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The paper concerns two interacting consumer-resource pairs based on chemostat-like equations under the assumption that the
dynamics of the resource is considerably slower than that of the consumer. The presence of two different time scales enables to
carry out a fairly complete analysis of the problem. This is done by treating consumers and resources in the coupled system as
fast-scale and slow-scale variables, respectively, and subsequently considering developments in phase planes of these variables, fast
and slow, as if they are independent.When uncoupled, each pair has unique asymptotically stable steady state and no self-sustained
oscillatory behavior (although damped oscillations about the equilibrium are admitted). When the consumer-resource pairs are
weakly coupled through direct reciprocal inhibition of consumers, the whole system exhibits self-sustained relaxation oscillations
with a period that can be significantly longer than intrinsic relaxation time of either pair. It is shown that the model equations
adequately describe locally linked consumer-resource systems of quite different nature: living populations under interspecific
interference competition and lasers coupled via their cavity losses.

1. Introduction

Recently, there has been a great deal of activity aimed at
studying the synchronization of coupled oscillators of diverse
nature [1–5].The theory of synchronization implies that even
in uncoupled state the individual elementary units exhibit
self-sustained oscillations. However, no less interesting are
the systems where local coupling is essential for the very
generation of oscillations and not only for their modulation
or phase adjustment.

As far back as in early 1970s, Smale [6] constructed
a counterintuitive mathematical example of a biological
cell modeled by the chemical kinetics of four metabolites,
𝑥
1
, . . . , 𝑥

4
, such that the reaction equations dx/d𝑡 = R(x) for

the set of metabolites, x = (𝑥
1
, . . . , 𝑥

4
), had a globally stable

equilibrium. The cell is “dead,” in that the concentrations of
its metabolites always tend to the same fixed levels. When
two such cells are coupled by linear diffusion terms of
the form M(x

2
− x
1
), where M is a diagonal matrix with

the elements 𝜇
𝑘
𝛿
𝑘𝑙
, however, the resulting equations are

shown to have a globally stable limit cycle.The concentrations
of the metabolites begin to oscillate, and the system becomes
“alive.” In Smale’s words, “there is a paradoxical aspect to
the example. One has two dead (mathematically dead) cells

interacting by a diffusion process which has a tendency in
itself to equalize the concentrations. Yet in interaction, a state
continues to pulse indefinitely.”

The reaction equations involved in Smale’s model were
too general to appeal to any specific process. Since then,
inspired by his pioneer work, a number of models have been
proposed containing biologically plausible mechanisms by
which coupling of identical nonoscillating cells could gen-
erate synchronous oscillations. Among them are a model of
electrically coupled cells, characterized by an excitable mem-
brane and calcium dynamics [7]; a model in which coupling
a passive diffusive cytoplasmic bulk with an excitable mem-
brane (having an activator-inhibitor dynamics) produces a
self-sustained oscillatory behavior [8]; an analog operational-
amplifier implementation of neural cells connected by passive
coupling (where conductance of the resistive connection
simulates the diffusion coefficient) [9], and so forth. The
authors of the last model suggested a term “awakening
dynamics” for the phenomenon.

The subject of the present paper is an emergence of
collective oscillations in a system of coupled nonoscillatory
consumer-resource (CR) pairs. Owing to simplicity, this
model in a sense may be considered minimal. Our choice
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of coupled CR equations as a matter of enquiry is dictated
primarily by the ubiquity and importance of CR interactions.

CR models are the fundamental building blocks used
in mathematical description and simulation of ecosystems.
Depending on a specific nature of the involved CR inter-
actions, they can take the forms of predator-prey, plant-
herbivore, parasite-host, and victim-exploiter systems [10].
However applications of the CR models extend far beyond
the ecology and are foundwherever one can speak of win-loss
interactions. In its broad meaning, resource is any substance
which can lead to increased growth rate of the consumer
as its availability in the environment is increased. As this
takes place, the resource is certainly consumed. Consuming
the resource means tending to reduce its availability. When
carefully examined, CRmodels are identified in the following
fields: epidemiology (susceptible and infected [11, ch. 10]),
laser dynamics (photons and electrons [12, ch. 6]), labor
economics (share of labor and employment rate [13, p. 28]),
theoretical immunology (antigens and B lymphocytes [14, p.
299]), kinetics of chain chemical reactions (lipid molecules
and free radicals [15]), and in numerous other studies from
diverse disciplines.

We consider the situation when each of two consumer
species exploits one respective resource only. As explained in
the Appendix, terms “consumer” and “resource” in ourmodel
may bear not only their literal ecological meaning, but the
physicalmeaning of photon density and population inversion
in a laser cavity aswell. Both resources are being suppliedwith
constant rates like in a chemostat and consumed according
to a simple mass-action kinetics. The resources are thought
to be noninteractive. When uncoupled, self-inhibition of
the individual consumer population is due to intraspecific
interference. The coupling is assumed to originate solely
from the interspecific interference competition between the
consumers and quantitatively expressed by a bilinear term
combining the competitor densities. Thus, the per individual
loss rate of either consumer is proportional to the density of
its counterpart.

Representation of competition between species in terms
of loss-coupling dates back to the classical model of Lotka-
Volterra-Gause (LVG) [16]. The LVG model operates with
carrying capacities of the species, rather than referring
explicitly to any essential resources. As shown by MacArthur
[17], LVG equationsmay be considered as a quasi-steady-state
approximation to the CR equations accentuating resource-
mediated nature of competition, under the assumption of rel-
atively rapid dynamics of the involved resources. Thereafter
trophic competition have developed into a major descriptor
of competition in the ecological literature generally and
in conceptualizing ecosystems as systems of coupled CR
oscillators specifically [5]. In contrast to the prevailingmodels
of competition we consider the case of pure interspecific
interference competition between the consumers with no
consumption-induced contribution. Actually, our model is
nothing more nor less than LVG equations augmented with
the rate equations for the resources. Another key assumption
of the model is that the dynamics of the consumers is much
faster than that of the resources.

From a physical perspective, by and large similar equa-
tions with the like time hierarchy (fast consumer and slow
resource) have been in use for coupled longitudinal modes
in a semiconductor laser with an intracavity-doubling crystal
since the work of Baer [18].These equations have been treated
mostly numerically. The notable analytical result belongs to
Erneux and Mandel [19] who succeeded to show that the
system admits antiphase periodic solutions by reducing it
to the equations for quasi-conservative oscillator. However
this result has to do with the onset of low-amplitude quasi-
harmonic oscillations. Unlike their study, our approach deals
with well-developed high-amplitude essentially nonlinear
oscillations. Besides, we propose the model to be valid not
only for competing laser modes, but for loss-coupled lasers
as well.

We analyze the model using geometric singular per-
turbation technique according to which the full system of
equations is decomposed into fast and slow subsystems. As
we shall see below, the model reveals qualitatively different
behavior at intense and weak competition between the
consumer species. If coupling is strong, one of the consumers
wins and completely dominates. When coupling is weak, the
model exhibits low-frequency antiphase relaxation oscilla-
tionswith each species alternatively taking the dominant role.

2. The Model

The two-consumer, two-resource model we consider is the
following nondimensional system of four ordinary differen-
tial equations:

𝑢̇
1
= 𝛾
1
− (𝑢
1
+ 1) V

1
− 𝑢
1
, (1a)

𝑢̇
2
= 𝛾
2
− (𝑢
2
+ 1) V

2
− 𝑢
2
, (1b)

𝜀V̇
1
= (𝑢
1
− 𝛿V
1
− 𝜘
2
V
2
) V
1
, (1c)

𝜀V̇
2
= (𝑢
2
− 𝛿V
2
− 𝜘
1
V
1
) V
2
. (1d)

Here dots indicate differentiation with respect to the nondi-
mensional time variable 𝑡, 𝑢

𝑖
and V
𝑖
(𝑖 = 1, 2) are quantities

measuring the respective population sizes of 𝑖th resource and
𝑖th consumer, 𝛾

𝑖
> 0 (𝑖 = 1, 2) is the inflow rate of 𝑖th

resource, 0 < 𝛿 ≪ 1 is a parameter representing consumer
self-limitation, 𝜘

𝑗
> 0 (𝑗 = 1, 2 and 𝑗 ̸= 𝑖) quantifies the

inhibitory effect of 𝑗th consumer on the growth of 𝑖th con-
sumer due to coupling, and 0 < 𝜀 ≪ 1 is a singular per-
turbation parameter indicating that the dynamics of the con-
sumers is much faster than that of the resources.

It should be mentioned that, being proportional to its
dimensional prototype, V

𝑖
directly represents population den-

sity of consumer species and is always nonnegative. Quantity
𝑢
𝑖
, however, is not a population size in the true sense of the

word. It is rather an affine transformation of a population
size of the form 𝑁 → 𝑎𝑁 + 𝑏, where 𝑎 and 𝑏 are
scaling constants. This is done for reasons of mathematical
convenience. Unlike a purely linear transformation, an affine
map does not preserve the zero point, so in (1a)–(1d) 𝑢

𝑖
= −1

corresponds to zero population size in reality. Nevertheless,
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from here on we shall apply the term “resource” to 𝑢
𝑖
for

brevity.
For more details and discussion on the derivation of

the model (1a)–(1d) from different perspectives the reader is
referred to the Appendix.

3. Model Analysis and Implications

3.1. A Single CR Pair. When 𝜘
1,2
= 0, the communities are

uncoupled and completely independent. An isolated CR pair
is governed by equations:

𝑢̇ = 𝛾 − (𝑢 + 1) V − 𝑢, (2a)

𝜀V̇ = (𝑢 − 𝛿V) V. (2b)

There exist two nonnegative steady states:

𝑢 = 𝛾, V = 0; (3a)

𝑢 =

1

2

(√1 + (4𝛾 + 2 + 𝛿) 𝛿 − 1 − 𝛿) = 𝛾𝛿 + O (𝛿
2
) ,

V =
1

2𝛿

(√1 + (4𝛾 + 2 + 𝛿) 𝛿 − 1 − 𝛿)

= 𝛾 − 𝛾 (𝛾 + 1) 𝛿 + O (𝛿
2
) .

(3b)

The linearization of (2a) and (2b) takes the form

J = (
−V − 1 −𝑢 − 1

V
𝜀

𝑢 − 2𝛿V
𝜀

) , (4)

where (𝑢, V) is one of the above steady states (3a) and (3b).
At (3a), one eigenvalue is negative and one is positive:

𝜆
1
= −1, 𝜆

2
= 𝛾/𝜀. Thus (3a) is a saddle point. At (3b),

Tr J = −(𝛿/𝜀 + 1)V − 1 < 0 and det J = (1 + 2𝛿V + 𝛿)V/𝜀 > 0,
so the steady state is a stable node/focus. Specifically, focus is
the case for

(Tr J)2 − 4 det J = (𝛾2𝛿2 + O (𝛿3)) 𝜀−2

+ (−4𝛾 + O (𝛿)) 𝜀
−1
+ O (1) < 0,

(5)

whence one obtains an asymptotic estimate

𝛿 = 𝑜 (𝜀
1/2
) . (6)

Figure 1(c) illustrates this focus-node bifurcation numeri-
cally. Damped oscillations is a well-known inherent feature
of the photon-carrier dynamics in class-B lasers.

