𝑖∈RB𝑛
𝐵
(DL)
sub ⋅ log

2
(1 + 𝛽𝛾

(DL)
𝑘,𝑖

) , (22)

where 𝐵(DL)sub is the subcarrier bandwidth. In (22), the summa-
tion is taken over the consecutive subcarriers that constitute
RB 𝑛. We consider that the BS transmits at the maximum
power 𝑃BS,max and the power is assumed to be subdivided
equally among all the subcarriers. Hence, the DL SNR of user
𝑘 over a single subcarrier 𝑖, 𝛾(DL)

𝑘,𝑖
, is given by

𝛾
(DL)
𝑘,𝑖

=

(𝑃BS,max/𝑁
(DL)
sub )𝐻𝑘,𝑖

𝜎
2

𝑘,𝑖

, (23)

where𝑁(DL)sub is the total number of DL subcarriers,𝐻
𝑘,𝑖
is the

channel gain over DL subcarrier 𝑖 allocated to user 𝑘, and 𝜎2
𝑘,𝑖

is the noise power at the receiver of user 𝑘.

4.4. LTE Resource Allocation. The resource allocation algo-
rithm presented in this section was proposed by the authors
in [16] where it was used to enhance individual QoEs. It is
repeated here for completeness of the analysis. Furthermore,
it is used with various utilities in order to maximize the
various novel network QoE metrics presented in Section 3.
The algorithm is applicable to both UL and DL. Hence, we
will drop the superscripts (UL) and (DL) to avoid repetition.
We denote by Isub,𝑘 the set of subcarriers allocated to user
𝑘, IRB,𝑘 the set of RBs allocated to user 𝑘, 𝑁RB the total
number of RBs,𝐾 the number of users, and 𝑅

𝑘
the achievable

throughput of user 𝑘.We define𝑈(𝑅
𝑘
| IRB,𝑘) as the utility of

user 𝑘 as a function of the throughput 𝑅
𝑘
given the allocation

IRB,𝑘.
The resource allocation algorithm presented below con-

sists of allocating RB 𝑛 to user 𝑘 in a way to maximize the
difference

Λ
𝑛,𝑘

= 𝑈 (𝑅
𝑘
| IRB,𝑘 ∪ {𝑛}) − 𝑈 (𝑅

𝑘
| IRB,𝑘) , (24)
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where the marginal utility, Λ
𝑛,𝑘
, represents the gain in the

utility function𝑈when RB 𝑛 is allocated to user 𝑘, compared
to the utility of user 𝑘 before the allocation of 𝑛.The algorithm
is described as follows.

(i) Consider the set of available RBs Iavail RB ⊆

{1, 2, . . . , 𝑁RB} and the set of available users Iavail users ⊆

{1, 2, . . . , 𝐾}. At the start of the algorithm, Iavail RB =

{1, 2, . . . , 𝑁RB} andIavail users = {1, 2, . . . , 𝐾}.

Step 1. Find the user that has the highest marginal utility
defined in (24) among all available users when the first
available RB inIavail RB is allocated to it. In other words, for
each RB 𝑛, find the user 𝑘∗ such that

𝑘
∗
= argmax

𝑘

Λ
𝑛,𝑘
. (25)

Step 2. Allocate RB 𝑛 to user 𝑘∗:IRB,𝑘∗ = IRB,𝑘∗ ∪ {𝑛}.

Step 3. Delete the RB from the set of available RBs:

Iavail RB = Iavail RB − {𝑛} . (26)

Step 4. This step is only for the UL direction in order to
guarantee the contiguity of subcarrier allocations. It is not
needed for the DL. In the UL, if 𝑘∗ is the same user to which
RB 𝑛 − 1 was allocated, that is, 𝑘∗ = argmax

𝑘
Λ
𝑛−1,𝑘

, then
keep 𝑘∗ inIavail users. Otherwise, delete user 𝑘∗ from the set
of available users:

Iavail users = Iavail users − {𝑘
∗
} . (27)

(ii) Repeat Steps 1, 2, 3, and 4, until there are no available
RBs or no available users.

