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We propose two new compact difference schemes for numerical approximation of the Riemann-Liouville and Riesz derivatives,
respectively. It is shown that these formulas have fourth-order convergence order by means of the Fourier transform method.
Finally, some numerical examples are implemented to testify the efficiency of the numerical schemes and confirm the convergence
orders.

1. Introduction

Nowadays, fractional derivatives are used to model various
different phenomena in science and engineering, such as
physics, materials, control theory, biology, and finance [1–3].
Therefore, to obtain highly accurate numerical methods for
the fractional derivatives is of great importance, but, due to
the nonlocal property of the fractional derivatives, a lot of
improvements remain in the present numerical approaches.

As we all know, there are several different ways to
define the fractional derivatives, and the most commonly
used fractional derivatives areGrünwald-Letnikov derivative,
Riemann-Liouville derivative, Riesz derivative, and Caputo
derivative. Accordingly, there are a lot of different numerical
methods for the above fractional derivatives [4–14]. In this
paper, we propose two high-order numerical formulas for the
Riemann-Liouville and Riesz derivatives.

The plan of the remainder of this paper is as follows.
In Section 2, we introduce the preliminary knowledge for
the rest of the paper. Two novel numerical schemes for
the Riemann-Liouville and Riesz derivatives are proposed
in Section 3. In Section 4, some numerical experiments are
carried out to support the theoretical analysis. Finally, the
paper concludes with a summary drawn in Section 5.

2. The Preliminary Knowledge

In this section, we will introduce the definitions of the
Riemann-Liouville and Riesz derivatives and a lemma used
throughout the remaining sections of the paper.

Definition 1 (see [15]). The 𝛼 order left and right Riemann-
Liouville derivatives of the function 𝑓(𝑥) are defined as

RL𝐷
𝛼

−∞,𝑥
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)

(

𝑑

𝑑𝑥

)
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𝑓 (𝑡)
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𝑛 − 1 ≤ 𝛼 < 𝑛 ∈ Z
+

,

RL𝐷
𝛼

𝑥,+∞
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)
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+

.

(1)

Definition 2 (see [15]). The 𝛼 order Riesz derivative of the
function 𝑓(𝑥) is defined as

𝜕
𝛼

𝑓 (𝑥)

𝜕|𝑥|
𝛼
= −

1

2 cos (𝜋𝛼/2)
( RL𝐷
𝛼

−∞,𝑥
+ RL𝐷

𝛼

𝑥,+∞
) 𝑓 (𝑥) .

(2)
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Lemma 3 (see [16]). Let 𝛼 > 0, 𝑓 ∈ 𝐶∞
0
(R); the Fourier

transform of the left Riemann-Liouville-fractional derivative is

F ( RL𝐷
𝛼

−∞,𝑥
𝑓 (𝑥) , 𝜔) = (𝑖𝜔)

𝛼 ̂
𝑓 (𝜔) , (3)

where ̂𝑓(𝜔) denotes the Fourier transform of 𝑓(𝑥); that is,

̂
𝑓 (𝜔) = ∫

R

exp (−𝑖𝜔𝑥) 𝑓 (𝑥) 𝑑𝑥. (4)

3. New Numerical Formulas for the Riemann-
Liouville and Riesz Derivatives

Firstly, we divide the given interval [𝑎, 𝑏] into

Λ : −∞ ≤ 𝑎 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑚
= 𝑏 ≤ ∞ (5)

and 𝑥
𝑙
= 𝑎 + 𝑙ℎ, in which ℎ = (𝑏 − 𝑎)/𝑚, 𝑙 = 0, 1, . . . , 𝑚.

In [17], Tuan and Gorenflo introduced the following
fractional center difference operator:

𝐶
Δ
𝛼

ℎ
𝑓 (𝑥) =

∞

∑

𝑗=0

(−1)
𝑗

(

𝛼

𝑗
)𝑓(𝑥 − (𝑗 −

𝛼

2

) ℎ) . (6)

It is proved that it has second-order accuracy for the
Riemann-Liouville derivative. Inspired by above fractional
center difference operator, now, we give a fourth-order
approximation formula for the Riemann-Liouville derivative
by the following theorem.

Theorem 4. Let 𝑓(𝑥) and the Fourier transform of the
RL𝐷
𝛼+4

−∞,𝑥
𝑓(𝑥) all belong to 𝐿

1
(R). Then, one has
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1 + (𝛼/24) 𝛿
2

𝑥

+ O (ℎ4) , (7)

uniformly for 𝑥 ∈ R, where 𝛿2
𝑥
is the second-order central

difference operator and defied as 𝛿2
𝑥
𝑓
𝑗
= 𝑓
𝑗+1
− 2𝑓
𝑗
+ 𝑓
𝑗−1

.

