Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 546243, 8 pages
http://dx.doi.org/10.1155/2014/546243

Research Article

The Center Conditions and Bifurcation of Limit Cycles at
the Degenerate Singularity of a Three-Dimensional System

Shugang Song,' Jingjing Feng,' and Qinlong Wang’

"'School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

2 School of Science, Hezhou University, Hezhou 542899, China

Correspondence should be addressed to Qinlong Wang; wqinlong@163.com

Received 25 April 2014; Revised 23 June 2014; Accepted 26 June 2014; Published 9 July 2014

Academic Editor: Junjie Wei

Copyright © 2014 Shugang Song et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate multiple limit cycles bifurcation and center-focus problem of the degenerate equilibrium for a three-dimensional
system. By applying the method of symbolic computation, we obtain the first four quasi-Lyapunov constants. It is proved that the
system can generate 3 small limit cycles from nilpotent critical point on center manifold. Furthermore, the center conditions are
found and as weak foci the highest order is proved to be the fourth; thus we obtain at most 3 small limit cycles from the origin via
local bifurcation. To our knowledge, it is the first example of multiple limit cycles bifurcating from a nilpotent singularity for the
flow of a high-dimensional system restricted to the center manifold.

1. Introduction

About dynamical behavior of the trajectories of three-
dimensional system, bifurcation of limit cycles is one of major
concerns; particularly, for Hopf bifurcation of a nondegen-
erate equilibrium with a pair of pure imaginary roots and a
negative one, many investigations have been carried out in
the past decades, for example, [1-4] for the three-dimensional
chaotic systems, [5-8] for the three-dimensional Lotka-Vol-
terra systems, and [9] for general three-dimensional systems.

However, up till now, study on bifurcation of limit
cycles from the degenerate singularity for high-dimensional
nonlinear dynamical systems is hardly seen in published
references. In this paper, we investigate the following three-
dimensional systems:

dx 2 N\ ko j I
o Y Ay = X (x y,u),
k+2j+21=3

dy

i —2x° + 2uxy + Z Bkaxkyjul =Y (x,y,u), 1)

k+2j+21=4
du < k. j 1
pri —du + Z digx"y'u =U (x, y, u),
k+j+l=2

Where X, y, u, t, d, Akjl’ Bkjl’ dkjl e R (d > 0, k, j, l € N)
Obviously system (1) has the Jacobian matrix at the origin as

follows:
A 0 01
Az(o1 —d>’ whereA1:<0 0>. (2)

One notices that the origin has two zero eigenvalues and
one negative eigenvalue and the block matrix A, is nilpotent.
From the center manifold theorem, for the system (1), there
exists the center manifold: u = u(x, y) with u(0,0) = 0,
Du(0,0) = 0, and more the flow on the center manifold is
governed by a/a

()= ()« (MGl ). o

namely,
dx 2 \ kj_ X
s ¥ agty - X(e),
k+2j=3
N (4)
Y ey s Y by =Y (x,y),
dt !

k+2j=4
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where x, y,t,a,b; € R (k,j € N). It is usually called
the reduced system and system (1) is topological equivalent
to system (4) in the vicinity of the origin [10]. Thus by
investigating system (4), we can solve Hopf bifurcation of
the origin on center manifold of the three-dimensional
system (1). At the same time, we also discuss the center-
focus problem for the flow restricted to the center manifold,
which closely relates to the maximum number of limit cycles
bifurcating from the origin.

As far as investigation about limit cycles bifurcation of
a nilpotent critical point in planar system is concerned, it
is similar to nondegenerate case that detecting nilpotent
center and calculating the focal value are needed [11]. There
exist some available and classical ways, for instance, Poincare
return map [12], Lyapunov function [13], and the normal
form theory [14]. At the same time, some good results on
the cyclicity were obtained [11, 12, 15, 16]. Recently in [17,
18], the authors gave an inverse integral factor method of
calculating the quasi-Lyapunov constants of the three-order
nilpotent critical point; it is convenient to compute the higher
order focal values and solve the center-focus problem of the
equilibrium. Here we extend this method’s application to
the three-dimensional system (1) and consider its specific
example as follows:

dx

E=y+a0ux—2xy=X,

dy

@ =y’ 2%’ + huy = Y, (5)
du
E=—u+d1xy=U,

where a,, by, d; € R.