The utility function depends on the data rate and can be
changed depending on the different services and QoS/QoE
requirements.Different utility functions that can be usedwith
the proposed algorithm are presented in Section 5.

5. RRM Utility Selection for
QoE Maximization

To perform the maximization of (10), we use the utility
maximization algorithm of Section 4.4, applicable for the
UL and DL. The proposed algorithm can be applied with a
wide range of utility functions, being able to achieve various
objectives, with each objective represented by a certain utility
function.

To explicitly implement RRM algorithms maximizing
QoE metrics, real-time feedback is needed from mobile ter-
minals about the QoE achieved by each user, which requires
modifications to the standards. Furthermore, this feedback
would depend on each video sequence being streamed. In
this paper, we propose to perform RRM without any QoE
feedback, using standard compliant algorithms. With the
utility maximization algorithm of Section 4.4, we use utility
functions depending on the users’ data rates. We investigate
Max C/I, proportional fair, and Max-Min utilities for data
rates and study the impact of their implementation on
the average, geometric mean, and minimum QoE network
metrics.

5.1. Max C/I Utility. Letting the utility equal to the data rate
𝑈
𝑘
= 𝑅
𝑘
, the algorithm of Section 4.4 leads to amaximization

of the sum rate of the cell (and hence of the average data rate
in the cell). However, in this case, users close to the BS will
be allocated most of the resources, and hence will have the
highest QoE. However, edge users will generally suffer from
starvation and will have very low data rates and consequently
very low QoE.

5.2. Max-Min Utility. In this section, we discuss utilities
corresponding to the problem of rate maximization with
fairness constraints, by attempting tomaximize theminimum
data rate in the network, for example, [17, 18]. A vector R
of user data rates is Max-Min fair if and only if, for each 𝑘,
an increase in 𝑅

𝑘
leads to a decrease in 𝑅

𝑗
for some 𝑗 with

𝑅
𝑗
< 𝑅
𝑘
[17]. Max-Min utilities lead to more fairness by

increasing the priority of users having lower rates [18]. It was
shown that Max-Min fairness can be achieved by utilities of
the form [18]:

𝑈
𝑘
(𝑅
𝑘
) = −

𝑅
−𝛼

𝑘

𝛼
, 𝛼 > 0, (28)

where the parameter 𝛼 determines the degree of fairness.
Max-Min fairness is attained when 𝛼 → ∞ [18]. We use
𝛼 = 10 in this paper.

5.3. Proportional Fair Utility. In this section, in order to
ensure a more fair allocation of wireless resources, we model
the problem as a bargaining game.We consider that each user
is a player who wants to maximize its payoff, considered to be
its data rate. Consequently, players should share the resources
in an optimal way, that is, a way they cannot jointly improve
on. The resources to be shared are the OFDMA subcarriers.
Allocating the shared resources in a way to maximize the
players’ payoffs is equivalent to allocating the subcarriers to
users in a way to maximize each user’s data rate, given the
shares of subcarriers allocated to the other users. With each
user wanting to selfishly maximize its data rate, the users
engage in a “bargaining” process. It is a well-known result
in game theory that the solution to the bargaining problem
maximizes the Nash product𝑁

𝑃
[19]:

max
𝐾

∏

𝑘=1

𝑅
𝑘
⇐⇒ max ln(

𝐾

∏

𝑘=1

𝑅
𝑘
)

= max
𝐾

∑

𝑘=1

ln (𝑅
𝑘
) .

