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The block hybrid collocation method with two off-step points is proposed for the direct solution of general third order ordinary
differential equations. Both the main and additional methods are derived via interpolation and collocation of the basic polynomial.
These methods are applied in block form to provide the approximation at five points concurrently. The stability properties of the
block method are investigated. Some numerical examples are tested to illustrate the efficiency of the method. The block hybrid
collocation method is also implemented to solve the nonlinear Genesio equation and the problem in thin film flow.

1. Introduction

Consider the general third order ordinary differential equa-
tions (ODEs):

𝑦
󸀠󸀠󸀠

= 𝑓 (𝑥, 𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
) , (1)

with the initial conditions

𝑦 (𝑎) = 𝑦
0
, 𝑦

󸀠

(𝑎) = 𝑦
󸀠

0
, 𝑦

󸀠󸀠

(𝑎) = 𝑦
󸀠󸀠

0
, 𝑥 ∈ [𝑎, 𝑏] .

(2)

In particular, the third order differential equations arise in
many physical problems such as electromagnetic waves, thin
film flow, and gravity-driven flows (see [1–6]). Therefore,
third order ODEs have attracted considerable attention.
Many theoretical and numerical studies dealing with such
equations have appeared in the literature. The popular
approach for solving third order ODEs is by converting
the problems to a system of first order ODEs and solving
it using the method available in the literature. Awoyemi
and Idowu [7], Jator [8], Mehrkanoon [9], and Bhrawy and
Abd-Elhameed [10] remarked the drawback of this approach
whereby it required complicated computational work and
lengthy execution time. The studies on direct approach to
higher order ODEs demonstrated the advantages in speed
and accuracy.

Some attentions [8, 11–14] have been focused on direct
solution of second order ODEs. Fatunla [12] suggested the
zero-stable 2-point block method to solve special second
order ODEs. On the other hand, Omar et al. [13] and Majid
and Suleiman [14] studied parallel implementation of the
direct block methods. Jator [8, 11] proposed a class of hybrid
collocationmethods and emphasized the accuracy advantage
on self-starting method. The only necessary starting value
for evaluation at the next block is the last value from the
previous block. Since the loss of accuracy does not affect the
subsequent points, the order of the method is maintained.

Some attempts have been made to solve third order
ODEs directly using collocation method. Awoyemi [15]
considered the P-stable linear multistep collocation method.
Meanwhile, Awoyemi and Idowu [7] proposed the hybrid
collocation method with an off-step point, 𝑥

𝑛+3/2
. Both

schemes are implemented in predictor-corrector mode to
obtain the approximation at 𝑥

𝑛+3
.TheTaylor series expansion

is employed for the computation of initial values. Olabode
and Yusuph [16] applied the interpolation and collocation
technique on power series to derive 3-step block method,
and it was implemented as simultaneous integrator to special
third order ODEs. Bhrawy and Abd-Elhameed [10] devel-
oped the shifted Jacobi-Gauss collocation spectral method
for general nonlinear third order differential equations.
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Adesanya et al. [17] proposed a self-starting block predictor-
corrector method whereby the derivation involved interpola-
tion and collocation of power series at 𝑥

𝑛+𝑗
, for 𝑗 = 1(1)3 and

𝑗 = 0(1)4, respectively.
Several direct variable step methods have also been

proposed in literature to solve general third order ODEs.
For instance, Mehrkanoon [9] implemented the direct three-
point block multistep method of Adams type formulas in
PECEmodewith variable step size andGauss Seidel iteration.
Majid et al. [18] presented the 2-point 4-step implicit block
method with the application of the simple form in Adams-
Moulton method using variable step size.

Here, we are going to derive the block hybrid collocation
method for the direct solution of general third order ODEs.
The method is along the lines proposed by Jator [11] and
Awoyemi and Idowu [7]. The derivation involves interpola-
tion and collocation of the basic polynomial. The collocation
method approximates the solution of𝑦with basic polynomial
which satisfies the initial conditions and differential equa-
tions at all points. This approach generates the main and the
additionalmethodswhich can be combined andused as block
method. In𝑚-point blockmethod, the interval is divided into
series of blocks with each block containing 𝑚-points. The
application of𝑚-point blockmethod generates a block of new
solution concurrently.

2. Derivation of Block Hybrid
Collocation Methods

Thehybrid collocationmethod that produces approximations
𝑦
𝑛+𝑘

, 𝑦󸀠
𝑛+𝑘

, and 𝑦
󸀠󸀠

𝑛+𝑘
to the general third order ODEs is given

as follows:

𝑘

∑

𝑗=0

𝛼
𝑗
𝑦
𝑛+𝑗

+

2

∑

𝑗=1

𝛼]𝑗𝑦𝑛+]𝑗 = ℎ
3
(

𝑘

∑

𝑗=0

𝛽
𝑗
𝑓
𝑛+𝑗

+

2

∑

𝑗=1

𝛽]𝑗𝑓𝑛+]𝑗) .