The rest of this paper is organized as follows. In Section 2,
the corresponding quasi-Lyapunov constants are computed
and the center conditions on the center manifold are deter-
mined. In Section 3, the multiple local bifurcations at the
origin for system (5) are investigated, three limit cycles from
the origin are obtained, and it is proved at most three small
limit cycles from the origin via local bifurcation. In this work,
the system and problem are all considered for the first time.

2. Quasi-Lyapunov Constants and
Center Conditions

In this part, we firstly investigate the singular point quantities
of the origin. For the center manifold of system (5), one can
determine the formal expression u = (x, y) and obtain the
same form as system (4):

%=y+a0ﬁx—2xy=)?,
q (6)
d—f:y2—2x3+boﬁy:1~’.

Furthermore, we give the definition of quasi-Lyapunov con-
stants for system (6) and the way of computing them; more
details can be found in [17-19].
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Lemma 1 (Theorems 8.7.1 and 8.7.2 in [17]). For system (6),
any positive integer s and a given number sequence {cog}, 8 >
3, we can derive successively and uniquely the terms of the
Jfollowing formal series with the coefficients c,g satisfying o # 0,

M(xy) =y + Y cpx’y” 7)
a+f=3
such that
0X oY oM oM -
— +— | M- D —X+—Y | = "
<ax+6y> (s+ )<ax +ay ) mZ:Gwmx
(8)

And, if a#0, c,p is determined by the following recursive
formula:

a+f-1

kzz {[k ~ s+ D (@ = k)l aj6aip-jin
+j=

1
Cap = s+«

. ) 9)
+[j-(s+1)(B-j+2)]

X bkjca—k—l,ﬁ— j+2}

and, for any positive integer m > 6, w,, is determined by the
following recursive formula:

m—1
@, = Z [(k —(s+ D (a—k+1)aiCpperr-j
2, (10)

+(j-(s+1)(1-7)) bkjcmfk,lfj]

and, when o < 0 or 8 < 0, we have let c,3 = 0.

Particularly, by choosing appropriate s and number
sequence {Coﬁ} (B = 3), we can make w,;,,(s) = 0 and then
let

Wyipa (8) = (i—4s-1) A, 11)

Definition 2. The A; in (11) is called the ith quasi-Lyapunov
constant of the origin of system (6), i = 1,2,..., and more
if all the quasi-Lyapunov constants vanish, that is, A,, = 0,
m = 1,2,..., then the origin of system (5) is a center on the
local center manifold at the origin.

Lemma 3. For system (6), the mth focal value v,,,,(-27) at the
origin of system (6) is algebraic equivalent to o,,A,,; that is, for
any positive integer m = 2,3,..,ifv, = vy =+ =v,, , =0
and A=A, =---=A,,_, =0hold, thenv,,, = 0,,A,,, where
0, is a defined constant (which is given in [17, 18]).

Remark 4. According to Lemma 1, one sees that each w,, in
(10) is related to only the coeflicients of the first 11 — 1 degree
terms of system (6). Here we determine the above i(x, y) only
up to a tenth degree polynomial with respect to x, y as follows:

i(x,y)=dyy(x—y)+dyy’ (x+y) )
Uy +Us + e U,
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where u;,i = 4,...,10 is a homogeneous polynomial in x, y
of degree i, respectively, (which can be seen in the Appendix);
thus X and Y in system (6) are two polynomials with degree
11. And more all a;;, by; of ¢,z in (9) are given definitely by
the coefficients ay, by, d; (the specific ¢4 is available in Email
address of the corresponding author); the w,, in (10) is given
by the following specific form:

w,, = —32d, (686 — 94ayd, — 31b,d,)
x (21ay + by — agm + 10ays — ayms)
x ¢ [m—-10,0]
—2208d, (19a, + by — agm + 9ays — agms)
X c[m—-9,0]
+4d, (144 — 11ayd, — 3byd,)
x (17aq + by — agm + 8ays — ayms)
(13)
X c[m—38,0]
+40d, (15a, + by — agm + 7ays — ayms)
Xc[m-17,0]
—24d, (13a, + by — agm + 6ays — ayms)
X c[m-6,0]
+2d, (9ay + by — agm + 4ays — ayms)
xXc[m-4,01+2(1+s)c[m-23,0].