(29)

Interestingly, the algorithmic implementation of (29) can be
handled by the algorithm of Section 4.4, by using, in that
algorithm, 𝑈𝑘 = ln(𝑅𝑘) as the utility of user 𝑘, where ln
represents the natural logarithm.Maximizing the sum of log-
arithms in (29) is equivalent to maximizing the product and
is easier to implement numerically. This approach represents
proportional fair (PF) scheduling, a well-known resource
allocation approach in wireless communications systems. PF
scheduling is known to correspond to a sumof the logarithms
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Figure 3: QoS metric.

of the user rates and represents the Nash bargaining solution
[20]. Hence, letting𝑈 = ln(𝑅) provides proportional fairness.
Using, in the logarithm, the achievable data rate at the
current scheduling instant achieves proportional fairness in
frequency (PFF), whereas including the previous scheduling
instants by using the cumulative data rate (since the start of
the video transmission to/by the user) achieves proportional
fairness in time and frequency (PFTF) [9]. In this paper,
PFTF is used, since it gives a fair allocation for all users to
transmit/receive their videos on the UL/DL. It can be easily
shown from (29) that PF RRM algorithms maximize the
geometric mean of the user data rates.

6. Results and Discussion

This section presents the simulation results obtained by
comparing the scenarios of Figure 2 using RRM with the
utilities of Section 5 to maximize the network QoS/QoE
metrics of Section 3.

6.1. Simulation Model. The simulation model consists of
a single cell with a BS equipped with an omnidirectional
antenna or several RAHs each having an omnidirectional
antenna, as shown in Figure 2.The simulation parameters are
shown in Table 1. LTE parameters are obtained from [7, 21],
and channel parameters are obtained from [22]. Users are
considered to be uniformly distributed in the cell area.

Table 1: Simulation parameters.

Parameter Value Parameter Value
𝜅 −128.1 dB 𝜐 3.76

𝜎
𝜉
(dB) 8 dB Rayleigh parameter 𝑏 𝐸[𝑏

2
] = 1

𝐵
(DL)

5MHz 𝐵
(UL)

5MHz
𝑁
(DL)
RB 25 𝑁

(UL)
RB 25

𝐵
(DL)
sub 15 kHz 𝐵

(UL)
sub 15 kHz

𝑃
(DL)
BS,max 5W 𝑃

(UL)
𝑘,max 0.125W

To simulate the video transmission in both directions, UL
and DL, the football sequence, encoded in QCIF format, is
used, with GOPs consisting of 15 frames, one I-frame and 14
P-frames, having a GOP duration 𝑇GOP = 1 s. The results are
averaged over 2500 iterations,where, in each iteration, a video
sequence has to be transmitted from the BS to each mobile
user in the DL, or from each mobile terminal to the BS in the
UL.

6.2. Video QoS/QoE Results without DAS Deployment. Fig-
ures 3 and 4 show the network QoS and QoE results,
respectively, for the DL and UL. Comparing the DL and UL
performance in both Figures 3 and 4, it can be noted that the
QoS/QoE performance in the DL is slightly better than in the
UL, due to the higher transmission power available at the BS.



8 Journal of Applied Mathematics

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of users

Q
oE

 m
et

ric
 (%

)

Sched.: Max-Min; metric: min. QoE
Sched.: Max-Min; metric: geom. mean QoE
Sched.: Max-Min; metric: avg. QoE
Sched.: PF; metric: min. QoE
Sched.: PF; metric: geom. mean QoE
Sched.: PF; metric: avg. QoE
Sched.: Max C/I; metric: min. QoE
Sched.: Max C/I; metric: geom. mean QoE
Sched.: Max C/I; metric: avg. QoE

(a) Downlink

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of users

Q
oE

 m
et

ric
 (%

)

Sched.: Max-Min; metric: min. QoE
Sched.: Max-Min; metric: geom. mean QoE
Sched.: Max-Min; metric: avg. QoE
Sched.: PF; metric: min. QoE
Sched.: PF; metric: geom. mean QoE
Sched.: PF; metric: avg. QoE
Sched.: Max C/I; metric: min. QoE
Sched.: Max C/I; metric: geom. mean QoE
Sched.: Max C/I; metric: avg. QoE

(b) Uplink

Figure 4: QoE metric.