(3)

In order to obtain (3), we approximate the solution by the
interpolating function 𝑌(𝑥) of the form

𝑌 (𝑥) =

𝑟+𝑠−1

∑

𝑗=0

𝜙
𝑗
𝑥
𝑗
, (4)

where

(i) 𝑥 ∈ [𝑎, 𝑏],
(ii) 𝜙
𝑗
are unknown coefficients to be determined,

(iii) 𝑟 is the number of interpolations for 1 ≤ 𝑟 ≤ 𝑘, and
(iv) 𝑠 is the number of distinct collocation points with 𝑠 >

0.

The continuous approximation is constructed by impos-
ing the following conditions:

𝑌 (𝑥
𝑛+𝑗

) = 𝑦
𝑛+𝑗

, 𝑗 = 0, 1, 2, . . . , 𝑟 − 1, (5)

𝑌
󸀠󸀠󸀠

(𝑥
𝑛+𝜇

) = 𝑓
𝑛+𝜇

, 𝜇 = {𝑗, ]
1
, ]
2
} , 𝑗 = 0, 1, 2, . . . , 𝑘, (6)

where ]
1
and ]

2
are not integers. Interpolating (5) at the

points 𝑥
𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

and collocating (6) at the points 𝑥
𝑛
,

𝑥
𝑛+1/2

, 𝑥
𝑛+1

, 𝑥
𝑛+3/2

, 𝑥
𝑛+2

, and 𝑥
𝑛+3

lead to a system of nine
equations, which can be solved by Mathematica software to
obtain the coefficient 𝜙

𝑗
. The values of 𝜙

𝑗
are substituted into

(4) to obtain the continuous multistep method of the form

𝑌 (𝑥) =

𝑘

∑

𝑗=0

𝛼
𝑗
𝑦
𝑛+𝑗

+ ℎ
3
(

𝑘

∑

𝑗=0

𝛽
𝑗
𝑓
𝑛+𝑗

+

2

∑

𝑗=1

𝛽]𝑗𝑓𝑛+]𝑗) , (7)

where 𝛼
𝑗
, 𝛽
𝑗
, and 𝛽]𝑗 are constant coefficients. Hence, the

block hybrid collocation method can be derived as follows.

Main Method. Consider

𝑦
𝑛+3

= 3𝑦
𝑛+2

− 3𝑦
𝑛+1

+ 𝑦
𝑛
+

ℎ
3

90

× (𝑓
𝑛
+ 36𝑓

𝑛+1
+ 16𝑓

𝑛+3/2
+ 36𝑓

𝑛+2
+ 𝑓
𝑛+3

) .

(8)

Additional Method. Consider

𝑦
𝑛+3/2

=
3

8
𝑦
𝑛+2

+
3

4
𝑦
𝑛+1

−
1

8
𝑦
𝑛
+

ℎ
3

92160

× (−19𝑓
𝑛
− 648𝑓

𝑛+1/2
− 2979𝑓

𝑛+1

− 2104𝑓
𝑛+3/2

− 9𝑓
𝑛+2

− 𝑓
𝑛+3

) ,

𝑦
𝑛+1/2

= −
1

8
𝑦
𝑛+2

+
3

4
𝑦
𝑛+1

+
3

8
𝑦
𝑛
+

ℎ
3

92160

× (29𝑓
𝑛
+ 2040𝑓

𝑛+1/2
+ 3069𝑓

𝑛+1

+ 584𝑓
𝑛+3/2

+ 39𝑓
𝑛+2

− 𝑓
𝑛+3

) .

(9)

It is noted that the general third order ODEs involve the
first and second derivatives.These derivatives can be obtained
by imposing that

𝑌
󸀠

(𝑥) =
1

ℎ
(

𝑘

∑

𝑗=0

𝛼
󸀠

𝑗
𝑦
𝑛+𝑗

+ ℎ
3
(

𝑘

∑

𝑗=0

𝛽
󸀠

𝑗
𝑓
𝑛+𝑗

+

2

∑

𝑗=1

𝛽
󸀠

]𝑗𝑓𝑛+]𝑗))

𝑌
󸀠󸀠

(𝑥) =
1

ℎ2
(

𝑘

∑

𝑗=0

𝛼
󸀠󸀠

𝑗
𝑦
𝑛+𝑗

+ ℎ
3
(

𝑘

∑

𝑗=0

𝛽
󸀠󸀠

𝑗
𝑓
𝑛+𝑗

+

2

∑

𝑗=1

𝛽
󸀠󸀠

]𝑗𝑓𝑛+]𝑗)) .