An isolated CR system (2a) and (2b) admits, therefore,
the only solution which tends asymptotically towards the
unique steady state. Periodic solutions are excluded. However
the temporal dynamics of approaching this steady state
essentially depends on the interplay between 𝜀 and 𝛿, and
is worth another look. There are in fact three timescales,
O(𝜀), O(1), and O(𝛿), involved in the CR system (2a) and
(2b) when it is overdamped, and two—O(𝜀) andO(1)—when
underdamped.

System (2a) and (2b) is singularly perturbed because the
derivative of one of its state variables, V, is multiplied by a
small positive parameter 𝜀. Singular perturbation cause two-
time-scale behavior of the system characterized by the pres-
ence of slow and fast transients in the system’s response to
external stimuli.

Replacing 𝑡 in (2a) and (2b) with a fast time variable 𝜏 =
𝑡/𝜀 and setting 𝜀 = 0 we obtain the fast subsystem:

𝑢
󸀠
= 0, (7a)

V󸀠 = (𝑢 − 𝛿V) V, (7b)

where prime means differentiation with respect to 𝜏. In the
stretched timescale 𝜏 the slow resource variable 𝑢, according
to (7a), is replaced by its initial value and reckoned as constant
parameter. Equation (7b) is of a logistic type which has the
solution

V (𝜏) =
𝑢/𝛿

1 + (𝑢/𝛿V (0) − 1) exp (−𝑢𝜏)
, (8)

valid for 𝑡 = O(𝜀).
After a lapse of considerable time (in the fast scale) V

converges to either of two fixed points depending on a sign
of 𝑢:

lim
𝜏→∞

V (𝜏) =
{

{

{

𝑢

𝛿

, if 𝑢 > 0;
0, if 𝑢 < 0.

(9)

It means that every single trajectory starting within the
positive quadrant of (𝑢, V) plane far enough from the stable
steady state (3b) will run almost parallel to the vertical axis
and hit the line 𝑢 − 𝛿V = 0 practically in a finite time of order
O(𝜀). This is shown in Figures 1(a) and 1(b).

Now set 𝜀 = 0 in (2a) and (2b) to get the slow subsystem:

𝑢̇ = 𝛾 − (𝑢 + 1) V − 𝑢, (10a)

0 = (𝑢 − 𝛿V) V. (10b)

Equation (10b) describes a slow manifold consisting of two
lines in the (𝑢, V) plane: V = 𝑢/𝛿 and V = 0. By (9), the
former attracts all the trajectories in the first quadrant, while
the latter—all those in the second. In as much as the quasi-
steady state of (7b), V = 𝑢/𝛿, is an isolated root of (10b) and V
is a stable solution of (10b) for any 𝑢 > 0; the assumptions of
Tikhonov’s theorem [20] are satisfied, and one may proceed
to approximate 𝑢 and V in terms of the solution of the reduced
system (10a) and (10b) in the slow timescale. It means that
after arriving at the slow manifold V = 𝑢/𝛿, the representing
point of the full system (2a) and (2b) will move along the
manifold toward the equilibrium point with a characteristic
velocity of order O(1).

In the immediate proximity to equilibrium (3b) the
behavior of the trajectory is determined by the type of the
fixed point, whether it is a node or a focus. Eventually this
depends on the value of 𝛿. Namely, close to a stable node,
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Figure 1: Phase portraits of an isolated CR system (2a) and (2b) for two cases when the unique stable equilibrium (3b) is a node (a), and a
focus (b). Shown are vertical (𝑢̇ = 0) and horizontal (V̇ = 0) nullclines. Steady states are marked by open circles. Numerical simulations have
been carried out with data from Table 2. The respective values of the second order loss parameter 𝛿 in (a) and (b) are 0.1 and 0.01. Typically,
consumer scale (V) is enormous; the equilibrium point happens to lie very close to the origin. For better appearance, henceforward we display
all the graphs using coordinate transformation 𝑢 → arsinh(𝑢/𝛾𝛿) and V → arsinh(V/𝛾). (c) Eigenvalues of (4) at (3b) as a function of the
second order loss 𝛿. Critical value 𝛿cr indicates a boundary between the regions of damped oscillations and aperiodic damping.

the system has two distinct real negative eigenvalues, one fast
(𝜆
1
), and one slow (𝜆

2
):

𝜆
1
= (−𝛾𝛿 + O (𝛿

2
)) 𝜀
−1
+ (𝛿
−1
+ O (1)) + O (𝜀) ,

𝜆
2
= (−𝛿

−1
+ O (1)) + O (𝜀) ,

for 1 > 𝛿 ≫ 𝜀.

(11)

Since |𝜆
1
| ≫ |𝜆

2
|, trajectories starting off the associated

eigenvector 2 (which is tangent to the slow manifold V =
𝑢/𝛿) converge to that vector along lines almost parallel to
eigenvector 1 (which is parallel to the vertical axis V). As they
approach vector 2 they become tangent to it and move along
it up to the very nodal point (Figure 1(a)). The characteristic
time constant of this final stage is of order O(𝛿).

In the vicinity of a stable focus the motion is qualitatively
different: trajectories still keep converging to the equilibrium,
but no longer follow the slow manifold V = 𝑢/𝛿 (Figure 1(b)).
The reason is that for a focus eigenvectors are complex.
Recalling that condition (6)must be true for a focus, calculate
the eigenvalues in a limit case of 𝛿 → 0:

𝜆
1,2
= −

1

2

(𝛾 + 1) ± 𝑖√

𝛾

𝜀

for 𝛿 = 0. (12)

Loosely speaking, one may think that near a focal point
separation of state variables into slow and fast ones ceases
to have its conventional meaning. There is no point to
talk about motion along the slow manifold since there are
no reduced one-dimensional systems corresponding to the
neighborhood of a focus. The perturbation parameter 𝜀



Journal of Applied Mathematics 5

50

10

10

5

5

1

1

0.5

0

0

−0.5

−1

−1−5

𝜂

𝜉

Figure 2: Phase-plane trajectory of the weakly perturbed Hamil-
tonian system (13) for 𝛾 = 1.19375, 𝜀 = 0.727273 × 10

−3, and
𝜇 = 0.157107. Near the equilibrium the oscillations are almost
harmonic.

affects only the frequency of damped oscillation, but not the
damping rate.The radius of the focal spiral uniformly shrinks
with a time constant of order O(1).

To O(1) for small 𝛿 there is a way to recast (2a) and (2b)
near the focal equilibrium (0, 𝛾) in a convenient form where
the perturbation parameter 𝜀 does not multiply any right
hand side. Namely, performing the scaling 𝑡 = 𝜇2𝑠, 𝑢 = 𝜇2𝛾𝜉,
and V = 𝛾(1 + 𝜂), where 𝜇2 = √𝜀/𝛾, one obtains

̇
𝜉 = −𝜂 − 𝜇

2
𝜉 (1 + 𝛾 (1 + 𝜂)) ,

̇𝜂 = 𝜉 (1 + 𝜂) .

(13)

Here dots stand for differentiation with respect to the time
variable 𝑠.

Equations (13) represent a weakly perturbedHamiltonian
system. For 𝜇 = 0 the system is pure Hamiltonian and admits
the first integral

𝐻 =

1

2

𝜉
2
+ 𝜂 − ln (1 + 𝜂) , (14)

which is a conserved quantity (𝐻̇ = 0).The periodic solutions
of the Hamiltonian system form a one-parameter family with
the equilibrium (0, 0) as center point. The condition 0 < 𝜇 ≪
1makes (13) quasi-conservativewith phase trajectories slowly
spiralling to the equilibrium (Figure 2).

System (13) can be rewritten as a second order differential
equation for 𝜂 only:

̈𝜂 + 𝜂 + 𝜂
2
−

̇𝜂
2

1 + 𝜂

+ 𝜇
2
(1 + 𝛾 (1 + 𝜂)) ̇𝜂 = 0. (15)

This is the equation for a nonlinear quasi-conservative
oscillator. As is seen from (15), for |𝜂| ≪ 1 and | ̇𝜂| ≪ 1

the oscillator is not only quasi-conservative, but also quasi-
linear with the frequency 𝜔

0
= 1. These conditions motivate

introducing the new variable 𝜁 = 𝜂/𝜇. As a result one obtains

̈
𝜁 + 𝜁 = 𝜇(−𝜁

2
+

̇
𝜁
2

1 + 𝜇𝜁

− 𝜇 (1 + 𝛾 + 𝜇𝛾𝜁)
̇
𝜁) . (16)

This equation of quasi-conservative and quasi-linear oscil-
lator will be used later on when analyzing the onset of
synchronous periodicity.

3.2. Coupled Communities: Stability. In the following, we will
distinguish two main types of coupling: strong, 𝜘

1,2
> 1, and

weak, 𝜘
1,2
< 1.

Physically feasible equilibria, or fixed points, (𝑢
1
, 𝑢
2
,

V
1
, V
2
), of (1a)–(1d) are those for which V

1,2
⩾ 0. We

denote the interior fixed point by 𝐹
12
= (𝑢

1
, 𝑢
2
, V
1
, V
2
),

where the subscripts stand for the consumers. Lack of a
certain index at a boundary fixed point means that the
consumer concerned is not present (extinct). Thus 𝐹

1
=

(𝑢
1
, 𝑢
2
, V
1
, 0) and 𝐹

2
= (𝑢

1
, 𝑢
2
, 0, V
2
) designate either of

one-consumer equilibria corresponding to dominance, while
𝐹 = (𝑢

1
, 𝑢
2
, 0, 0)means both consumers having been washed

out.
Model (1a)–(1d) has four feasible steady states. ToO(1) for

small 𝛿

𝐹: 𝑢
1
= 𝛾
1
, 𝑢

2
= 𝛾
2
, V

1
= 0, V

2
= 0; (17a)

𝐹
1
: 𝑢
1
= 0, 𝑢

2
= 𝛾
2
, V

1
= 𝛾
1
, V

2
= 0; (17b)

𝐹
2
: 𝑢
1
= 𝛾
1
, 𝑢

2
= 0, V

1
= 0, V

2
= 𝛾
2
;

𝐹
12
: 𝑢
1
=

𝜘
1
𝛾
1
− 𝜘
2
𝛾
2
− 𝜘
1
𝜘
2
+ 1 ± 𝑅

2 (𝜘
1
− 1)

,

𝑢
2
=

−𝜘
1
𝛾
1
+ 𝜘
2
𝛾
2
− 𝜘
1
𝜘
2
+ 1 ± 𝑅

2 (𝜘
2
− 1)

,

(17c)

V
1
=

𝑢
2

𝜘
1

, V
2
=

𝑢
1

𝜘
2

, (17d)

where

𝑅 = √(𝜘
1
𝛾
1
− 𝜘
2
𝛾
2
− 𝜘
1
𝜘
2
+ 1)
2

+ 4𝜘
2
(𝜘
1
− 1) (𝜘

1
𝛾
1
− 𝛾
2
).

(18)

Boundary equilibria 𝐹, 𝐹
1
, and 𝐹

2
always exist. 𝐹

12
exists

if
1

𝜘
2

<

𝛾
2

𝛾
1

< 𝜘
1

for 𝜘
1
> 1 ∧ 𝜘

2
> 1 (strong coupling) ,

(19)

or

𝜘
1
<

𝛾
2

𝛾
1

<

1

𝜘
2

for 𝜘
1
< 1 ∧ 𝜘

2
< 1 (weak coupling) .