Proof. Taking the Fourier transform to fractional center
difference operator
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6

] ,

(8)

similarly, we also have
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(9)

If we denote

̂
𝜙 (𝜔, ℎ) = F{
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𝛼
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(10)

then, from the above equation and Lemma 3, we have
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󵄨
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󵄨
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Note that the condition F( RL𝐷
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(R); then

we obtain
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐶
Δ
𝛼

ℎ
𝑓 (𝑥)

ℎ
𝛼

− (1 +

𝛼

24

𝛿
2

𝑥
) RL𝐷

𝛼

−∞,𝑥
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝜙 (𝜔, ℎ)

󵄨
󵄨
󵄨
󵄨
=

1

2𝜋

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R

exp (𝑖𝜔ℎ) ̂𝜙 (𝜔, ℎ) 𝑑𝜔
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2𝜋

∫

R

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜙 (𝜔, ℎ)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜔

≤

𝐶
1

2𝜋

(∫

R

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑖𝜔)
𝛼+4 ̂
𝑓 (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜔) ℎ

4

=

𝐶
1

2𝜋

(∫

R

󵄨
󵄨
󵄨
󵄨
󵄨
F ( RL𝐷

𝛼+4

−∞,𝑥
𝑓 (𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜔) ℎ

4

≤ 𝐶ℎ
4

= O (ℎ
4

) ,

(12)

where 𝐶 = 𝐶
1
𝐶
2
/2𝜋. This finishes the proof.

Remark 5. (1) When 𝛼 = 1, (7) becomes the following
average-central difference scheme for the first-order deriva-
tive:

𝑑𝑓 (𝑥)

𝑑𝑥

=

1

ℎ

𝑓 (𝑥 + (1/2) ℎ) − 𝑓 (𝑥 − (1/2) ℎ)

1 + (1/24) 𝛿
2

𝑥

+ O (ℎ
4

) .

(13)

(2) When 𝛼 = 2, (7) becomes the following average-
central difference scheme for the second-order derivative:

𝑑
2

𝑢 (𝑥)

𝑑𝑥
2
=

1

ℎ
2

𝑓 (𝑥 + ℎ) − 2𝑓 (𝑥) + 𝑓 (𝑥 − ℎ)

1 + (1/12) 𝛿
2

𝑥

+ O (ℎ
4

) .

(14)
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Table 1: The numerical results of Example 6 by difference Scheme
(7).

𝛼 ℎ The absolute error The convergence order

0.2

1/10 1.507793𝑒 − 006 —
1/20 9.410104𝑒 − 008 4.0021

1/40 5.876619𝑒 − 009 4.0012
1/80 3.671357𝑒 − 010 4.0006

0.4

1/10 2.250905𝑒 − 006 —
1/20 1.402929𝑒 − 007 4.0040
1/40 8.755965𝑒 − 009 4.0020

1/80 5.468621𝑒 − 010 4.0010

0.6

1/10 2.154827𝑒 − 006 —
1/20 1.342424𝑒 − 007 4.0047

1/40 8.377252𝑒 − 009 4.0022
1/80 5.231917𝑒 − 010 4.0011

0.8

1/10 1.313317𝑒 − 006 —
1/20 8.185957𝑒 − 008 4.0039
1/40 5.110355𝑒 − 009 4.0017

1/80 3.192508𝑒 − 010 4.0007

1.2

1/10 1.371602𝑒 − 006 —
1/20 8.576212𝑒 − 008 3.9994

1/40 5.363498𝑒 − 009 3.9991
1/80 3.354046𝑒 − 010 3.9992

1.4

1/10 2.337915𝑒 − 006 —
1/20 1.464272𝑒 − 007 3.9970
1/40 9.165078𝑒 − 009 3.9979

1/80 5.734311𝑒 − 010 3.9985

1.6

1/10 2.507873𝑒 − 006 —
1/20 1.572017𝑒 − 007 3.9958

1/40 9.842569𝑒 − 009 3.9974
1/80 6.154188𝑒 − 010 3.9994

1.8

1/10 1.690729𝑒 − 006 —
1/20 1.059074𝑒 − 007 3.9968
1/40 6.627397𝑒 − 009 3.9982

1/80 4.135963𝑒 − 010 4.0021

For the right Riemann-Liouville derivative, we can also
obtain the following fourth-order difference scheme by using
the same method:

RL𝐷
𝛼

𝑥,+∞
𝑓 (𝑥) =

1

ℎ
𝛼

𝐶
Δ̃
𝛼

ℎ
𝑓 (𝑥)