(10)

The values of 𝜙
𝑗
are substituted into

𝑌
󸀠

(𝑥) =

𝑟+𝑠−1

∑

𝑗=1

𝑗𝜙
𝑗
𝑥
𝑗−1

, 𝑌
󸀠󸀠

(𝑥) =

𝑟+𝑠−1

∑

𝑗=2

𝑗 (𝑗 − 1) 𝜙
𝑗
𝑥
𝑗−2

(11)
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to generate the formula for the first and second derivatives of
the method. Thus, we obtain

ℎ𝑦
󸀠

𝑛
= −

1

2
𝑦
𝑛+2

+ 2𝑦
𝑛+1

−
3

2
𝑦
𝑛
+

ℎ
3

7560

× (118𝑓
𝑛
+ 1296𝑓

𝑛+1/2
+ 819𝑓

𝑛+1

+ 304𝑓
𝑛+3/2

− 18𝑓
𝑛+2

+ 𝑓
𝑛+3

) ,

ℎ𝑦
󸀠

𝑛+1/2
= 𝑦
𝑛+1

− 𝑦
𝑛
+

ℎ
3

241920

× (−449𝑓
𝑛
− 9312𝑓

𝑛+1/2
− 99𝑓

𝑛+1

− 320𝑓
𝑛+3/2

+ 105𝑓
𝑛+2

− 5𝑓
𝑛+3

) ,

ℎ𝑦
󸀠

𝑛+1
=

1

2
𝑦
𝑛+2

−
1

2
𝑦
𝑛
+

ℎ
3

2520

× (−𝑓
𝑛
− 80𝑓

𝑛+1/2
− 258𝑓

𝑛+1

− 80𝑓
𝑛+3/2

− 𝑓
𝑛+2

) ,

ℎ𝑦
󸀠

𝑛+3/2
= 𝑦
𝑛+2

− 𝑦
𝑛+1

+
ℎ
3

241920

× (5𝑓
𝑛
− 549𝑓

𝑛+1
− 8992𝑓

𝑛+3/2

− 549𝑓
𝑛+2

+ 5𝑓
𝑛+3

) ,

ℎ𝑦
󸀠

𝑛+2
=

3

2
𝑦
𝑛+2

− 2𝑦
𝑛+1

+
1

2
𝑦
𝑛
+

ℎ
3

7560

× (2𝑓
𝑛
+ 240𝑓

𝑛+1/2
+ 909𝑓

𝑛+1

+ 1232𝑓
𝑛+3/2

+ 138𝑓
𝑛+2

− 𝑓
𝑛+3

) ,

ℎ𝑦
󸀠

𝑛+3
=

5

2
𝑦
𝑛+2

− 4𝑦
𝑛+1

+
3

2
𝑦
𝑛
+

ℎ
3

7560

× (343𝑓
𝑛
− 1296𝑓

𝑛+1/2
+ 7758𝑓

𝑛+1

− 2000𝑓
𝑛+3/2

+ 8595𝑓
𝑛+2

+ 460𝑓
𝑛+3

) ,

ℎ
2
𝑦
󸀠󸀠

𝑛
= 𝑦
𝑛+2

− 2𝑦
𝑛+1

+ 𝑦
𝑛
+

ℎ
3

2520

× (−398𝑓
𝑛
− 1584𝑓

𝑛+1/2
− 201𝑓

𝑛+1

− 400𝑓
𝑛+3/2

+ 66𝑓
𝑛+2

− 3𝑓
𝑛+3

) ,

ℎ
2
𝑦
󸀠󸀠

𝑛+1/2
= 𝑦
𝑛+2

− 2𝑦
𝑛+1

+ 𝑦
𝑛
+

ℎ
3

40320

× (345𝑓
𝑛
− 5744𝑓

𝑛+1/2
− 13443𝑓

𝑛+1

− 912𝑓
𝑛+3/2

− 421𝑓
𝑛+2

+ 15𝑓
𝑛+3

) ,

ℎ
2
𝑦
󸀠󸀠

𝑛+1
= 𝑦
𝑛+2

− 2𝑦
𝑛+1

+ 𝑦
𝑛
+

ℎ
3

7560

× (−11𝑓
𝑛
+ 624𝑓

𝑛+1/2
+ 90𝑓

𝑛+1

− 752𝑓
𝑛+3/2

+ 51𝑓
𝑛+2

− 2𝑓
𝑛+3

) ,

ℎ
2
𝑦
󸀠󸀠

𝑛+3/2
= 𝑦
𝑛+2

− 2𝑦
𝑛+1

+ 𝑦
𝑛
+

ℎ
3

40320

× (121𝑓
𝑛
+ 1872𝑓

𝑛+1/2
+ 12093𝑓

𝑛+1

+ 6704𝑓
𝑛+3/2

− 645𝑓
𝑛+2

+ 15𝑓
𝑛+3

) ,

ℎ
2
𝑦
󸀠󸀠

𝑛+2
= 𝑦
𝑛+2

− 2𝑦
𝑛+1

+ 𝑦
𝑛
+

ℎ
3

2520

× (−6𝑓
𝑛
+ 208𝑓

𝑛+1/2
+ 471𝑓

𝑛+1

+ 1392𝑓
𝑛+3/2

+ 458𝑓
𝑛+2

− 3𝑓
𝑛+3