(20)

In case (19) the expression with “+” in (17d) is realized, while
in case (20) the one with “−” is feasible.
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𝐹 is always unstable, because two of the four associated
eigenvalues are positive:

𝜆 (𝐹) :
𝛾
1

𝜀

,

𝛾
2

𝜀

, −1, −1. (21)

Correct to O(1) in 𝜀, the eigenvalues for 𝐹
1
and 𝐹

2
are

𝜆 (𝐹
1
) : − 1, −

1

2

(𝛾
1
+ 1) ± 𝑖√

𝛾
1

𝜀

,

𝛾
2
− 𝜘
1
𝛾
1

𝜀

;

(22a)

𝜆 (𝐹
2
) : 1, −

1

2

(𝛾
2
+ 1) ± 𝑖√

𝛾
2

𝜀

,

𝛾
1
− 𝜘
2
𝛾
2

𝜀

, (22b)

whence it follows that (17b) and (17c) are stable when

𝛾
2

𝛾
1

< 𝜘
1
, (23a)

𝛾
1

𝛾
2

< 𝜘
2
, (23b)

respectively.
The necessary and sufficient conditions for all the eigen-

values of the Jacobian matrix,

(

−V
1
− 1 0 −𝜘

2
V
2
− 1 0

0 −V
2
− 1 0 −𝜘

1
V
1
− 1

V
1

𝜀

0 0 −

𝜘
2
V
1

𝜀

0

V
2

𝜀

−

𝜘
1
V
2

𝜀

0

), (24)

evaluated at 𝐹
12
, to have negative real parts are, from the

Routh-Hurwitz criterion,

𝑐
0
> 0, (25a)

𝑐
3
> 0, (25b)

𝑐
2
𝑐
3
− 𝑐
1
> 0, (25c)

𝑐
1
(𝑐
2
𝑐
3
− 𝑐
1
) − 𝑐
0
𝑐
2

3
> 0, (25d)

where 𝑐
0
, 𝑐
1
, 𝑐
2
, and 𝑐

3
are the coefficients of the characteristic

polynomial 𝜆4 + 𝑐
3
𝜆
3
+ 𝑐
2
𝜆
2
+ 𝑐
1
𝜆 + 𝑐
0
of (24):

𝑐
0
= V
1
V
2
(𝜘
1
(V
1
− 𝜘
2
(V
1
+ V
2
+ 1)) + 𝜘

2
V
2
+ 1) 𝜀

−2
,

𝑐
1
= −𝜘
1
𝜘
2
V
1
V
2
(V
1
+ V
2
+ 2) 𝜀

−2

+ (V
1
(V
2
(𝜘
1
+𝜘
2
+ 𝜘
1
V
1
+𝜘
2
V
2
+2) + 1) + V

2
) 𝜀
−1
,

𝑐
2
= −𝜘
1
𝜘
2
V
1
V
2
𝜀
−2
+ (V
1
(V
2
(𝜘
1
+ 𝜘
2
) + 1) + V

2
) 𝜀
−1

+ (V
1
+ 1) (V

2
+ 1) ,

𝑐
3
= V
1
+ V
2
+ 2.

(26)

To analyze the validity of (25a)–(25d) we put 𝜘
2
= 𝜇𝜘
1
,

where 𝜇 = O(1). Then for (25a) to be true, 𝜘
1
= 𝑜(1)

Table 1: Existence and stability conditions of nonnegative equilibria
of system (1a)–(1d).

Equilibrium Existence Stability
𝐹 Always Unstable
𝐹
1

Always 𝛾
2
/𝛾
1
< 𝜘
1

𝐹
2

Always 𝛾
2
/𝛾
1
> 1/𝜘

2

𝐹
12

1/𝜘
2
< 𝛾
2
/𝛾
1
< 𝜘
1
for 𝜘
1,2
> 1

(strong coupling) Unstable

𝜘
1
< 𝛾
2
/𝛾
1
< 1/𝜘

2
for 𝜘
1,2
< 1

(weak coupling) 𝜘
1,2
= 𝑜(𝜀
1/2
)

should be met, which is incompatible with strong coupling,
yet possible forweak coupling. Conditions (25b) and (25c) are
always valid. As is known, (25d) guarantees a simple complex
conjugate pair of eigenvalues corresponding to a linearization
about steady state 𝐹

12
to have negative real part. For 𝜘

1
= 𝑜(1)

it boils down to

(−V
1
V
2
(V
1
+ V
2
+ 2) (V

1
+ V
2
+ V2
1
+ V2
2
) 𝜇𝜘
2

1
+ O (𝜘

3

1
)) 𝜀
−3

+ ((V
1
+ 1) (V

2
+ 1) (V

1
− V
2
)
2

+ O (𝜘
1
)) 𝜀
−2

+ O (𝜀
−1
) > 0,

(27)

whence it follows that

𝜘
1
= 𝑜 (𝜀

1/2
) . (28)

With regard to a fairly small value of 𝜀, (28) may be thought
to be broken under most physically meaningful conditions
unless coupling is infinitesimally weak. Hence, normally,
condition (25d) of the Routh-Hurwitz criterion is never
fulfilled and the interior fixed point𝐹

12
—if it exists—is always

unstable by growing oscillations.
Existence and stability conditions of possible nonnegative

equilibrium points are summarized in Table 1.

3.3. Strong Coupling: Bistability and Hysteresis. Strong cou-
pling in (1a)–(1d) makes bistability of boundary equilibria
possible, as evident from Table 1. When both 𝐹

1
and 𝐹

2

are stable with an unstable coexistence steady state 𝐹
12
, the

system being studied is able to exhibit a hysteresis effect.
Given the strong coupling, suppose that the inflowof resource
2 is kept at some constant level, 𝛾

2
= 𝛾
∗

2
, while the inflow of

resource 1, 𝛾
1
, steadily increases from a value less than 𝛾∗

2
/𝜘
1

along the line 𝛾
2
= 𝛾
∗

2
in the (𝛾

1
, 𝛾
2
) parameter plane, as

shown in Figure 3(a). Referring to (17a)–(17d) and (23a) and
(23b), one sees that initially 𝐹

1
is unstable; 𝐹

2
is stable and

𝐹
12
does not exist with the complete dominance of consumer

2. Within the interval 𝛾∗
2
/𝜘
1
< 𝛾
1
< 𝜘
2
𝛾
∗

2
steady state 𝐹

1

becomes stable yet empty and 𝐹
12
becomes existent (accord-

ing to (19)) yet unstable, so the situation remains unchanged
until point (𝜘

2
𝛾
∗

2
, 𝛾
∗

2
) in Figure 3(a) has been reached from

the left. For a larger 𝛾
1
, state 𝐹

2
gives up its stability and
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Figure 3: Hysteresis in the two-consumer, two-resource system (1a)–(1d). It takes place in the case of strong coupling 𝜘
1,2
> 1. (a) The

resource-supply parametric plane (𝛾
1
, 𝛾
2
). Consumer 1 completely dominates below the line 𝛾

1
− 𝜘
2
𝛾
2
= 0, whereas consumer 2—above the

line 𝜘
1
𝛾
1
− 𝛾
2
= 0. Both boundary steady states are stable in the region of bistability confined by the two aforementioned lines and marked

off by gray, with the dominance of either consumer being a matter of path-dependency. (b) Equilibrium level of consumer 1 as a function of
the resource supply. Numerical values of the coupling strengths are chosen to be 𝜘

1
= 1.2 and 𝜘

2
= 1.5.

the system jumps to 𝐹
1
. Consumer 2 gets washed out, while

consumer 1 takes over. If nowwe start reducing 𝛾
1
, the system

remains in 𝐹
1
until 𝛾

1
drops to the lower critical value 𝛾∗

2
/𝜘
1
,

beyond which 𝐹
1
is no longer stable and there is a reverse

jump to 𝐹
2
. In other words, as 𝛾

1
progresses along 𝛾

2
= 𝛾
∗

2

there is a discontinuous switch from consumer 2 to consumer
1 at 𝜘

2
𝛾
∗

2
, while as 𝛾

1
retraces its steps, there is a discon-

tinuous switch from consumer 1 to consumer 2 at 𝛾∗
2
/𝜘
1
.

Figure 3(b) illustrates how the steady-state level of consumer
1 responds to infinitesimally slow changes of the inflow rate
of its own resource. The hysteresis is made possible thanks
to the concurrent stability of both boundary equilibria and
instability of the interior fixed point for 𝛾

1
∈ (𝛾
∗

2
/𝜘
1
, 𝜘
2
𝛾
∗

2
).

In terms of electronics, such a situation would describe a
flip-flop circuit—bistable multivibrator—having two stable
conditions, each corresponding to one of two alternative
input signals.

3.4. Weak Coupling: Antiphase Relaxation Oscillations. As
seen from Table 1, the very existence of interior equilibrium
𝐹
12

in a case of weak coupling (condition (20)) implies
instability of both boundary fixed points, 𝐹

1
and 𝐹

2
. System

(1a)–(1d) happens to possess four nonnegative steady states,
none of them being stable. As we have found, 𝐹

12
is unstable

through growing oscillations. In such a case, themodel would
thus be expected to have a limit cycle in its four-dimensional
phase space corresponding to self-sustained oscillations.

As is known, Hopf bifurcations come in both super- and
subcritical types. If a small, attracting limit cycle appears
immediately after the fixed point goes unstable, and if its
amplitude shrinks back to zero as the parameter is reversed,
the bifurcation is supercritical; otherwise, it’s probably sub-
critical, in which case the nearest attractor might be far from
the fixed point, and the system may exhibit hysteresis as the
parameter is reversed.

To check whether the bifurcation is supercritical or sub-
critical, we employ the averaging method [21]. For negligible
𝛿 the problem reduces to weakly coupled quasi-conservative
oscillators. Introduce the new time 𝑠 = 𝑡/𝜇2, where 𝜇2 =
√𝜀/𝛾
1
. The new dynamic variables 𝜉

1,2
and 𝜂
1,2

are defined by
formulas 𝜉

1,2
= 𝑢
1,2
/𝜇
2
𝛾
1,2

and 𝜂
1,2
= (V
1,2
−𝛾
1,2
)/𝛾
1,2
.Thus the

variables 𝜉
1,2

and 𝜂
1,2

are the respective deviations of 𝑢
1,2

and
V
1,2

from their standalone steady-state values.With these new
variables equations (1a)–(1d) become

̇
𝜉
1
= − 𝜂

1
− 𝜇
2
𝜉
1
(1 + 𝛾

1
(1 + 𝜂

1
)) , (29a)

̇𝜂
1
= 𝜉
1
(1 + 𝜂

1
) − (

𝛾
2

𝛾
1

)𝜌
2
(1 + 𝜂

1
) (1 + 𝜂

2
) , (29b)

̇
𝜉
2
= − 𝜂

2
− 𝜇
2
𝜉
2
(1 + 𝛾

2
(1 + 𝜂

2
)) , (29c)

̇𝜂
2
= (

𝛾
2

𝛾
1

) 𝜉
2
(1 + 𝜂

2
) − 𝜌
1
(1 + 𝜂

1
) (1 + 𝜂

2
) , (29d)
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where dots mean differentiation with respect to 𝑠 and 𝜌
1,2
=

𝜘
1,2
/𝜇
2 are the scaled coupling strengths.