Applying the powerful symbolic computation function of
Mathematica system and the recursive formulas in Lemma 1,
and from Remark 4, we obtain the first 7 quantities as follows:

wg =0,

w; =3(1+5)cy3»

4
wg = Edl (2ay — by) (3 — 4s),

2
Wy = gaod1 (I-s)),

(14)
2
Wy = ;aodl (1-6ad,),
1 2 2
oy = (73ayd, — 704ayd; + 840cy; ),
397
Wy, = ———ayd;.
12 105 %%
In the above expression of each wy, k = 7,...,12, we have
already let wg = -+ = wy_; = 0.
Particularly, in order to make w,;,; = 0,i = 1,...,5, we

let s = 1 and choose

1
@ =0  Gs=go (704a3d; - 73ayd,).  (15)

Thus from the expression (11) in Lemma 1, we have the
following.

Theorem 5. For the flow on center manifold of system (5), we
get the first 4 quasi-Lyapunov constants of the origin as follows:

A, =0,

4
A=t (2~ by),

) (16)
Ay = ;%dl (1- 6%d1) >

397
A4 = —andl.

Theorem 6. For system (5), the origin is a center on the local
center manifold if and only if the following condition is satisfied:

d =0 or ay=b,=0. 17)
Proof. The proof of the necessity is easy; then we omit it.
Now we prove the sufficient condition; this technique derives
from the method of Darboux (also see [20-23]). Obviously, if
d, = 0 in the conditions (17) holds, then system (5) has the
corresponding form as follows:

dx
T y + agux — 2xy,
d d 1
u
d—i} = y* = 2x° + byuy, i

And more we can figure out easily one algebraic invariant
surface for system (18): F(x, y,u) = u; in fact, there exists a
polynomial K(x, y,u) = —1, the cofactor of F(x, y,u), such
that dF/dt|;; = KF. One can observe that F(x, y,u) =
0 is tangent to the center eigenspace, the (x, y)-plane, at
the origin. Thus it forms a local center manifold in a
neighborhood of the origin. From F(x, y,u) = u = 0, we
substitute it into the first and second equations of the system
defined by system (18) and we have the differential equations

dx dy 2 3
R 2 19
a’ 2y, a7 2 (19)

which is a Hamiltonian system with Hamiltonian function:
H(x, y) = x* — 2xy* + y*. Therefore the origin is a center for
systems (18) or (19) as shown in Figure 1(a).

And ifa, = b, = 0 in the conditions (17) holds, then
system (5) has the corresponding form as follows:

dx d du
E:y—ny, d—)t}=y2—2x3, a=—u+d1xy.
(20)

Clearly, the above H = x* - 2xy” + y* is also a first integral of
system (20); thus the origin is a center for the flow of system
(5) restricted to a center manifold. O]

According to Lemma 3 and Theorem 6, then we have the
following.
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FIGURE 1: (a) The phase portrait of system (19) on the (x, y)-plane which shows that it is integrable at the origin; (b) the stable limit cycle
bifurcated from the origin of system (24) with § = 0.001, d, = 1,a, = 1/6,b, = 1/3 + 0.001.

Theorem 7. For the origin of system (5) as a weak focus on
center manifold, the highest is the fourth order and its first 4
focal values are as follows:

v, (=2m) = 07, v, (=21) = 0,A,,

(21)

Ve (=21) = 0315, vg (=21) = o4Ay,
where, for the expression of v,, we have let v, = 0, and v, =
vy =0 for v, v, = v4 = v = 0 for vg.

3. Multiple Limit Cycle Bifurcation of
the System

In this section, we apply the focal values obtained in last
section to discuss multiple bifurcation of the equilibrium and
demonstrate there exist 3 and at most 3 limit cycles.