) ,

ℎ
2
𝑦
󸀠󸀠

𝑛+3
= 𝑦
𝑛+2

− 2𝑦
𝑛+1

+ 𝑦
𝑛
+

ℎ
3

2520

× (295𝑓
𝑛
− 1584𝑓

𝑛+1/2
+ 4902𝑓

𝑛+1

− 4432𝑓
𝑛+3/2

+ 5169𝑓
𝑛+2

+ 690𝑓
𝑛+3

) .

(12)

3. Order and Stability Properties

Extending the idea of Henrici [19] and Jator [8], the linear
difference operator 𝐿 associated with (3) is defined by

𝐿 [𝑦 (𝑥) ; ℎ] =

𝑘

∑

𝑗=0

[𝛼
𝑗
𝑦 (𝑥 + 𝑗ℎ) − ℎ

3
𝛽
𝑗
𝑦
󸀠󸀠󸀠

(𝑥 + 𝑗ℎ)]

+

2

∑

𝑗=1

[𝛼]𝑗𝑦 (𝑥 + ]
𝑗
ℎ) − ℎ

3
𝛽]𝑗𝑦
󸀠󸀠󸀠

(𝑥 + ]
𝑗
ℎ)] ,

(13)

where 𝑦(𝑥) is an arbitrary function that is sufficiently differ-
entiable. We expand the test function 𝑦(𝑥 + 𝑗ℎ) and its third
derivative 𝑦󸀠󸀠󸀠(𝑥 + 𝑗ℎ) about 𝑥 and collect the terms to obtain

𝐿 [𝑦 (𝑥) ; ℎ] = 𝐶
0
𝑦 (𝑥) + 𝐶

1
ℎ𝑦
󸀠

(𝑥) + ⋅ ⋅ ⋅ + 𝐶
𝑞
ℎ
𝑞
𝑦
(𝑞)

(𝑥) + ⋅ ⋅ ⋅

(14)

whose coefficients 𝐶
𝑞
for 𝑞 = 0, 1, . . . are constants and given

as

𝐶
0
=

𝑘

∑

𝑗=0

𝛼
𝑗
+

2

∑

𝑗=1

𝛼]𝑗

𝐶
1
=

𝑘

∑

𝑗=1

𝑗𝛼
𝑗
+

2

∑

𝑗=1

]
𝑗
𝛼]𝑗

...

𝐶
𝑞
=

1

𝑞!

[

[

𝑘

∑

𝑗=1

𝑗
𝑞
𝛼
𝑗
+

2

∑

𝑗=1

]𝑞
𝑗
𝛼]𝑗

]

]

−
1

(𝑞 − 3)!

[

[

𝑘

∑

𝑗=1

𝑗
𝑞−3

𝛽
𝑗
+

2

∑

𝑗=1

]𝑞−3
𝑗

𝛽]𝑗
]

]

.

(15)
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The associated linear multistep method and the linear
difference operator are said to be of order 𝑝, if 𝐶

0
= 𝐶
1

=

⋅ ⋅ ⋅ = 𝐶
𝑝+2

= 0 and 𝐶
𝑝+3

̸= 0. The main method and the two
additionalmethods have order𝑝 = 6with the error constants;
𝐶
9
are −19/120960, 41/61931520, and 41/61931520, respec-

tively.Theblock hybrid collocationmethod is consistent since
it has order 𝑝 > 1.

To analyze the zero stability, (8)–(12) are normalized. Zero
stability can be described by matrix finite difference equation
as follows:

𝐼
5
𝑌
𝑚+1

= 𝐴
(1)

𝑌
𝑚

+ ℎ
3
(𝐵
(0)

𝐹
𝑚+1

+ 𝐵
(1)

𝐹
𝑚
)

+ ℎ
2
𝐶
(1)

𝑌
󸀠󸀠

𝑚
+ ℎ𝐷
(1)