For brevity, we restrict our consideration to the case of
identical CR pairs and symmetric coupling setting 𝛾

1,2
= 𝛾

and 𝜌
1,2
= 𝜌. With these assumptions system (29a)–(29d)

can be transformed to two coupled second-order equations
for quasi-conservative, quasi-linear oscillators. This can be
done as follows. First, (29b) and (29d) are solved for 𝜉

1
and

𝜉
2
. Secondly, (29b) and (29d) are differentiated with respect

to time to get ̈𝜂
1
and ̈𝜂
2
. Thirdly, 𝜉

1
, 𝜉
2
, ̇𝜉
1
, and ̇

𝜉
2
are plugged

into the equations for ̈𝜂
1
and ̈𝜂
2
. And finally, 𝜂

1,2
are replaced

by the new variables 𝜁
1,2
: 𝜂
1,2
= 𝜇𝜁
1,2
.

As a consequence, we arrive at the following coupled
equations:

̈
𝜁
1,2
+ 𝜁
1,2
= −𝜌

̇
𝜁
2,1
+ 𝜇𝑍
(1,2)

1
+ 𝜇
2
𝑍
(1,2)

2
+ O (𝜇

3
) , (30)

where

𝑍
(1,2)

1
= − 𝜌 (𝛾 + 1) − 𝜁

2

1,2
+
̇
𝜁
2

1,2
− 𝜌𝜁
1,2
̇
𝜁
2,1
,

𝑍
(1,2)

2
= − (𝛾 + 1) (

̇
𝜁
1,2
+ 𝜌𝜁
2,1
) − 𝜁
1
(𝜌 (2𝛾 + 1) +

̇
𝜁
2

1,2
) .

(31)

We seek the solution of (30) in the quasi-harmonic form

𝜁
1,2
= 𝑎
1,2

cos (𝜔𝑠 + 𝜑
1,2
) ,

̇
𝜁
1,2
= − 𝑎

1,2
𝜔 sin (𝜔𝑠 + 𝜑

1,2
) ,

(32)

where 𝑎
1,2

and 𝜑
1,2

are slowly varying amplitudes and phases,
and 𝜔 is the frequency of the synchronous oscillations. Dif-
ferentiating the assumed form of 𝜁

1,2
and equating the result

to the assumed formof ̇𝜁
1,2

yields the first pair of relationships
between 𝑎

1,2
and 𝜑

1,2
:

̇𝑎
1,2

cos (𝜔𝑠 + 𝜑
1,2
) − 𝑎
1,2
𝜑̇
1,2

sin (𝜔𝑠 + 𝜑
1,2
) = 0. (33)

Then, differentiating ̇
𝜁
1,2

and substituting the resulting
expression for ̈𝜁

1,2
aswell as the assumed forms for 𝜁

1,2
and ̇

𝜁
1,2

into (30) yields the second pair of equations relating 𝑎
1,2

and
𝜑
1,2
. Separating into equations for the rate of change of 𝑎

1,2

and 𝜑
1,2

one obtains

̇𝑎
1,2
= 𝜔
−1 sin (𝜔𝑠 + 𝜑

1,2
) (𝐴
(1,2)

0
+ 𝜇𝐴
(1,2)

1
+ 𝜇
2
𝐴
(1,2)

2
) ,

𝜑̇
1,2
= 𝑎
−1

1,2
𝜔
−1 cos (𝜔𝑠 + 𝜑

1,2
) (𝐴
(1,2)

0
+ 𝜇𝐴
(1,2)

1
+ 𝜇
2
𝐴
(1,2)

2
) ,

(34)

where

𝐴
(1,2)

0
= −𝑎
1,2
(𝜔
2
− 1) cos (𝜔𝑠 + 𝜑

1,2
)

− 𝜌𝑎
2,1
𝜔 sin (𝜔𝑠 + 𝜑

2,1
) ,

𝐴
(1,2)

1
= 𝑎
1,2
(−𝑎
1,2
𝜔
2sin2 (𝜔𝑠 + 𝜑

1,2
) + 𝑎
1,2
cos2 (𝜔𝑠 + 𝜑

1,2
)

−𝜌𝑎
2,1
𝜔 cos (𝜔𝑠 + 𝜑

1,2
) sin (𝜔𝑠 + 𝜑

2,1
) )

+ 𝜌 (𝛾 + 1) ,

𝐴
(1,2)

2
= 𝑎
1,2

cos (𝜔𝑠 + 𝜑
1,2
)

× (𝑎
2

1,2
𝜔
2sin2 (𝜔𝑠 + 𝜑

1,2
) + 𝜌 (2𝛾 + 1)) + (𝛾 + 1)

× (𝜌𝑎
2,1

cos (𝜔𝑠 + 𝜑
2,1
) − 𝑎
1,2
𝜔 sin (𝜔𝑠 + 𝜑

1,2
)) .

(35)

To this point no approximations have been made except
of the expansion in powers of 𝜇 in (30). Averaging equations
(34) over the period 2𝜋/𝜔 and considering 𝑎

1,2
, 𝜑
1,2
, ̇𝑎
1,2

and 𝜑̇
1,2

to be constants while performing the averaging, one
obtains the following equations describing the slow variations
of 𝑎
1,2

and 𝜑
1,2
:

̇𝑎
1,2
=

1

2𝜋

∫

2𝜋/𝜔

0

(𝐴
(1,2)

0
+ 𝜇𝐴
(1,2)

1
+ 𝜇
2
𝐴
(1,2)

2
)

× sin (𝜔𝑠 + 𝜑
1,2
) d𝑠

= −

𝜌𝑎
2,1
𝜔 cos𝜙 + 𝜇2 (𝛾 + 1) (𝑎

1,2
𝜔 − 𝜌𝑎

2,1
sin𝜙)

2𝜔

,

(36a)

𝜑̇
1,2
=

1

2𝜋𝑎
1,2

∫

2𝜋/𝜔

0

(𝐴
(1,2)

0
+ 𝜇𝐴
(1,2)

1
+ 𝜇
2
𝐴
(1,2)

2
)

× cos (𝜔𝑠 + 𝜑
1,2
) d𝑠

=

𝜌 (𝑎
2

1,2
+ 𝑎
2

2,1
) sin𝜙

2𝑎
1,2
𝑎
2,1

+ O (𝜇
2
) ,

(36b)

where 𝜙 = 𝜑
1,2
− 𝜑
2,1
.

Any stable fixed points of (36a) and (36b) couldmean that
the phase difference between the coupled oscillators do not
change in time (𝜙 = const), and the oscillations are periodic
with constant amplitudes 𝑎

1,2
. Thus, finding the conditions

when these fixed points are stable would mean finding the
conditions at which the synchronization occurs. Equations
(36a) and (36b) show that the first approximation of the
averaging method does not predict any nonzero steady-state
amplitudes. The reason for this seems to lie in the fact that
the even terms in (35) do not contribute to the value of
integral (36a). To take account of them we have to employ
in what follows the second approximation of the averaging
method. As to the phase difference, 𝜙, we see that stable is
only antiphase steady-state regime with 𝜙 = 𝜋.

Let R be the vector of the right-hand sides of (34).
Also denote the operation of averaging by the angle brackets
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⟨⋅⟩. Then ⟨R⟩ will mean the right-hand sides of (36a) and
(36b). Following the conventional procedure we retain only
vibrational terms in R,

̃R = R − ⟨R⟩ , (37)

and integrate ̃R up to an arbitrary function of the amplitudes
chosen for simplicity to be equal to zero:

̂R = ∫̃Rd𝑠. (38)

Now, upon calculation of the Jacobian matrix 𝜕R/
𝜕(𝑎
1
, 𝑎
2
, 𝜑
1
, 𝜑
2
)
𝑇, we can write down the second approxima-

tion symbolically as

( ̇𝑎
1
, ̇𝑎
2
, 𝜑̇
1
, 𝜑̇
2
)
𝑇

= ⟨R⟩ + ⟨ 𝜕R
𝜕(𝑎
1
, 𝑎
2
, 𝜑
1
, 𝜑
2
)
𝑇

̂R⟩. (39)

(The terms now neglected by averaging are of a higher order
of magnitude with respect to the small parameters than the
terms neglected in the first approximation.)

Due to the symmetry of the case we may set 𝑎
1
= 𝑎
2
= 𝑎

enabling us to present the resulting equations of the second
approximation as compact as possible:

̇𝑎 = −

1

2

𝑎𝜌 cos𝜙

+

𝜇
2

24𝜔
3
𝑎 (𝜌 (𝜔 cos𝜙 (𝑎2 (2𝜔2 + 5) + 12𝜌 (𝛾 + 1))

+ 2𝜔
2 sin𝜙 (3𝑎2𝜌 cos𝜙 − 𝜌𝑎2 + 6 (𝛾 + 1))

− 2𝑎
2
𝜔 (𝜔
2
+ 1) cos 2𝜙

−6 (𝛾 + 1) sin𝜙) − 12 (𝛾 + 1) 𝜔3) ,
(40a)

̇
𝜙 = 𝜌 sin𝜙

+

𝜇
2

24𝜔
2
𝜌 sin𝜙 (3𝑎2 (3𝜔2 − 10) + 8𝑎2 (𝜔2 + 1) cos𝜙

−24𝜌 (𝛾 + 1) ) .

(40b)

The stable steady-state solution for the phase difference is
𝜙 = 𝜋. Inserting this value into (40a) and putting ̇𝑎 = 0 we
get three different steady-state solutions for 𝑎 (including the
trivial one), of which only one,

𝑎 =

2√3√𝜌𝜔
2
− 𝜇
2
(𝛾 + 1) (𝜌

2
+ 𝜔
2
)

𝜇√𝜌 (4𝜔
2
+ 7)

, (41)

being stable. Formula (41) indicates a soft transition to
sustained oscillations as the coupling parameter 𝜌 is progres-
sively increased from a critical value. Thus we expect that the
Hopf bifurcation is supercritical.

Figure 4 plots (𝑢
1
, V
1
) phase planes for coupling strength

below and above the Hopf bifurcation. When 𝜘
1,2

= 0

(consumers are decoupled) the internal equilibrium is a stable
focus (Figure 4(a)). For𝜘

1,2
= 0.011 (very weak coupling; just

below the bifurcation) 𝐹
12
is still a stable focus, though a very

gently winding one: the decay is slow (Figure 4(b)). For 𝜘
1,2
=

0.012 (very weak coupling; just above the bifurcation) there is
an unstable focus at 𝐹

12
and a stable oval limit cycle of small

size representing low-amplitude quasi-harmonic oscillations
(Figure 4(c)). On further increasing of coupling strength the
limit cycle continuously grows in size and takes an irregular
shape indicating nonlinearity of the synchronous oscillations
(Figures 4(d)–4(f)).

As a practical matter, the range of very weak coupling not
too far away from theHopf bifurcation, where oscillations are
quasi-linear and quasi-harmonic, is of less concern to us than
is the range of far more feasible not-too-weak coupling, cor-
responding to well-developed substantially nonlinear oscilla-
tions.We are going to demonstrate that given conditions (20),
system (1a)–(1d) exhibits relaxation oscillatory behavior, with
the two coupled CR pairs being antiphase locked.