From Theorems 5 and 7, we have

Theorem 8. For the flow on center manifold of (5), the origin
is a 4th-order fine focus; that is, Ay = A, = A5 = 0, A, #0 if
and only if

by = 2a,, 6ayd, =1
or b - L a L 22
0_3d1’ 0_6d1 ( )
(d, #0).

Proof. Firstly, we prove the necessity, from the expressions
(16) in Theorem 5; we let A, = A, = A; = 0 and consider
A4 #0 and then only b, = 2a, and 6a,d, = 1 are obtained
at the same time. Then for the proof of the sufficiency, by
substituting the above conditions into A;,i = 1,2,3,4, one
can get the conclusion easily. Furthermore we can transform

the above conditions into the following form: b, = 1/3d,,
a, = (1/6d,) (d, #0). Thus the proof is completed. O

Remark 9. For the coefficients of system (5) or (6), when
d, #0, there always exists a group of critical values: a, =
1/6d,, by, = 1/3d, such that the conditions (22) hold.

From Theorem 5, one calculates easily the Jacobian deter-
minant with respect to the functions A,, A5 and variables aj,
bo,

_ 0(AyA5) _ 8 »
J= 3 (o) —35d1(1 12a,d,). (23)

Considering the conditions (22) and when d, # 0 holds, we
obtain | = —(8/35)df #0. At the same time, one can get that
Ay = —(397/1890) # 0 holds.

Thus we take some appropriate perturbations for the
coeflicients of system (6) and get the perturbed system with
the following form:

i—f=8x+y+aoﬁx—2xy,

d
d_)t/ =20y + y* = 2x° + byiiy,

(24)

where 0 < § « 1. According to Theorem 2.2 in [18], system
(6) has 3 limit cycles in the neighborhood of the origin;
that is, system (5) has 3 limit cycles on the center manifold
necessarily. One can refer to [9, 17, 18] for more details about
constructing of limit cycles. And using numerical method,
we get an example of one stable limit cycle for system (24)
as shown in Figure 1(b).

Therefore, from the above discussion and Theorem 7, we
have the following.
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Theorem 10. For system (5), 3 and at most 3 small amplitude
limit cycles can be bifurcated from the origin on the center
manifold.

4. Conclusions

In summary, based on precise symbolic computation, we
have investigated deeply multiple limit cycles bifurcation
in the vicinity of the degenerate equilibrium for a three-
dimensional system. Firstly by computing its quasi-Lyapunov
constants, we solved its center-focus problem on center
manifold; thus the center conditions are found and as weak
foci the highest order is proved to be the fourth. Then we
obtained that the system can generate 3 small limit cycles
from nilpotent critical point and at most 3 small limit cycles
from the origin via local bifurcation. For the flow of a high-
dimensional system restricted to the center manifold, only
one interesting example of multiple limit cycles bifurcating
from its nilpotent singularity was given here, but we believe
that more outcomes on this problem will be shown in the near
future.

Appendix

Consider

u, =—d, (—2x4 +12x° y - 36x°y* + ayd, x*y*
+byd, x°y* + 72xy° - 3ayd, xy’
—5byd, xy” — 69y* + 3a,d, y* + 7b0d1y4) ,

us =d,y (20x4 —134x°y + 474x°y" — dayd, x°
— 5byd, x>y — 876xy” + 5a,d, xy’
+ 5byd,xy” + 600y* + 7ayd, y* + 28b0d1y4) ,

ug = —d, (24x6 —288x"y + 14ayd, x” y + 6byd, X" y
+1732x*y* — 144a,d, x*y* - 88byd, x*y*
—6944x"y + 744ayd, X"y + 552byd, %’y
- 3a§dfx3y3 - 6a0b0dfx3y3 - 3b§dfx3y3
+20358x" y* — 2443a,d,x° y* — 2081byd, x* y*
+ 17a§dfx2y4 + 46a0b0d%x2y4 + 33b§d%x2y4
— 42468xy° + 5038ayd, xy” + 4882b,d, xy°
- 40a§dfxy5 — 134ayb,doxy” - 126b§dfxy5
+45468y° — 5003ayd, y° - 5153byd, y°