𝑌
󸀠

𝑚

(16)

with

𝑌
𝑚+1

= [𝑦
𝑛+1/2

, 𝑦
𝑛+1

, 𝑦
𝑛+3/2

, 𝑦
𝑛+2

, 𝑦
𝑛+3

]
𝑇

𝑌
𝑚

= [𝑦
𝑛−2

, 𝑦
𝑛−3/2

, 𝑦
𝑛−1

, 𝑦
𝑛−1/2

, 𝑦
𝑛
]
𝑇

𝐹
𝑚+1

= [𝑓
𝑛+1/2

, 𝑓
𝑛+1

, 𝑓
𝑛+3/2

, 𝑓
𝑛+2

, 𝑓
𝑛+3

]
𝑇

𝐹
𝑚

= [𝑓
𝑛−2

, 𝑓
𝑛−3/2

, 𝑓
𝑛−1

, 𝑓
𝑛−1/2

, 𝑓
𝑛
]
𝑇

,

𝑌
󸀠󸀠

𝑚
= [𝑦
󸀠󸀠

𝑛−2
, 𝑦
󸀠󸀠

𝑛−3/2
, 𝑦
󸀠󸀠

𝑛−1
, 𝑦
󸀠󸀠

𝑛−1/2
, 𝑦
󸀠󸀠

𝑛
]
𝑇

𝑌
󸀠

𝑚
= [𝑦
󸀠

𝑛−2
, 𝑦
󸀠

𝑛−3/2
, 𝑦
󸀠

𝑛−1
, 𝑦
󸀠

𝑛−1/2
, 𝑦
󸀠

𝑛
]
𝑇

(17)

and constant matrices

𝐼
5
= 5 × 5 identity matrix;

𝐴
(1)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 −
9

8
0 −

27

16

3

8

0
9

2
0

27

4
−
3

2

0
3

8
0

9

16
−
1

8

0 −3 0 −
9

2
1

0 −3 0 −
9

2
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

;

𝐵
(0)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

17

768
−

7

128

73

11520
−

7

256
−

1

92160

6

35
−
1

4

38

945
−

7

60

1

7560

−
9

1280

9

128
−

263

11520

11

256
−

1

92160

−
22

35

7

12
−
10

63

1

4
−

1

840

0 −
3

2

8

45
−
5

4

1

90

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

;

𝐵
(1)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 −
29

30720
0 −

29

20480

29

92160

0 −
59

1260
0 −

59

840

59

3780

0
19

30720
0

19

20480
−

19

92160

0
199

420
0

199

280
−

199

1260

0 −
1

30
0 −

1

20

1

90

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

;

𝐶
(1)

=

[
[
[
[
[
[
[
[
[

[

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 3 0
9

2
−1

0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

; 𝐷
(1)

=

[
[
[
[
[
[
[
[
[

[

0 0 0 0 0

0 3 0
9

2
−1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

.

(18)

The first characteristic polynomial is defined as

𝜌 (𝑧) = Det [𝑧𝐴(0) − 𝐴
(1)

] = 𝑧
4

(𝑧 − 1) . (19)

Since the roots of the first characteristic polynomial are
modulus less than or equal to one, the method is zero
stable. This property, together with the consistency of the
method, implies the convergence (see Henrici [19]) of the
block method.

4. Numerical Examples and Discussion

To illustrate the effectiveness of the block hybrid collocation
method, the test Problems 1–3 are solved numerically. The
block hybrid collocationmethod is implemented and leads to
a systemof fifteen equations.The code is written and executed
in Mathematica 8.0 to obtain the numerical solutions. A
built-in Mathematica package, namely, LinearSolve[𝑚, 𝑏],
is applied in the algorithm to solve the linear system for
numerical results. In general, this package solves the matrix
equation𝑚 ⋅ 𝑥 = 𝑏 and returns a vector 𝑥.

The block hybrid collocation method is then compared
with the existing methods [7, 15–17, 20] for direct solution
of general third order ODEs. The block hybrid collocation
method is also compared with the Adams Bashforth-Adams
Moulton method. The well-known fourth order Runge Kutta
method is applied to obtain the starting values for Adams
method, whereby the third orderODEs are reduced to system
of first order ODEs.

Problem 1. Consider
𝑦
󸀠󸀠󸀠

− 2𝑦
󸀠󸀠
− 3𝑦
󸀠
+ 10𝑦 = 34𝑥𝑒

−2𝑥
− 16𝑒
−2𝑥

− 10𝑥
2
+ 6𝑥 + 34

𝑦 (0) = 3, 𝑦
󸀠

(0) = 𝑦
󸀠󸀠

(0) = 0, 𝑥 ∈ [0, 𝑏] .

(20)

Exact Solution: 𝑦(𝑥) = 𝑥
2
𝑒
−2𝑥

− 𝑥
2
+ 3.

Source: Majid et al. [18].
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Table 1: Numerical results for Problem 1.

𝑏 ℎ Method Step Maxe

1.0

0.0125
BHCM 27 4.23 × 10

−12

Adams 80 3.56 × 10
−8

Awoyemi(2) 80 7.60 × 10
−6

0.00625
BHCM 54 7.24 × 10

−14

Adams 160 3.23 × 10
−9

Awoyemi(2) 160 9.54 × 10
−7

4.0

0.01
BHCM 134 3.50 × 10

−11

Adams 400 2.91 × 10
−6

Awoyemi(1) 400 1.16 × 10
−3

0.005
BHCM 267 3.30 × 10

−14

Adams 800 2.10 × 10
−7

Awoyemi(1) 800 1.46 × 10
−4

Problem 2. Consider

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠
= 0

𝑦 (0) = 0, 𝑦
󸀠

(0) = 1, 𝑦
󸀠󸀠

(0) = 2, 𝑥 ∈ [0, 𝑏] .