By the assumption, 0 < 𝜀 ≪ 1, meaning that system (1a)–
(1d) is singularly perturbed. The slow variables are resources,
𝑢
1
and 𝑢

2
, and the fast variables are consumers, V

1
and

V
2
. The standard practice of reducing such systems is the

adiabatic elimination of the fast variables, when the left-
hand side in the fast equation is replaced by zero, thus
turning this differential equation into an algebraic equation.
It is assumed that the fast variables quickly relax to their
momentary equilibrium, quasi-steady-state, values obtained
from the algebraic equations, in which the slow variables are
treated as parameters. “Frozen” slow variables do not move
substantially in this short adaptation time of the fast variables.
Quasi-steady-state values of the fast variables can then be
expressed by values of the slow variables. The fast variables
hastily adapt to the motion of the slow variables. The former
are entrained by the latter. The utility of quasi-steady-state
approximation is that it allows us to reduce the dimension
of the system by retaining only slow variables in the model.
One has to establish the validity of the adiabatic elimination
in each specific case by using the recommendations of the
singular perturbation theory [22]. In particular, Tikhonov’s
theorem [20] requires the quasi-steady state of the fast
equations to be stable.

To decompose the full system (1a)–(1d) into fast and slow
subsystems, introduce fast time variable 𝜏 = 𝑡/𝜀. Now rescale
(1a)–(1d) by replacing 𝑡 with 𝜏𝜀 and, after taking 𝜀 = 0, it
becomes

𝑢
󸀠

1
= 𝑢
󸀠

2
= 0, (42a)

V󸀠
1
= (𝑢
1
− 𝛿V
1
− 𝜘
2
V
2
) V
1
, (42b)

V󸀠
2
= (𝑢
2
− 𝛿V
2
− 𝜘
1
V
1
) V
2
, (42c)

where prime means differentiation with respect to 𝜏. This
is the fast subsystem, where 𝑢

1
and 𝑢

2
are replaced by

their initial values and treated as parameters. It yields inner
solution, valid for 𝑡 = O(𝜀).
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Figure 4: The development of a limit cycle in model (1a)–(1d) in relation to the coupling strength. The projections of phase trajectories and
fixed points on (𝑢

1
, V
1
) plane are presented. “∙” and “∘” mark the respective stable and unstable internal steady state 𝐹

12
; “×” stands for the

boundary steady state 𝐹
1
. (a) 𝜘

1,2
= 0: CR pairs are decoupled; each has unique stable steady state. (b) 𝜘

1,2
= 0.011: very weak coupling; the

spiral winds only algebraically fast. The system is on the verge of the Hopf bifurcation. (c) 𝜘
1,2
= 0.012: very weak coupling; the stable limit

cycle is just born. (d) 𝜘
1,2
= 0.025: weak coupling; nonlinear oscillations. (e) 𝜘

1,2
= 0.05: moderate coupling; the limit cycle passes near the

basin of the saddle point. (f) 𝜘
1,2
= 0.6: moderate coupling; the limit cycle is about to merge with a heteroclinic cycle.

Setting 𝜀 = 0 in (1a)–(1d) leads to the slow subsystem

𝑢̇
1
= 𝛾
1
− (𝑢
1
+ 1) V

1
− 𝑢
1
, (43a)

𝑢̇
2
= 𝛾
2
− (𝑢
2
+ 1) V

2
− 𝑢
2
, (43b)

0 = (𝑢
1
− 𝛿V
1
− 𝜘
2
V
2
) V
1
, (43c)

0 = (𝑢
2
− 𝛿V
2
− 𝜘
1
V
1
) V
2
, (43d)

which produces outer solution, valid for 𝑡 = O(1). In this
singular limit as 𝜀 → 0, the subsystem defines a slow flow on
the surface (slow manifold) given by (43c) and (43d). Outer
solution is valid for those 𝑢

1
and 𝑢

2
, for which the quasi-

steady states of the fast subsystem are stable.
We anticipate the dynamics of the full system (1a)–(1d) in

its four-dimensional phase space (𝑢
1
, 𝑢
2
, V
1
, V
2
) to consist of

two typical motions: quickly approaching the slow manifold
(43c) and (43d), and slowly sliding over it until a leave
point (where the solution disappears) is reached. After that,

the representing point may possibly jump to another local
solution of (43c) and (43d).

Thus, we ought to find all quasi-steady states of the fast
subsystem (42a)–(42c), map the domains of their stability
onto the slow phase plane (𝑢

1
, 𝑢
2
), and then investigate the

dynamics of the slow subsystem (43a)–(43d) with piecewise
continuous functions.

Fast subsystem (42a)–(42c), which is nothing but the
conventional LVG model, has four quasisteady-states—three
boundary and one interior—denoted by𝑄 (the slow variables
are deemed to be frozen):

𝑄: Ṽ
1
= 0, Ṽ

2
= 0; (44a)

𝑄
1
: Ṽ
1
=

𝑢
1

𝛿

, Ṽ
2
= 0; (44b)

𝑄
2
: Ṽ
1
= 0, Ṽ

2
=

𝑢
2

𝛿

; (44c)
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𝑄
12
: Ṽ
1
=

𝜘
2
𝑢
2
− 𝛿𝑢
1

𝜘
1
𝜘
2
− 𝛿
2
, Ṽ

2
=

𝜘
1
𝑢
1
− 𝛿𝑢
2

𝜘
1
𝜘
2
− 𝛿
2
. (44d)

Existence and stability of these quasi-steady states are deter-
mined by (𝑢

1
, 𝑢
2
)—position of a representing point in the

phase plane of the slow subsystem, shown in Figure 5(a).
𝑄, 𝑄
1
and 𝑄

2
always exist for all 𝑢

1
and 𝑢

2
from the

positive quadrant of the slow phase plane. For not-too-weak
coupling, such that 𝜘

1
𝜘
2
> 𝛿
2, 𝑄
12

exists for all 𝑢
1
and 𝑢

2

satisfying the condition 𝛿𝑢
1
/𝜘
2
< 𝑢
2
< 𝑢
1
𝜘
1
/𝛿, that is, within

the opening of the angle formed by lines 𝛿𝑢
1
− 𝜘
2
𝑢
2
= 0 and

𝜘
1
𝑢
1
− 𝛿𝑢
2
= 0 in Figure 5(a). The opening shrinks as the

coupling strengths get weaker.
Jacobian matrix of the fast subsystem,

(

𝑢
1
− 2𝛿Ṽ

1
− 𝜘
2
Ṽ
2

𝜀

0 −

𝜘
2
Ṽ
1

𝜀

−

𝜘
1
Ṽ
2

𝜀

𝑢
2
− 2𝛿Ṽ

2
− 𝜘
1
Ṽ
1

𝜀

) , (45)

has the following sets of eigenvalues at (44a)–(44d):

𝜆 (𝑄) :
𝑢
1

𝜀

,

𝑢
2

𝜀

; (46a)

𝜆 (𝑄
1
) : − 𝜘1𝑢1

𝜀𝛿

+

𝑢
2

𝜀

, −

𝑢
1

𝜀

; (46b)

𝜆 (𝑄
2
) : − 𝜘2𝑢2

𝜀𝛿

+

𝑢
1

𝜀

, −

𝑢
2

𝜀

; (46c)

𝜆 (𝑄
12
) : ± √

𝑢
1
𝑢
2
+ O (𝛿)

𝜀

. (46d)

Based on (46a)–(46d) one concludes that 𝑄 (the origin) is
always an unstable node for all 𝑢

1
and 𝑢

2
from the positive

quadrant of the slow phase plane.𝑄
1
is a stable node for 𝛿𝑢

2
<

𝜘
1
𝑢
1
, that is, below the line 𝜘

1
𝑢
1
− 𝛿𝑢
2
= 0 in Figure 5(a),

otherwise it is a saddle. Similarly,𝑄
2
is a stable node for 𝛿𝑢

1
<

𝜘
2
𝑢
2
, that is, above the line 𝛿𝑢

1
−𝜘
2
𝑢
2
= 0 in the plane of slow

variables, otherwise it is a saddle. The interior quasi-steady
state, 𝑄

12
, is always a saddle.

The performed typology of fixed points of the fast
subsystem (42a)–(42c) leads to three qualitatively different
phase portraits depicted by Figures 5(b)–5(d).

Suppose initially 𝑄
1
is stable and 𝑄

2
is not. Consumer 1

completely dominates. This corresponds to slow variables 𝑢
1

and 𝑢
2
being somewhere below the line 𝛿𝑢

1
− 𝜘
2
𝑢
2
= 0 of

Figure 5(a). Fast subsystem (42a)–(42c) has phase portrait of
a type shown in Figure 5(b). While 𝑢

1
remains much greater

than 𝛾
1
𝛿, the dynamics of the resources (treated as bifurcation

parameters in reference to the consumers) is described by a
system of two independent equations:

𝑢̇
1
= 𝛾
1
− (

𝑢
1
+ 1

𝛿

+ 1) 𝑢
1
, (47a)

𝑢̇
2
= 𝛾
2
− 𝑢
2
, (47b)

which is a piecewise version of the slow subsystem (43a)–
(43d) for V

1
= 𝑢
1
/𝛿 and V

2
= 0. System (47a) and (47b) has

stable steady state

𝑢̂
(1)

1
=

1

2

(𝑟
1
− 𝛿 − 1) = 𝛾

1
𝛿 + O (𝛿

2
) ,

𝑢̂
(1)

2
= 𝛾
2
,

(48)

where 𝑟
1
= √1 + 𝛿(4𝛾

1
+ 2 + 𝛿). This equilibrium lies in the

upper left corner of Figure 5(a).
While heading to (48), the trajectory crosses the line 𝛿𝑢

1
−

𝜘
2
𝑢
2
= 0 and enters the domain of bistability of both 𝑄

1
and

𝑄
2
. Fast subsystem (42a)–(42c) takes new phase portrait of

a type presented by Figure 5(c). However the dominance of
consumer 1 persists.

Upon introducing the deviations 𝜉
1
and 𝜂

2
from the

respective steady states (48), the system (47a)-(47b) become

̇
𝜉
1
= −

𝜉
1
(𝑟
1
+ 𝜉
1
)

𝛿

, (49a)

̇𝜂
2
= −𝜂
2
, (49b)

whence one finds

𝜉
1
(𝑡) =

𝑟
1

(𝑟
1
/𝜉
1
(0) + 1) exp (𝑟

1
𝑡/𝛿) − 1

,

𝜂
2
(𝑡) = 𝜂

2
(0) exp (−𝑡) .

(50)

It follows from (50), that the dynamics of variable 𝑢
1
is

faster than that of 𝑢
2
due to small 𝛿. Clearly, the representing

point must have relaxed to the vertical line 𝑢
1
= 𝛾
1
𝛿 well

before approaching the horizontal line𝑢
2
= 𝛾
2
. Further devel-

opments depend on whether the involved individual CR sys-
tems are overdamped or underdamped.

If 𝛿 is great enough to damp intrinsic oscillations in the
constituent CR pairs, the representing point will slide along
the nullcline 𝑢̇

1
= 0 (slow manifold of the system (47a)-

(47b)), steadily tending to point (48) (Figure 6(a)).
If 𝛿 is small in terms of the condition (6), then the

individual CR pairs are underdamped. In the immediate
vicinity of 𝑢̂(1)

1
the division of variables on slow and fast ones

loses itsmeaning and reduced (47a) is no longer valid. Instead
of (47a) one should write down two equations:

𝑢̇
1
= 𝛾
1
− (𝑢
1
+ 1) V

1
− 𝑢
1
, (51a)

𝜀V̇
1
= (𝑢
1
− 𝛿V
1
) V
1
. (51b)

However this system is identical to (3a) and (3b) for an
uncoupled CR system and, in essence, describes convergence
to a focal point via dying oscillations. In the plane of slow
variables (𝑢

1
, 𝑢
2
) these oscillations manifest themselves in

damped transverse fluctuations superimposed on the inde-
pendent vertical motion along the nullcline 𝑢̇

1
= 0 (𝑢

1
=

𝑢̂
(1)

1
≈ 𝛾
1
𝛿) toward point (48) (Figure 6(b)).