+40ayd:y° + 152a0byd; y° + 168b;d; y°),

u; = dy (40x - 1104x°y + 12060x° y*

—260ayd,x° y* — 128b,d, x°y* — 77700x" y°

+2860ayd, x*y” + 1700b,d,x* y* + 337632x° y*

— 15498ayd,x” y* — 10704byd, x° y* + 24a d>x’ y*

+ 56aybyd;x y* + 330 drx’ y* — 10128967 y°

+49266ayd, X"y + 39042byd, x* y° — 94a d

2.2 5

2.2 5

1x Y

~25lagbydix’y® — 1696} dix* y° + 1898388x)°

~ 84891ayd, xy° — 72276byd, xy° + 66a;d-xy°

+ 67a,byd  xy° — 166b)d xy° — 1625580y

+54873ayd, y’ + 45075byd, ¥’ + 174a;d:y

+915a0byd: y” + 14196, d7y"),

ug = —d, (-576x" + 44ayd, x° + 12byd, x°

+10976x” y — 1264a,d, x” y — 496b,d, x” y

~106352x° y* + 16048a,d, x°y*
+7696b,d, x° y*

-1 14agdfx6y2 -1 16a0b0d%x6)/2

- 34b}d 1%y + 704496x° y°

— 126632ayd,x° y* — 69528bd, x°
+1700a;d2x° y* + 2172a0byd>x° y°
+816byd;x° y° — 3558660x" y*
+710088ayd, x*y* + 428808byd, x* y*

- 12764a;d:x" y* — 19064a,byd; x* y*

- 8340b dix’ty! + 14a)d)x*

+ 2a by di x* vt + 42ab7 d3xy*t
+14b)d)x* y* + 1410499257

—~ 2960538a,d, x> y° — 1907570b,d,x° y°
+61685a;d:x° y° + 103855a,byd x° y°

+ 50130b§d%x3y5 - 125agdfx3y5

- 463a§b0dfx3y5 - 591a0bgd?x3y5
—261b)dx’y° - 43327872x y°

+9065880ayd, x° y° + 6166752b,d, x° y°
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~200895a;d:x” y° — 374342a,byd; x* y° +1292a;d}x° y° + 4961abyd; x° y°

~ 1964230 d %" y° + 504a,d 57 y° +6477a,bid %’ y° + 28770} d 7 y°
+2186a;byd; x” y° + 3360a,b;d; x* y° +5820320664x"y” — 495558804a,d,x”y’

2.7

+1854b)d> x”y° + 94249296xy” — 321861864byd, x* y” + 5224500a;d7x" y

— 18564504ayd,xy’ — 13274868b,d,xy’ +9158682a,byd x>y + 4161294k d> x>y

+412530a;d;xy” + 833201a,byd; xy’
+ 4686016 d>xy’ —1097ad; xy’

- 5317a§b0d:15xy7 - 9303aob§d‘;’xy7
~6011b)d;xy” — 105628356 y"

+18948615a,d, y* + 13977981b,d, y*

- 3274a d}x"y" — 12840abyd x>y
~ 16145a)b d x"y” - 58196 d x"y
— 11169394848xy® + 901925700ayd, xy*
+ 606394284byd, xy° — 8530348a;d’xy*