(21)

Exact Solution: 𝑦(𝑥) = 2(1 − cos𝑥) + sin𝑥.
Source: Majid et al. [18].

Problem 3. Consider

𝑦
󸀠󸀠󸀠

= 3 sin𝑥

𝑦 (0) = 1, 𝑦
󸀠

(0) = 0, 𝑦
󸀠󸀠

(0) = −2, 𝑥 ∈ [0, 𝑏] .

(22)

Exact Solution: 𝑦(𝑥) = 3 cos𝑥 + 𝑥
2
/2 − 2.

Source: Adesanya et al. [17].

The performance comparison between block hybrid col-
location method with the existing results [7, 9, 15–17, 20] and
the Adams Bashforth-Adams Moulton method is presented
in Tables 1–4. The following notations are used in the tables.

ℎ: step size.
BHCM: block hybrid collocation method.
Adams: Adams Bashforth-Adams Moulton method.
Awoyemi (1): P-stable multistep method in Awoyemi
[15].
Awoyemi (2): hybrid collocationmethod in Awoyemi
and Idowu [7].
Awoyemi (3): nonsymmetric collocation method in
Awoyemi et al. [20].
Adesanya: block predictor-corrector method in Ade-
sanya et al. [17].
Mehrkanoon: variable step three-point block multi-
step method in Mehrkanoon [9].
Olabode: block method for special third order ODEs
in Olabode and Yusuph [16].
Step: total number of steps taken to obtain solution.

Table 2: Numerical results for Problem 2.

𝑏 ℎ Method Step Maxe

1.0 0.1

BHCM 4 1.11 × 10
−10

Adams 10 2.76 × 10
−6

Awoyemi(3) 10 1.07 × 10
−6

Adesanya 3 5.14 × 10
−5

5.0
BHCM 67 1.19 × 10

−12

Adams 200 9.72 × 10
−8

Awoyemi(1) 200 3.53 × 10
−6

10.0
BHCM 134 2.11 × 10

−12

Adams 400 1.83 × 10
−7

0.025 Awoyemi(1) 400 2.25 × 10
−6

15.0
BHCM 200 2.33 × 10

−12

Adams 600 3.16 × 10
−7

Awoyemi(1) 600 9.85 × 10
−6

20.0
BHCM 267 3.48 × 10

−12

Adams 800 4.58 × 10
−7

Awoyemi(1) 800 6.31 × 10
−6

Table 3: Numerical results for Problem 3.

𝑏 ℎ Method Step Maxe

1.0 0.01

BHCM 34 7.48 × 10
−17

Adams 100 6.40 × 10
−10

Olabode 34 8.89 × 10
−13

Adesanya 25 1.75 × 10
−14

Table 4: Comparison of numerical results for nonlinear Genesio
equation.

𝑏
Mehrkanoon BHCM

TOL Step 𝑦 ℎ Step 𝑦

1.0 10
−6 17 −0.054005 0.1 4 −0.05400408324564678

10
−10 26 −0.054003 0.01 34 −0.05400408355473926

4.0 10
−6 23 −0.067921 0.1 13 −0.06763059062408930

10
−10 45 −0.067692 0.01 133 −0.06763060515900272

Time: execution time taken in microseconds.
Maxe: magnitude of the maximum error of the com-
puted solution.

The maximum error is defined as

Maxe = max
1≤𝑖≤Step

(
󵄨󵄨󵄨󵄨𝑦 (𝑥
𝑖
) − 𝑦
𝑖

󵄨󵄨󵄨󵄨) . (23)

Tables 1–3 show that the block hybrid collocationmethod
has better performance in terms of accuracy and number of
steps to obtain the solution compared to Adams Bashforth-
Adams Moulton method.

In Table 1, a direct comparison ismade betweenAwoyemi
methods [7, 15] and our block hybrid collocation method.
For 𝑏 = 1, BHCM has better approximation compared to
Awoyemi hybrid collocation method [7] for step sizes ℎ =

0.0125 and ℎ = 0.00625. Even in the larger interval (𝑏 =

4), BHCM has higher order of accuracy when compared to
Awoyemi P-stable multistep method [15] using ℎ = 0.01 and
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Figure 1: Performance comparison for Problem 1 when 𝑏 = 1.

ℎ = 0.005. It is obvious that BHCM requires less steps to
obtain the solutions compared to Awoyemi methods [7, 15].