By virtue of the condition (20), the trajectory has to cross
the line 𝜘

1
𝑢
1
− 𝛿𝑢
2
= 0 on its way toward the neighborhood

of steady state (48). As soon as this has happened, node 𝑄
1
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Figure 5: (a) Phase plane of the slow subsystem (43a)–(43d) sectored (by dashed lines) into stability domains of the corresponding quasi-
steady states of the fast subsystem (42a)–(42c). Both boundary quasi-steady states, each corresponding to the situation when either of the
two consumers completely dominates, are stable within the opening of the angle formed by the dashed lines. Lines 𝑢

1
= 𝛾
1
𝛿 and 𝑢

2
= 𝛾
2

are the respective nullclines 𝑢̇
1
= 0 and 𝑢̇

2
= 0 of the piecewise subsystem (47a)-(47b). Lines 𝑢

1
= 𝛾
1
and 𝑢

2
= 𝛾
2
𝛿 mean the same for the

piecewise subsystem (52a)-(52b). Intersections of the nullclines (marked by the open circles) are equilibria of the associated piecewise slow
subsystems, and they must lie outside the above-mentioned opening to allow for the relaxation oscillations. (b), (c), and (d) are the respective
phase portraits of the fast subsystem (42a)–(42c) generated by points “b,” “c,” and “d” in the slow phase plane (a).
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Figure 6:The limit cycle of system (1a)–(1d) projected onto phase plane of the slow variables in the cases of (a) strong second-order damping,
and (b) underdamping.The parameters of the model chosen for numerical simulation are 𝜀 = 0.727273×10−3, 𝛾

1
= 1.19375, 𝛾

2
= 1, 𝜘

1
= 0.5,

𝜘
2
= 0.8, 𝛿 = 0.1 (a), and 𝛿 = 0.01 (b).

in the plane (V
1
, V
2
) will be absorbed by saddle 𝑄

12
. A new

phase portrait of the fast subsystem (42a)–(42c) takes on the
appearance of Figure 5(d). Consumer 1 rapidly washes out,
and the alternative boundary quasi-steady state 𝑄

2
becomes

stable, with consumer 2 dominating.
In terms of the four-dimensional phase space of full

system (1a)–(1d), the representing point is now in the other
stable branch of the slow manifold (43c) and (43d). The
motion over this alternative branch obeys the piecewise
subsystem:

𝑢̇
1
= 𝛾
1
− 𝑢
1
, (52a)

𝑢̇
2
= 𝛾
2
− (

𝑢
2
+ 1

𝛿

+ 1) 𝑢
2
, (52b)

with the initial conditions 𝑢
1
(0) = 𝑢̂

(1)

1
≈ 𝛾
1
𝛿 and 𝑢

2
(0) =

𝛾
1
𝜘
1
.
Thedynamics of (52a) and (52b) is basically similar to that

of (47a) and (47b) analyzed above. System (52a) and (52b) has
a stable steady state:

𝑢̂
(2)

1
= 𝛾
1
, 𝑢̂

(2)

2
=

1

2

(𝑟
2
− 𝛿 − 1) = 𝛾

2
𝛿 + O (𝛿

2
) , (53)

where 𝑟
2
= √1 + 𝛿(4𝛾

2
+ 2 + 𝛿). This equilibrium lies in the

lower right corner of Figure 5(a).
Variable 𝑢

2
, being more rapid in comparison to 𝑢

1
,

quickly enters the neighborhood of the nullcline 𝑢̇
2
= 0

given by 𝑢
2
= 𝑢̂
(2)

2
≈ 𝛾
2
𝛿 and then—depending on the value

of 𝛿—finally approaches the nullcline either monotonically

(Figure 6(a)) or via damped oscillations according to equa-
tions

𝑢̇
2
= 𝛾
2
− (𝑢
2
+ 1) V

2
− 𝑢
2
, (54a)

𝜀V̇
2
= (𝑢
2
− 𝛿V
2
) V
2
. (54b)

(Figure 6(b)). System (54a)-(54b) describes underdamped
intrinsic oscillations of uncoupled consumer 2 for small 𝛿.

At the same time, 𝑢
1
steadily and independently tends to

𝑢̂
(2)

1
= 𝛾
1
. Again, because point (53) is located below the line

𝛿𝑢
1
− 𝜘
2
𝑢
2
= 0 (on the strengths of the condition (20)), the

trajectorywould certainly cross that line at a point (𝛾
2
𝜘
2
, 𝛾
2
𝛿),

whereupon node 𝑄
2
would be absorbed by saddle 𝑄

12
. The

system returns to the first branch of the slow manifold, and
thereby the oscillatory cycle gets closed.

4. Results and Discussion

Figure 7 shows the results of a numerical integration of
system (1a)–(1d) for the case of underdamped individ-
ual consumer-research pairs. The two coupled communi-
ties execute self-sustained relaxation oscillations which are
antiphase-locked.

The resources 𝑢
1
and 𝑢

2
demonstrate sawtooth periodic

pulses. The oscillation range for the resource levels remains
finite and, what is important, it does not depend on the intrin-
sic second order loss 𝛿 (measuring intraspecific interference).

The times of motion over either branch of the slow
manifold (43c) and (43d) add up to give a predominant
contribution to the period of oscillations, 𝑇. These times are
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Figure 7: Time profiles of antiphase relaxation oscillations in two coupled CR pairs modeled by (1a)–(1d). (a) and (b) show the, respective,
resource 1 and consumer 1; (c) and (d) display the, respective, resource 2 and consumer 2. Numerical values of the parameters are those
mentioned in the caption of Figure 6(b).

determined mainly by the dynamics of the slow resource
variables 𝑢

1
and 𝑢

2
and, to a zeroth approximation in 𝜀 and

𝛿, can be found as solutions to the equations of motion (52a)
and (47b) with respective boundary conditions (0, 𝛾

2
𝜘
2
) and

(0, 𝛾
1
𝜘
1
). In this way one obtains a quite simple estimate for

the period:

𝑇 = ∫

𝛾
2
𝜘
2

0

d𝑧
𝛾
1
− 𝑧

+ ∫

𝛾
1
𝜘
1

0

d𝑧
𝛾
2
− 𝑧

= ln 1

1 − 𝜘
2
(𝛾
2
/𝛾
1
)

+ ln 1

1 − 𝜘
1
(𝛾
1
/𝛾
2
)

.

(55)

It is interesting that, according to (55), the period depends on
the ratio of the two resource inflows, 𝛾

1
and 𝛾
2
, rather than on

each of them individually, and does not depend completely on
concrete value of 𝛿.

The consumers V
1
and V

2
change periodically between

extinction and respective constant levels 𝛾
1
and 𝛾
2
. Very brief

transient from zero to flat nonzero level within each cycle
is accompanied by a highly pronounced spiky overshoot.
The magnitude of the spike tends to infinity as 𝛿 → 0,
in view of (44b) and (44c). Depending on the intensity of
intraspecific interference, the overshoot may or may not be
followed by a tail of fading high-frequency oscillations, when
a consumer variable falls below its steady-state value and

then bounces back above, taking some time to settle close
to its steady-state value. In signal processing, such a kind of
transient oscillation is known as “ringing.”There is no ringing
if the involved CR pair does not oscillate due to significant
intraspecific interference. Ringing takes place if intraspecific
interference is negligible and therefore the involved CR pair
is characterized by underdamped intrinsic oscillations. The
“pitch” of ringing is just the frequency of these intrinsic
oscillations.

One notices that when one consumer is very scanty, the
coupled system behaves like an isolated CR pair (2a) and
(2b). Another essential feature of the dynamics is the role of
the resource variables in determining when the consumers
emerge and wash out. When 𝑢

1
, for example, rises above

a threshold value (determined by the amount of losses
experienced by V

1
), then V

1
comes into dominance causing V

2

in turn to disappear. So except for their transient spiking and
ringing, the consumer levels, either flat nonzero or essentially
zero, are determined by the hysteretic cycling of the respective
resources.

Scrutinizing a cycle of consumer oscillations one may
distinguish four parts within it:

(1) V
1
is essentially zero, while V

2
is approximately equal

to its uncoupled steady-state value, 𝛾
2
. 𝑢
1
increases
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due to its inflow until it overcomes losses for con-
sumer 1;

(2) with a sufficient resource stock, V
1
now emerges. The

population exhibits a spike due to the fast time scale
of the consumer equations. The sharp increase in
population saturates the available resource level, so 𝑢

1

drops. Cross-losses cause V
2
to wash out;

(3) V
1
and 𝑢
1
relax to quasi-steady-state values, as if there

were only one isolated CR pair. V
2
is essentially zero.

𝑢
2
is increasing, like 𝑢

1
did in part 1;

(4) 𝑢
2
surpasses the losses, V

2
emerges and the subsequent

cross-losses cause V
1
to wash out. The spiking V

2
also

causes a substantial decrease in the available stock of
the associated resource. The sequence begins again.

Presenting his famous model Smale remarked that “it is
more difficult to reduce the number of chemicals to two or
even three” [6]. As distinct from Smale’s example, coupling
in our case makes self-sustained synchronous oscillations
possible for just two variables.

As we have seen, phase trajectory of the system constantly
moves from the neighborhood of unstable boundary equilib-
rium 𝐹

1
, where only consumer 1 is present, to the neighbor-

hood of 𝐹
2
, where consumer 2 completely dominates, back to

𝐹
1
, and so on in cyclic alternation.This kind of trajectory was

termed “heteroclinic cycle” by Kirlinger [23]. A heteroclinic
cycle occurs when the outflow (unstable manifold) from
one saddle point is directly connected to the inflow (stable
manifold) of another saddle point, and vice versa. It is
closely related to another notion of the nonlinear dynamics,
a homoclinic cycle, which emerges when the unstable and
the stable manifolds of the same saddle coincide and form a
closed loop.

Homo- and heteroclinic cycles are not robust structures
in the sense that infinitesimally small change of system
parameters destroy them. However in the practical sense, any
limit cycle passing in close proximity to saddle points will
be indistinguishable from a heteroclinic cycle (Figure 8). The
only difference is strict periodicity, although the period of
the limit cycle in a neighborhood of the heteroclinic cycle
may be long. Besides, at the threshold of homo-/heteroclinic
bifurcation the period is susceptible to external noise.