It should be noted that although the same video sequence
was used for simulation purposes, the scenario considered
corresponds in practice to a unicasting scenario where
different videos are transmitted to (by) each user in the DL
(UL). Otherwise, it would be better to perform multicasting
by the BS in the DL and collaborative transmission by the
users in the UL, which represent interesting topics for future
research.

It can be seen that PF scheduling maximizes the average
network QoS/QoE both in the DL and UL. It also leads to
more fairness in the UL, since the best results for geometric
mean QoS/QoE are achieved with PF scheduling. The same
is achieved in the DL when the number of users increases
by maximizing the geometric mean QoS/QoE when the
number of users is above 30. Max-Min scheduling is shown
to maximize the minimum QoS/QoE in the downlink and
to outperform proportional fair scheduling in terms of
geometric mean QoS/QoE when the number of users in the
DL is relatively low (below 30). However, its performance in
the UL is not as good due to the limited transmit power of
mobile terminals. In fact, in the UL, it is outperformed by
PF for all three network QoS/QoE metrics and by Max C/I
scheduling for the average and geometric mean QoS/QoE
metrics. It is also outperformed by Max C/I for the average
QoS/QoE metric when the number of users is below 20.

RRM using Max C/I is extremely unfair in the DL, as
shown in Figures 3(a) and 4(a) for all threeQoS/QoEmetrics,
respectively. This is due to the fact that it allocates the
subcarriers and power available at the BS to users that are

relatively close to the BS, which deprives users that are further
away from wireless resources. Due to error propagation in
video sequences caused by lost frames, this leads to very
low QoS/QoE results, especially for the metrics involving a
certain notion of fairness: the min QoS/QoE and geometric
mean QoS/QoE. In the UL, Max C/I performs better, mainly
due to the fact that the power is now distributed: each user
in the UL has its own transmit power, conversely to the DL,
where the power is concentrated at a single entity, the BS.
However, its performance degradation is fast as the number
of users increases, especially for the min QoS/QoE in the
network.

Comparing Figure 3 to Figure 4, it can be seen that all
combinations of {RRM algorithm, network quality metric}
have the same performance trends in both figures. In other
words, the same conclusions can be reached in terms of
the superiority of a method over another for both QoS and
QoE. However, the comparison shows that the performance
degradation is faster in the QoE case. For example, the
performance gap between the average network metric and
the geometric mean metric appears to be reduced in the QoS
case (Figure 3), whereas it looks significant in the QoE case
(Figure 4). As another example, the average QoS metric is
nonzero (although low) with Max C/I scheduling (Figure 3),
whereas the average QoE metric goes to zero when the
number of users increases with Max C/I (Figure 4). This
explains the motivation behind using QoE metrics instead
of QoS metrics, since they correspond to a more accurate
representation of the quality perceived by the end users.
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In fact, Figure 5 shows the plot of QoE versusQoS (PSNR) for
the football video sequence used in the simulations. It can be
seen that when the PSNR is too high or too low, the variation
in QoE is unnoticeable. However, the sensitivity increases in
the intermediate ranges. For example, a drop of 5 dB from
30 dB to 25 dB in PSNR leads to a dramatic fall from 80% to
40% in QoE.

Therefore, in the next section, we consider the QoE
network metrics and propose the use of DAS to enhance the
performance and ensure more fairness to the users in the
network.

6.3. Video QoE Results with DASDeployment. In this section,
we compare the performance of the two scenarios of Figure 2,
using the QoE network metrics of Section 3 along with the
RRM utilities described in Section 5. The DL results are
presented in Figure 6, whereas the UL results are shown
in Figure 7. The deployment of DAS leads to significant
enhancements for all the investigated scenarios, except for the
DL case with Max C/I scheduling, as shown in Figure 6(a),
where the enhancement is minor. As explained in the pre-
vious section, Max C/I allocates the subcarriers and power
available at the BS to users that are relatively close to the
BS, which deprives users that are further away from wireless
resources. This leads to very low QoE results for most users,
especially due to error propagation in video sequences caused
by lost frames.