Table 2 shows that BHCM manages to achieve better
accuracy and less total steps compared to Awoyemi P-stable
multistep method [15] for constant step size 0.025 when 𝑏 =

5, 10, 15, and 20. Furthermore, BHCM gain better accuracy
compared to Awoyemi nonsymmetric collocation method
[20] and Adesanya block predictor-corrector method [17]
when ℎ = 0.1 and 𝑏 = 1. Table 3 shows the superiority of
BHCM in terms of accuracy over Adesanya block predictor-
corrector method [17] and Olabode block method [16] for
special third order ODEs.

Figures 1, 2, and 3 depict the performance comparison
between BHCM and the existing methods: Awoyemi hybrid
collocation method [7], Awoyemi P-stable multistep method
[15], and Adams Bashforth-Adams Moulton method, respec-
tively. It shows that BHCM is more efficient than the existing
methods in terms of accuracy. BHCM also requires less
computational time compared to the existingmethods.This is
expected since BHCM calculates the approximation at three
main points concurrently.

5. Application to Solve Nonlinear
Genesio Equation

Here we consider the nonlinear chaotic system fromGenesio
and Tesi [1]

𝑥
󸀠󸀠󸀠

+ 𝐴𝑥
󸀠󸀠
+ 𝐵𝑥
󸀠
− 𝑓 (𝑥 (𝑡)) = 0 (24)

with

𝑓 (𝑥 (𝑡)) = − 𝐶𝑥 (𝑡) + 𝑥
2

(𝑡) (25)

that is subject to the following initial conditions:

𝑥 (0) = 0.2, 𝑥
󸀠

(0) = − 0.3, 𝑥
󸀠󸀠

(0) = 0.1,

𝑡 ∈ [0, 𝑏] ,

(26)

where𝐴 = 1.2, 𝐵 = 2.92, and 𝐶 = 6 are the positive constants
that satisfied 𝐴𝐵 < 𝐶 for the existence of the solution.

BHCM is implemented together with a built-in Math-
ematica package, namely, FindRoot, for the solution of
nonlinear system based on Newton’s method. In order to
apply BHCM and Newton’s method at the next block, the last
value from previous block is used as starting value and initial
guess, respectively.

Thenumerical solutions are comparedwith the numerical
solutions obtained inMehrkanoon [9], Bataineh et al. [2], and
the Mathematica built-in package NDSolve.

Table 4 shows the comparison in the numerical approx-
imation of 𝑦 at the end points 𝑏 = 1 and 𝑏 = 4. BHCM
achieves similar approximation as Mehrkanoon variable step
three-point block multistep method [9].

Figure 4 depicts the numerical solutions for the nonlinear
Genesio equation [1] in the interval [0, 4.5]. Bataineh et al.
[2] stated that NHAM is more stable than the numerical
solution obtained by classical HAM. In fact, the solutions
obtained by BHCM are in agreement with the observation
of Bataineh et al. [2] using NHAM and Mathematica built-in
package NDSolve.

6. Application to Solve Problem in
Thin Film Flow

The proposed method is also applied to solve the well-known
physical problem regarding the thin film flow of a liquid.
In fluid dynamics, Tuck and Schwartz [3] investigated some
third order ODEs that are relevant to draining and coating
flows. They discussed the motion of the fluid on a plane
surface in which the flow is in the direction of motion along
the plane. This fluid dynamics problem was formulated in an
autonomous third order ODEs

𝑦
󸀠󸀠󸀠

= 𝑓 (𝑦) , (27)

where

𝑓 (𝑦) = − 1 + 𝑦
−2
,

𝑓 (𝑦) = − 1 + (1 + 𝛿 + 𝛿
2
) 𝑦
−2

− (𝛿 + 𝛿
2
) 𝑦
−3
,

𝑓 (𝑦) = 𝑦
−2

− 𝑦
−3
,

𝑓 (𝑦) = 𝑦
−2
.

(28)

In the literature, some numerical methods for solving
special third order ODEs have been extended to solve the
problem in thin film flow. Some numerical investigation was
presented in Momoniat and Mahomed [4] and Mechee et al.
[5] concerning the special third order ODEs

𝑦
󸀠󸀠󸀠

= 𝑦
−𝑘 (29)

with the initial conditions 𝑦(0) = 𝑦
󸀠
(0) = 𝑦

󸀠󸀠
(0) = 1 for the

cases 𝑘 = 2 and 𝑘 = 3.
Instead of using the conventional approach of reduction

to system of first order ODEs, Momoniat and Mahomed [4]
applied the successive reduction by writing the third order
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Figure 2: Performance comparison for Problem 2 when 𝑏 = 40.
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Figure 3: Performance comparison for Problem 3 when 𝑏 = 1.

ODEs (29) in terms of the differential invariants and solved
it by fourth order Runge Kutta method. Mechee et al. [5]
applied the three-stage fifth order Runge Kutta method to
solve the third order physical problems (29) directly.