In the context of our model, as coupling becomes
stronger, the stable limit cycle swells and passes closer and
closer to boundary fixed points which are node-saddles or
focus-saddles (Figures 4(d)–4(f)). Depending on the inter-
play between the parameters, eventually it may bang into one
or both of these equilibria creating either a homoclinic or
heteroclinic cycle, respectively. This corresponds to 𝛾

2
/𝛾
1
=

𝜘
1
and 𝛾
1
/𝛾
2
= 𝜘
2
. On further increasing the coupling, the

saddle connection breaks and the loop is destroyed.
It is worth noting that heteroclinic cycles were first found

by May and Leonard [24] in a classical LVG system with
competing three species. However in their model the cycle
is not truly periodic: as time goes on, the system tends to
stay in the neighborhood of any one boundary equilibrium
ever longer, so that the “total time spent in completing
one cycle is likewise proportional to the length of time

�2

�1

u1

Figure 8: A 3D-projection of the limit cycle in system (1a)–(1d) for
parameters chosen in a neighborhood of the heteroclinic cycle. See
caption to Figure 6(b) for the parameters.

the system has been running.” Moreover, May and Leonard
state that “the phenomenon clearly requires at least three
competitors, which is why it cannot occur inmodels with two
competitors.” This statement is echoed by Vandermeer [25]
who extended their theory on higher dimensions: “It appears
to be the case that all cases of an odd number of species follow
this basic pattern, whereas all cases of even number of species
result in extinction of half of the components, leaving the
other half living independently at their carrying capacities.”
In view of our results, the above conclusion is by far and away
true providing one stays within the framework of classical
LVG equations, which in fact imply a high rapidity of the
resource dynamics. In our model of just two competitors the
slowness of the resource relative to the consumer is essential
for the oscillations to occur, because it provides the necessary
inertia to the system.

Physically, our model is most likely feasible because it
is based on the well-established rate equations (A.8b) for
semiconductor lasers, and therefore should be considered as
a model of antiphase synchronization of two lasers via their
loss-coupling.

Ecologically, the feasibility of the model is tightly bound
to justification of the adopted time hierarchy in system
(1a)–(1d). Time scales are usually inverted in ecosystems,
as opposed to lasers, the most common case being rapid
consumption of food by species. However it seems reasonable
to propose that our model may describe the first level of an
ecosystem, at which the consumers are autotrophs and the
resources aremineral nutrients.The ability to exploit different
substrates leads to a possibility of stable coexistence of
different organisms descending from the common ancestor.
Divergent evolution is just the formation of new species: due
to mutations two populations emerge with the same genetic
code but having proteins able to process different substrates.
Providing the environmental conditions are quite stable on
the evolutionary timescale, the inflows of inorganic substrates
from the surroundings may be considered constant and the
washout time of a substrate may occur much longer than the
life expectancy of a species (recall the definition of 𝜀 from
(A.6)).
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5. Conclusion

We proposed a model of two CR pairs linked by interspecific
interference competition.Whenuncoupled, an individual CR
pair has a unique stable steady state and does not admit peri-
odic solutions. If intraspecific interference within the species
is strong enough, the equilibrium is nonoscillatory (stable
node), otherwise the steadying occurs by decaying oscilla-
tions (stable focus).

When coupled, the model behaves differently at strong
and weak competitive interaction between the consumers.
When coupling is strong, one of the consumers wins. Which
consumer wins or loses depends critically on the relative
intensities of the resource inflows and coupling strengths. In
the case of bistability, when the system acts like a bistablemul-
tivibrator (flip-flop circuit), thewinnermay be determined by
the initial conditions. Any static coexistence of competing
consumers is not possible.

When coupling is moderately weak, the model reveals
low-frequency antiphase relaxation oscillations represented
by a continuous flow of rectangular pulses.The system works
as an astable multivibrator continually switching between its
two states, neither of which is stable. The consumers cannot
coexist even dynamically: in each of two alternating states
one consumer completely dominates and the other is on the
verge of extinction. The most intriguing feature of the model
is that each of the participatingCRpairs taken separately does
not oscillate; both communities are completely quiescent,
however, in interaction, when coupled in a nonlinear way, the
resulting system turns into a relaxation oscillator.

One way or the other, it is believed that the proposed
model for coupling-induced oscillations in nonoscillatory
CR pairs can be considered as a minimal in that class of
population-dynamical systems and its mechanism can be
applied to networks with large numbers of nonoscillatory
elements and complex architecture.

Appendix

A. Derivation of the Coupled CR Equations

A.1. Ecological Perspective. Of all types of interactions
between individuals of the same population (intraspecific
interactions) or individuals of different populations (inter-
specific interactions) of the same trophic level competition is
most commonly encountered. In a broad sense, competition
takes place when each species (individual) has an inhibiting
effect on the growth of the other species (individual). An
inhibiting effect should be understood to mean either an
increase in the death rate or a decrease in the birth rate.

Consider the famous CR equations proposed by
MacArthur [17, 26]:

𝑥̇
𝑗
= (𝑟
𝑗
(1 −

𝑥
𝑗

𝐾
𝑗

) −

𝑛

∑

𝑖=1

𝑐
𝑖𝑗
𝑦
𝑖
)𝑥
𝑗
, 𝑗 = 1, . . . , 𝑚, (A.1a)

̇𝑦
𝑖
= (

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝑤
𝑗
𝑥
𝑗
− 𝑏
𝑖
)𝑦
𝑖
, 𝑖 = 1, . . . , 𝑛. (A.1b)

Here, dots indicate differentiation with respect to time 𝑡, 𝑥
𝑗

represents the total biomass of 𝑗th resource (prey), 𝑦
𝑖
stands

for the total biomass of 𝑖th consumer (predator) species, the
constant 𝑟

𝑗
defines the growth rate of 𝑗th resource, 𝐾

𝑗
is the

carrying capacity of 𝑗th resource, 𝑐
𝑖𝑗
is the rate of uptake of

a unit of 𝑗th resource by each individual of 𝑖th consumer
population, 𝑤−1

𝑗
is the conversion efficiency parameter rep-

resenting an amount of 𝑗th resource an individual of 𝑖th
consumer population must consume in order to produce a
single new individual of that species, and 𝑏

𝑖
is the loss rate of

𝑖th consumer due to either natural death or emigration. All
parameters in (A.1a) and (A.1b) are nonnegative.

MacArthur assumed population dynamics of the
resources to be much faster than that of the consumers which
enabled him to approximate 𝑥

𝑗
in (A.1b) by its quasi-steady-

state value derived by setting the right-hand side of (A.1a) to
zero. As a result, he succeeded to reduce slow-scale equation
(A.1b) to the well-known LVG model [16]:

̇𝑦
𝑖
= (𝑘
𝑖
−

𝑛

∑

𝑠=1

𝑎
𝑖𝑠
𝑦
𝑠
)𝑦
𝑖
, 𝑖 = 1, . . . , 𝑛, (A.2)

where

𝑎
𝑖𝑠
=

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝑐
𝑠𝑗
(

𝑤
𝑗
𝐾
𝑗

𝑟
𝑗

) , 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑛, (A.3a)

𝑘
𝑖
=

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝑤
𝑗
𝐾
𝑗
− 𝑏
𝑖
, 𝑖 = 1, . . . , 𝑛. (A.3b)

More recently, such an asymptotic reduction has also
been carried out for a model of competition where species
(with continuous trait) consume the common resource that
is constantly supplied, under the assumption of very fast
dynamics for the supply of the resource and fast dynamics for
death and uptake rates [27].

CR model (A.1a)-(A.1b) assume that competition within
and between consumer species is purely exploitative: individ-
uals and populations interact through utilizing (or occupy-
ing) common resource that is in short supply. Quite on the
contrary, LVGmodel (A.2), (A.3a)-(A.3b) describes competi-
tion strictly phenomenologically, as direct interference where
consumers experience harm attributed to their mutual pres-
ence in a habitat (e.g., through aggressive behavior). However
we have to stress that MacArthur’s reduction neither claims
that interference competition entirely results from “more
fundamental” trophic competition, nor urges us to hastily
consider direct competition as some derived concept. What
it actually states is that at slow-time scale associated with
dynamics of the consumers, the effects of exploitation compe-
tition are indistinguishable from those of interference compe-
tition. And at slow-time scale, coefficients 𝑎

𝑖𝑠
of (A.3a)merely

add to interference coefficients 𝑎󸀠
𝑖𝑠
which are to be present

primordially in (A.1b).
Mostmathematicalmodels dealingwith coupledCRpairs

or multilevel trophic chains ignore contributions of intraspe-
cific and interspecific interference. Indeed, the empirical data
like [28] do indicate that 𝑎󸀠

𝑖𝑗
may be negligible in comparison
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with 𝑎
𝑖𝑠
. Still, works advocating the explicit account for direct

interference show that incorporation of self-limitation and
cross-limitation terms in the equations at the consumers’ level
can provide for the stable coexistence of many species on few
resources [29, p. 31], [30].

Moreover, if we are to assume dynamics of the resources
to be much slower than that of the consumers, it is likely
that we have to retain interference competition terms in all
equations (A.1b).

Consider the following modification of (A.1a) and (A.1b)
representing coupled two-consumer, two-resource equations:

𝑥̇
1
= 𝑝
1
− (𝑐
1
𝑦
1
+ 𝑞
1
) 𝑥
1
, (A.4a)

𝑥̇
2
= 𝑝
2
− (𝑐
2
𝑦
2
+ 𝑞
2
) 𝑥
2
, (A.4b)

̇𝑦
1
= (𝑐
1
𝑤
1
𝑥
1
− 𝑏
1
− 𝑑
1
𝑦
1
− ℎ
2
𝑦
2
) 𝑦
1
, (A.4c)

̇𝑦
2
= (𝑐
2
𝑤
2
𝑥
2
− 𝑏
2
− 𝑑
2
𝑦
2
− ℎ
1
𝑦
1
) 𝑦
2
. (A.4d)

Instead of the logistic mode of resource supply, as is
the case in MacArthur’s model, our model is based on so-
called “equable” mode of resource exploitation [31], by which
the quantities of available resources are held constant by a
continuous-flow system. According to (A.4a) and (A.4b), a
constant concentration of 𝑗th resource (𝑗 = 1, 2) flows into a
defined volume with the rate 𝑝

𝑗
while unused resource flows

out with the per capita rate 𝑞
𝑗
, in much the same manner as

in a chemostat [32].
In more exact terms, the true chemostat model for one

substrate and one species looks as follows:

𝑥̇ = 𝐷 (𝑥
0
− 𝑥) −

𝜇𝑥𝑦

𝐾
𝑥
+ 𝑥

,

̇𝑦 = (

𝑤𝜇𝑥

𝐾
𝑥
+ 𝑥

− 𝐷)𝑦,

(A.5)

where the rate of substrate uptake is expressed by the Monod
formula𝜇𝑥𝑦/(𝐾

𝑥
+𝑥),𝐾

𝑥
is a saturation constant numerically

equal to the substrate concentration at which the uptake rate
is half the maximum,𝐷 is the dilution rate defined as the rate
of flow of medium over the volume of the bioreactor, and 𝑥

0

is an input concentration of the substrate.
Model (A.5) turns into an uncoupled version of (A.4a)–

(A.4d) if we put𝑝 = 𝐷𝑥
0
and 𝑞 = 𝑏 = 𝐷 and assume𝐾

𝑥
≫ 𝑥,

so that 𝜇𝑥/(𝐾
𝑥
+ 𝑥) ≈ 𝑐𝑥, where 𝑐 = 𝜇/𝐾

𝑥
.

In natural conditions, the equable modes of feeding, for
instance, can be found on the first trophic level of ecosystem,
among autotrophs.

Besides, in (A.4c) and (A.4d) intraspecific competition
strength 𝑑

𝑖
(𝑖 = 1, 2) measures direct interference of

individuals within 𝑖th consumer population with each other
resulting in an additional per capita loss rate𝑑

𝑖
𝑦
𝑖
; interspecific

competition strengthℎ
𝑠
(𝑠 = 1, 2; 𝑠 ̸= 𝑖) quantifies direct inter-

ference effect from 𝑠th consumer on 𝑖th consumer resulting
in an additional per capita loss rate, ℎ

𝑠
𝑦
𝑠
, of the latter.