~ 15428426a,byd; xy* — 69802476} d’ xy*

~ 411312a7d’ y° — 868420a,bd; y*° +949a;dxy® - 2716a byd; xy°

~50353267dy® +1097a;d; y° ~23065a,bpd xy® — 316018 d; xy°

3

+5673a;byd; y* + 10687a,b;d; + 10324368000y — 750336780ayd, y°

+7551b,d3 "), ~ 509164044byd, y° + 5239852a;d’ y°

ug =d, (—2208x9 +77328x%y — 2384ayd, x°y + 8941749aybyd; y° + 33317016} d. y°

343 9 2 3.9
— 784b,d, x%y — 1227512x7 +7827ayd,y” + 50215a,b,d] y

+64396a,d,x” y* + 26272byd, x” +119361a5byd; y” + 108056b5d3y”),

+12357160x°y” — 835460ayd, x° y’ Uy = —d, (21952x'% - 3008ayd, x'* — 992bd, x"°

2.6 3

~396608byd, x°y* + 3144ad x°y —605184x" y + 107232a,d,x” y + 42144byd, x° y

2.6 3 2.6 3

+3498a,byd 1 x°y” + 1096b; d3 x° y —1104a;d;x’ y — 752a4b,d "y — 1606 d 1 x” y

—89203392x° y* + 6916384a,d,x” y* +8513712x° y* — 1841888a,d, x° y*

2.5 4

+3676396b,d,x° y* — 49214a.d;x” y ~ 822896byd, x° y* + 34440a d %"y

—~ 63780agbyd x” y* — 22834b;d1x” y* +29616a,byd; x° y* + 7896b; d 1 x°

+483032256x" y° — 40282356a,d,x*y° — 81848832x” y° + 20765520a,d, x” y°

4. 5

—23266264byd, x* y° + 378254a d x" y 2xy?

+10179424byd, x” y° — 527376a;d>x" y

+ 553724aybyd x*y” + 2172180 d>x*y° ~ 530448a,byd 1 x” v — 162816b dax” y’

4.5

- 180a3d?x4y5 - 607a§b0dix y + 1050a§di'x7y3 + 1774a§b0dfx7y3

~ 687a)bid x"y® - 26163 x* +1102a,b;d %" y* + 2500)d 3 x” y°

— 1968992136x” y° + 169196340ayd, x” y° +602777304x°y* — 173386212ayd, x° y*

+104279988byd, x° y° — 1780906a;d-x” y° - 90723084byd, x° y* + 5270270a;d; x° y*

2.6 4

—2890212a,byd x” y° — 12331146} dx° y° +5948592a,byd; x°y* + 20100364 d>x° y
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~21020a;d;x°y* — 41960a.byd; x° y* — 64886985a,b;d x” y° — 25527395b, d > x” y°
—31132a,b}d3x° y* - 86406]d x° y* +23205a,d;x° y° + 1358064, byd x° y°

- 3601377936x° y° + 1131810888a,d, x° +313360a,bydyx” y° + 341634a,bydyx” y°
+620482512b,d, x° y° — 38357066a;d>x" y° + 1504758yd, x*y* — 541133408592xy”

_ 47295826a,b,d2° yF — 17155148K2 4" + 153053040600a0d, xy° + 93565298520b,d, xy’

2229 2.9
i 212538a3d?x5y5 + 481702a§b0dfx5y5 —5592047067a,d xy” — 8557415979a,b,d| xy

2 12 9 343 9
+ 405182(1019(?61?)(5}/5 + 128818b§d?x5y5 3635890530b0d1xy + 42251824a0d1xy

85 d R - 30ad +131348672a,byd  xy’ + 147010021a,b;d’ xy°
0 0
343 9 4 44 9
5106282 5%y — 340a,ld Y + 60353479 d | xy” — 48844a,d xy
it 5 s ~ 3058464, byd, xy’ — 7602424, b d xy’
-85 X
o - 901682ayb; dixy’ — 438506b; d; xy’
+17877283056x" y° — 5874570084a,d, x* y° O b
s + 634052720592 "% — 159806071620a,d, y'°
- 3333151404byd, x* y° + 2121214364, d; x" y -
—99249887196byd, y'"° + 56392057354, d’ y
+280352816a,byd;x" y° + 107174808b) d; x™ y° - a1
+ 8832784710a,b,d> y'* + 381301272967 d’ y

— 1401156ayd; x" y° - 3518659a; byd; x* y° - 10
— 42181381ayd; y'° - 1351855624, byd, y

3.4 6 343 4 6

- 325071 5apbyd; 'y - 11302626y dx — 155218542a)b2d> y"° - 64874815b)d y'°
+1085a5d}x" y° + 50944 byd’x" y° + 48844a°d* 10 + 318016 By’ "
+9160a5byd,x"y° + 7498agbodyx’y° +824332a2B3d" y'"° + 1024232007t '
4 44 4 6 3.7
+2363b1d"x"y® - 73199185920x° y csasTratdd ).

3.7
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