Here we will apply the proposed block hybrid colloca-
tion method (BHCM) to solve the third order ODEs (29).
The numerical solutions are compared with Momoniat and
Mahomed [4] and Mechee et al. [5] in the literature. The
results are displayed in Tables 5–8.

Table 5 demonstrates that BHCMperforms slightly better
compared to Mechee et al. [5] with ℎ = 0.1 for the case 𝑘 =

2. In Table 6, we observe that Momoniat and Mahomed [4],
Mechee et al. [5], and BHCM have similar order of accuracy.

Tables 7 and 8 show the numerical results for the case
𝑘 = 3 with ℎ = 0.1 and ℎ = 0.01, respectively. In fact, the
case 𝑘 = 3 cannot be solved analytically. Table 7 shows that
BHCMmanages to achieve the numerical result which agrees
to six decimal places when compared to Mechee et al. [5] for

Table 5: Numerical results for problem inThin Film Flow (29) with
ℎ = 0.1, 𝑘 = 2.

𝑥
Error

Mechee BHCM
0.2 1.07 × 10

−6
1.03 × 10

−6

0.4 4.13 × 10
−7

1.12 × 10
−7

0.6 8.51 × 10
−7

2.07 × 10
−9

0.8 1.71 × 10
−6

1.02 × 10
−8

1.0 3.86 × 10
−6

9.35 × 10
−7

Table 6: Numerical results for problem inThin Film Flow (29) with
ℎ = 0.01, 𝑘 = 2.

𝑥
Error

Momoniat Mechee BHCM
0.2 1.03 × 10

−6
1.03 × 10

−6
1.03 × 10

−6

0.4 1.14 × 10
−7

1.13 × 10
−7

1.13 × 10
−7

0.6 7.00 × 10
−9

6.30 × 10
−9

6.32 × 10
−9

0.8 1.00 × 10
−9

1.00 × 10
−10

7.83 × 10
−11

1.0 9.55 × 10
−7

9.54 × 10
−7

9.54 × 10
−7

Table 7: Numerical results for problem inThin Film Flow (29) with
ℎ = 0.1, 𝑘 = 3.

𝑥 Mechee BHCM
0.0 1.0000000000 1.0000000000000000
0.2 1.2211550887 1.2211551426800236
0.4 1.4881049238 1.4881052873784077
0.6 1.8042615558 1.8042625625912998
0.8 2.1715208324 2.1715228333017014
1.0 2.5909549758 2.5909583248983960

ℎ = 0.1. In Table 8, the numerical results for BHCM agree
to nine decimal places when compared to Momoniat and
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Figure 5: Total steps VS method.

Table 8: Numerical results for problem inThin Film Flow (29) with
ℎ = 0.01, 𝑘 = 3.

𝑥 Momoniat Mechee BHCM
0.0 1.000000000 1.0000000000 1.0000000000000000
0.2 1.221155142 1.2211551423 1.2211551423957325
0.4 1.488105284 1.4881052838 1.4881052842194118
0.6 1.804262548 1.8042625471 1.8042625481474530
0.8 2.171522797 2.1715227960 2.1715227981283490
1.0 2.590958258 2.5909582556 2.5909582591167280

Mohamed [4], while they agree to ten decimal places when
compared to Mechee et al. [5] for ℎ = 0.01.

Figure 5 shows the total number of steps taken to obtain
the solutions versus method. It is obvious that BHCM require
less steps to obtain the solution compared to Mechee et
al. [5] and Momoniat and Mahomed [4]. The results are

expected since the BHCMcalculates the values of𝑦 at 3 points
simultaneously while the Runge Kutta method in Mechee et
al. [5] and Momoniat and Mahomed [4] calculates only one
value of 𝑦 at a time.

BHCM is clearly superior in solving the problem in thin
film flow (29) since it involves less computational work and
yields highly accurate solutions.

7. Conclusion

As a whole, the numerical results demonstrate the efficiency
of the block hybrid collocation method. It is observed that
the block hybrid collocation method requires less number
of total steps compared to Awoyemi methods [7, 15, 20].
It reduces the total number of steps to almost one-third to
obtain the solution. These results are expected since the 3-
point block methods calculate the values of 𝑦 at three main
points concurrently.
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The numerical results also demonstrate the accuracy of
the block hybrid collocation method. It gives precise approx-
imation as the step size decreases. When compared with the
existing methods [7, 15–17, 20] and Adams Bashforth-Adams
Moultonmethod, the block hybrid collocationmethodmeets
better accuracy for various step sizes even in larger interval.

As a conclusion, the 3-point block hybrid collocation
method with two off-step points has been proposed and
implemented as a self-starting method for third order ordi-
nary differential equations. The results suggest a significant
improvement in efficiency of the block hybrid collocation
method in the direct solution of general third order ODEs.
The block hybrid collocationmethod is applicable to solve the
nonlinear Genesio equation [1] and the physical problem in
thin film flow [4, 5].
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