Equations (A.4a)–(A.4d) contain two important assump-
tions. First, they assume that the resources are noninteractive.
On higher trophic levels, however, resourcesmay interact and

the possibility of competition among the resources was orig-
inally pointed out by Lynch [33]. Since then, a whole series
of theoretical papers has been published on two-predator,
two-prey systems with interference competition between two
self-reproducing prey species based on the Lotka-Volterra
equations. Specifically, Kirlinger [23] describes the model in
which each predator specializes on one prey only, while Xiang
and Song [34] treat a similar model in which each predator is
allowed to feed on both prey.

As seen from (A.4a) and (A.4b), there is no intraspecific
interference competition within the resource populations
either. Yet the resource level would remain finite even in the
absence of the consumer.

A second assumption of our equations is that the con-
sumers interact only directly, through interference competi-
tion and cannot compete through their use of resources, as
each consumer specializes in one resource only. The theory
of pure trophic competition in equable models has been
developed in the works [31, 35].

Intraspecific interference competition is allowed within
the consumers as well. Even though the available amount
of any resource happened to be of a constant level, the
population size of the associated consumer would remain
finite due to self-limitation caused by direct intraspecific
interference.

The novelty of model (A.4a)–(A.4d) is that it considers
time hierarchy ofMacArthur’s CR equations to be reversed by
assuming dynamics of the consumers to be much faster than
that of the involved resources and articulates the importance
of direct competition mechanisms within the framework of
this assumption.

Upon the scaling
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(A.6)

equations (A.4a)–(A.4d) take the following nondimensional
form:

𝑢̇
1
= 𝛾
1
− 𝑢
1
V
1
− 𝑢
1
− V
1
, (A.7a)

𝛽𝑢̇
2
= 𝛾
2
− 𝑢
2
V
2
− 𝑢
2
− V
2
, (A.7b)
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𝜀
1
V̇
1
= (𝑢
1
− 𝛿
1
V
1
− 𝜘
2
V
2
) V
1
, (A.7c)

𝜀
2
V̇
2
= (𝑢
2
− 𝛿
2
V
2
− 𝜘
1
V
1
) V
2
. (A.7d)

Note that in (A.7a)–(A.7d) dots mean differentiation with
respect to nondimensional “slow” timescale variable 𝑡󸀠, as
defined by (A.6).

The parameters 𝛽−1, 𝜀−1
1
, and 𝜀−1

2
reflect the rapidity of the

dynamics of 𝑢
2
, V
1
, and V

2
with reference to that of 𝑢

1
. It is

assumed that 𝛽 = O(1) and 𝜀
1,2
≪ 1.

In studying the effect of coupling, the parameters of
interest are obviously the coupling strengths, 𝜘

1
and 𝜘

2
. The

parameters of interest are also those which characterize the
difference between the states of the uncoupled systems. The
resource income rates 𝛾

1
and 𝛾

2
are used as the control

parameters that distinguish the relative base states of the two
systems.

For the sake of simplicity but without any loss of general-
ity, we set 𝛽 = 1, 𝜀

1
= 𝜀
2
= 𝜀, and 𝛿

1
= 𝛿
2
= 𝛿 and also drop

the prime at 𝑡, to obtain (1a)–(1d).

A.2. Laser Dynamics Perspective. Laser rate equations orig-
inally proposed by Statz and deMars [36] are differential
equations that relate two quantities: injected carrier density
(𝑛) and photon density (𝑝). For a single-mode semiconductor
laser, these equations take the form [12, ch. 6]:

̇𝑛 =

𝐽

𝑞𝑑

− ΓV
𝑔
𝑎 (𝑛 − 𝑛

0
) 𝑝 −

𝑛

𝜏
𝑒

, (A.8a)

𝑝̇ = ΓV
𝑔
𝑎 (𝑛 − 𝑛

0
) 𝑝 −

𝑝

𝜏
𝑝

, (A.8b)

where dotsmean differentiationwith respect to time 𝑡, 𝐽 is the
injection current density (pump parameter), 𝑞 is the magni-
tude of the electron charge, 𝑑 is the active-layer thickness, Γ is
the confinement factor accounting for the fraction of the light
power contained in the active region, V

𝑔
is the group velocity

of light that can be expressed through the speed of light in
vacuum (𝑐) and the group refractive index of the dispersive
semiconductor material (𝜇

𝑔
) as V
𝑔
= 𝑐/𝜇
𝑔
, 𝑎 is the gain coef-

ficient, 𝑛
0
is the carrier density at transparency corresponding

to the onset of population inversion, 𝜏
𝑒
is the lifetime of the

electrons in the conduction band before being lost by escape
from the active region, and 𝜏

𝑝
is the lifetime of photons

inside the cavity before going out of the cavity or being
absorbed inside the cavity. In (A.8b) the contribution of
spontaneous emission is neglected.

Typical parameter values for a semiconductor laser
(mostly borrowed from [12, p. 238]) are given in Table 2.
These numerical values are used in the calculations through-
out the present paper, unless otherwise noted.

Consider two (not necessarily identical) lasers of type
(A.8a)-(A.8b) and introduce additional intensity-dependent
losses such that each laser, 𝑖, of the two has a total loss
represented by the sum of the constant loss, 1/𝜏

𝑝𝑖
, plus the

Table 2: Laser parameters used for numerical simulations. The val-
ues in parentheses stand for associated nondimensional quantities.

Quantity
Notation Meaning Value
𝐽 (𝛾) Pump current density 5 × 10

3 A/cm2 (1.19375)
𝑑 Active layer thickness 2 × 10

−5 cm
Γ Confinement factor 0.3

𝜇
𝑔

Group refraction index 4

𝑎 Differential gain coefficient 2.5 × 10
−16 cm2

𝑛
0

Carrier density at transparency 1 × 10
18 cm−3

𝜏
𝑒

Carrier lifetime 2.2 × 10
−9 s

𝜏
𝑝

Photon loss time 1.6 × 10
−12 s

𝜀 𝜏
𝑝
/𝜏
𝑒

0.727273 × 10
−3

𝐷 (𝛿) Intrinsic second order loss 0.773 × 10
−5 cm3/s (0.01)

loss proportional to its own intensity, 𝐷
𝑖
𝑝
𝑖
, plus the loss

proportional to the intensity of the other laser, ℎ
𝑗
𝑝
𝑗
:
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, (A.9a)
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1
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𝑝
1
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(A.9d)

where 𝐷
𝑖
(𝑖 = 1, 2) is the second order loss constant of the

isolated 𝑖th laser and ℎ
𝑖
is the coupling strength measuring

the cross-loss effect of 𝑖th laser on 𝑗th laser.
Thus according to (A.9a)–(A.9d), two lasers happen to

be cross-coupled through their resonators, so that each of
them can modulate the cavity loss of the other. Techni-
cally, intensity-dependent intrinsic and cross-losses may be
implemented, for example, using an intracavity electro-optic
modulator fed by a current proportional to the output power
[37, 38].

We will consider the pump currents 𝐽
1
and 𝐽
2
, and the

coupling strengths ℎ
1
and ℎ
2
, as free parameters of themodel.

For the present, we cannot judge with any confidence the
numerical value of𝐷

1,2
, however, as it is demonstrated in the

main body of the paper, the exact value of the intrinsic second
order loss is not all that critical and does not affect principal
results of our analysis, providing that this parameter is small
in a sense. For the purposes of model calculations, we adopt
𝐷
1,2

to be somewhat less than 4 × 10−5 cm3/s.
Presumably, Hofelich-Abate and Hofelich [39] were first

to introduce (in general form) an intensity-dependent self-
limitation term in the photon-density rate equation. Later,
that has been done in an explicit form of the second order
loss [40, 41]. Those and subsequent studies [42, 43] showed
efficient damping of relaxation oscillations in the presence of
intensity-dependent losses.
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As to the formal analysis of laser coupling via intensity-
loss cross-modulation, very few attempts have been done so
far to consider such amechanism—for example, [44, 45].The
former work, however, does not treat intrinsic second order
losses.

The works which address loss-coupled modes of a single
laser rather than loss-coupled single-mode lasers are much
more plentiful and varied, and we refer the reader for the
reviews in [46, ch. 8] and [47, ch. 12]. In his seminal
paper [18], Baer studied multimode regime of Nd:YAG
(neodymium-doped yttrium aluminum garnet) laser with
the intracavity-doubling KTP (potassium titynal phosphate)
crystal both experimentally and numerically, and proposed
the following rate equations for two coupled longitudinal
modes:

𝜏
𝑓
𝐺̇
1
= 𝐺
0

1
− (𝛽𝐼
1
+ 𝛽
12
𝐼
2
+ 1)𝐺

1
, (A.10a)
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2
, (A.10b)
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𝜏
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2
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2
− 𝛼
2
− 𝜀𝐼
2
− 2𝜀𝐼
1
) 𝐼
2
, (A.10d)

where 𝐺
𝑖
and 𝐼

𝑖
(𝑖 = 1, 2) are the respective gain and

intensity of 𝑖th mode, 𝜏
𝑓
is the fluorescence lifetime, 𝐺0

𝑖
is

the small-signal gain (pump parameter) for 𝑖th mode, 𝛽 is
the saturation parameter which determines how strongly the
intensity depletes the available gain, 𝛽

12
= 𝛽
21

is the cross-
saturation parameter formodes 1 and 2, 𝜏

𝑒
is the cavity round-

trip time, 𝛼
𝑖
is the loss of 𝑖th mode, and 𝜀 is the nonlinear

coupling coefficient, which models the intracavity-doubling
crystal as an intensity-dependent loss in the laser resonator.

The last two terms in (A.10c) and (A.10d) represent
second order losses that are due to intracavity second-
harmonic generation and sum-frequency generation,
respectively. Numerical calculations revealed antiphase syn-
chronous oscillations in (A.10a)–(A.10d). In antiphase state,
either mode has precisely the same time profile being shifted
by 1/2 of a period from its counterpart.This type of dynamics
was later observed in a multimode Nd3+:YAG laser with
intracavity doubling crystal [48]. For 𝑛 antiphase oscillators,
the phase shift between any nearest neighbors is 1/𝑛 of a
period.

At 𝛽
12
= 𝛽
21
= 0, system (A.10a)–(A.10d) is essentially

identical to (A.9a)–(A.9d), except that intensity-dependent
intrinsic and cross-losses in (A.9c) and (A.9d) are allowed to
be independent.

The scaling
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turns (A.9a)–(A.9d) into nondimensional form (A.7a)–
(A.7d). Since the lasers are made of the samematerial, we can
put 𝑑
1
= 𝑑
2
, Γ
1
= Γ
2
, V
𝑔1
= V
𝑔2
, 𝑎
1
= 𝑎
2
, 𝑛
01
= 𝑛
02
, 𝜏
𝑒1
= 𝜏
𝑒2
,

𝜏
𝑝1
= 𝜏
𝑝2
, and 𝐷

1
= 𝐷
2
, whence 𝛽 = 1, 𝜀

1
= 𝜀
2
= 𝜀, and

𝛿
1
= 𝛿
2
= 𝛿, and we arrive, dropping the prime at 𝑡, at the set

of (1a)–(1d).
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