1 + (𝛼/24) 𝛿
2

𝑥

+ O (ℎ4) , (15)

where

𝐶
Δ̃
𝛼

ℎ
𝑓 (𝑥) =

∞

∑

𝑗=0

(−1)
𝑗

(

𝛼

𝑗
)𝑓(𝑥 + (𝑗 −

𝛼

2

) ℎ) . (16)

Combing (7) and (15), one can easily get a fourth-order
compact difference scheme for Riesz derivative as follows:

𝜕
𝛼

𝑓 (𝑥)

𝜕|𝑥|
𝛼
= −

1

2 cos (𝜋𝛼/2) ℎ𝛼
𝐶
Δ
𝛼

ℎ
𝑓 (𝑥) +

𝐶
Δ̃
𝛼

ℎ
𝑓 (𝑥)

1 + (𝛼/24) 𝛿
2

𝑥

+ O (ℎ
4

) .

(17)

Table 2: The numerical results of Example 7 by difference Scheme
(17).

𝛼 ℎ The absolute error The convergence order

0.2

1/10 1.009205𝑒 − 006 —
1/20 6.374128𝑒 − 008 3.9848

1/40 3.988170𝑒 − 009 3.9984
1/80 2.491356𝑒 − 010 4.007

0.4

1/10 2.982868𝑒 − 006 —
1/20 1.886698𝑒 − 007 3.9828
1/40 1.180691𝑒 − 008 3.9982

1/80 7.375345𝑒 − 010 4.0008

0.6

1/10 6.568541𝑒 − 006 —
1/20 4.168414𝑒 − 007 3.9780

1/40 2.612079𝑒 − 008 3.9962
1/80 1.632646𝑒 − 009 3.9999

0.8

1/10 1.281483𝑒 − 005 —
1/20 8.158970𝑒 − 007 3.9733
1/40 5.120258𝑒 − 008 3.9941

1/80 3.202608𝑒 − 009 3.9989

1.2

1/10 4.091054𝑒 − 005 —
1/20 2.613444𝑒 − 006 3.9684

1/40 1.642689𝑒 − 007 3.9918
1/80 1.028262𝑒 − 008 3.9978

1.4

1/10 6.933668𝑒 − 005 —
1/20 4.429158𝑒 − 006 3.9685
1/40 2.783972𝑒 − 007 3.9918

1/80 1.742681𝑒 − 008 3.9978

1.6

1/10 1.145559𝑒 − 004 —
1/20 7.311853𝑒 − 006 3.9697

1/40 4.594486𝑒 − 007 3.9923
1/80 2.875631𝑒 − 008 3.9980

1.8

1/10 1.850464𝑒 − 004 —
1/20 1.179730𝑒 − 005 3.9714
1/40 7.409938𝑒 − 007 3.9929

1/80 4.637042𝑒 − 008 3.9982

4. Numerical Examples

In order to verify the proposed numerical schemes for
the Riemann-Liouville and Riesz derivatives, we give the
following two numerical examples. And the numerical results
show that the numerical schemes are efficient.

Example 6. Consider the function 𝑓(𝑥) = 𝑥4, 𝑥 ∈ [0, 1]. The
left Riemann-Liouville derivative of the function 𝑓(𝑥) is

RL𝐷
𝛼

0,𝑥
𝑓 (𝑥) =

24

Γ (5 − 𝛼)

𝑥
4−𝛼

. (18)
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The absolute error and convergence order by the numerical
scheme (7) are shown in Table 1.

Example 7. Consider the function 𝑓(𝑥) = 𝑥4(1 − 𝑥)4, 𝑥 ∈
[0, 1]. The Riesz derivative of the function 𝑓(𝑥) is

𝜕
𝛼

𝑓 (𝑥)

𝜕|𝑥|
𝛼
= −sec(𝜋

2

𝛼)

× {

12

Γ (5 − 𝛼)

[𝑥
4−𝛼

+ (1 − 𝑥)
4−𝛼

]

−

240

Γ (6 − 𝛼)

[𝑥
5−𝛼

+ (1 − 𝑥)
5−𝛼

]

+

2160

Γ (7 − 𝛼)

[𝑥
6−𝛼

+ (1 − 𝑥)
6−𝛼

]

−

10080

Γ (8 − 𝛼)

[𝑥
7−𝛼

+ (1 − 𝑥)
7−𝛼

]

+

20160

Γ (9 − 𝛼)

[𝑥
8−𝛼

+ (1 − 𝑥)
8−𝛼

]} .

(19)

The absolute error and convergence order by the numerical
scheme (17) are shown in Table 2.

5. Conclusion

In this paper, we build two new finite difference schemes
for the Riemann-Liouville and Riesz derivatives, respectively.
The convergence orders of the difference schemes are proved
by Fourier transformmethod. Finally, numerical experiments
have been carried out to support the theoretical claims.
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