A major difference between the results of Figure 6 and
Figure 4(a) is that the Max-Min scheduler leads to the best
results in the DL in the presence of DAS for all three network
QoEmetrics. In fact, Figure 6(c) shows that the performance
for the three metrics is almost perfect: the horizontal curves
indicate that the maximum QoE (88.5%) is reached for all
users. The only reason for not having 100% QoE is due to
source distortion caused by lossy compression of the video
sequence and not to loss distortion due to packet losses
over the wireless channels. The min QoE decreases only

slightly when the number of users exceeds 40, as shown
in Figure 6(c). This quasiideal performance was achieved
with a DAS deployment using six RAHs throughout the
cell.

In the UL, the best performance was achieved by PF
scheduling, as shown in Figure 7 (particularly Figure 7(b)).
The PF scheduler was also the best UL scheduler in the
absence of DAS (Figure 4(b)), although DAS has led to a
large performance enhancement for all networkQoEmetrics.
This difference between the best DL (Max-Min) and UL
(PF) schedulers is explained by the difference of power
distribution between DL and UL. In the UL, the power is
distributed over all users, where each user has an individual
limited power.The deployment of DAS helps enhance the UL
network QoE, but the limited transmit power still prevents
worst case users from achieving near-optimal performance,
which is captured by the min QoE network metric. On the
other hand, the BS is the single source of power in the DL.
The significantly larger transmit power at the BS provides
better flexibility in power and subcarrier allocations and
allows the enhancement of the QoE of the worst case users.
Furthermore, the DAS deployment enhances the channel
conditions for the users in the cell by providing transmit
antennas closer to cell edge users.This allows the achievement
of better individual QoE results with a lower transmit power
for all users, including worst case users favored by Max-Min
scheduling, which enhances the overall performance in the
network.

Finally, it should be noted that the enhancements reached
withDAS could be reachedwith other solutions. For example,
dense heterogeneous network deployments, where small cell
BSs are deployed in large numbers within the coverage
area of large macrocell BSs, would lead to the same effects
due to providing a complete (small) BS closer to the users
instead of an RAH in a DAS deployment. Nevertheless,
the DAS deployment, when possible, leads to a more cost
effective solution. Furthermore, performance enhancements
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Figure 6: DL QoE results with DAS.

for indoor users can be reached by deploying femtocell access
points (FAPs). Obviously, FAP provides an indoor BS close
to the end user, which allows the provision of high QoE by
overcoming the penetration losses of the macrocell signal,
coming from an outdoor BS located further away. The in-
depth investigation of network QoE optimization in these
specific scenarios is indeed an interesting topic for further
research.

7. Conclusions

Network QoE metrics were proposed in order to capture
the overall performance of radio resource management
algorithms in terms of video quality perceived by the end
users. Metrics corresponding to average, geometric mean,
and minimum QoE in the network were measured when
Max C/I, proportional fair, and Max-Min radio resource
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Figure 7: UL QoE results with DAS.

management algorithms were implemented in the network.
Both the uplink and downlink directions were studied.
Furthermore, the use of distributed antenna systems to
enhance the performance was considered. In the absence
of distributed antennas, results showed that proportional
fair scheduling maximizes the average network QoE both
in the uplink and downlink. It also leads to more fairness
in the uplink and in the downlink when the number of
users increases by maximizing the geometric mean QoE.
When distributed antennas are deployed, proportional fair

scheduling was able to maximize the uplink performance
in terms of network QoE, whereas Max-Min scheduling led
to remarkably excellent results in the downlink with all the
investigated network QoE metrics.
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