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Wepropose an appealing line-search-based partial proximal alternating directions (LSPPAD)method for solving a class of separable
convex optimization problems. These problems under consideration are common in practice. The proposed method solves two
subproblems at each iteration: one is solved by a proximal point method, while the proximal term is absent from the other. Both
subproblems admit inexact solutions. A line search technique is used to guarantee the convergence.The convergence of the LSPPAD
method is established under some suitable conditions. The advantage of the proposed method is that it provides the tractability of
the subproblem in which the proximal term is absent. Numerical tests show that the LSPPAD method has better performance
compared with the existing alternating projection based prediction-correction (APBPC) method if both are employed to solve the
described problem.

1. Introduction

In this paper, we consider a separable convex optimization
problem of the form

min 𝜃
1

(𝑥) + 𝜃
2

(𝑦) ,

s.t. 𝐴𝑥 − 𝑦 = 0,

(1)

where 𝑥 ∈ X, 𝑦 ∈ Y, 𝜃
1

: X → 𝑅, and 𝜃
2

: Y → 𝑅 are
convex functions; X ⊂ 𝑅

𝑛, Y ⊂ 𝑅
𝑚 are closed convex sets;

𝐴 ∈ 𝑅
𝑚×𝑛 is a given matrix; and rank(𝐴) = min{𝑚, 𝑛}.

The augmented Lagrangian function associated with the
problem (1) is

𝐿
𝛽

(𝑥, 𝑦, 𝜆) = 𝜃
1

(𝑥) + 𝜃
2

(𝑦) − 𝜆
𝑇

(𝐴𝑥 − 𝑦) +
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

.

(2)

For simplicity of analysis, we assume the objective func-
tion is continuously differentiable. Let 𝑓(𝑥) = ∇𝜃

1
(𝑥) and

𝑔(𝑦) = ∇𝜃
2
(𝑦); by the convexity of the functions 𝜃

1
and 𝜃

2
,

𝑓 and 𝑔 are monotone in X and Y, respectively. Thus, by

the optimality, the problem (1) is equivalent to the following
monotone variational inequalities: find (𝑥, 𝑦, 𝜆) ∈ W such
that

(𝑥
󸀠
− 𝑥)
𝑇

[𝑓 (𝑥) − 𝐴
𝑇

(𝜆 − 𝛽 (𝐴𝑥 − 𝑦))] ≥ 0, ∀𝑥
󸀠

∈ X,

(𝑦
󸀠
− 𝑦)
𝑇

[𝑔 (𝑦) + (𝜆 − 𝛽 (𝐴𝑥 − 𝑦))] ≥ 0, ∀𝑦
󸀠

∈ Y,

(𝜆
󸀠
− 𝜆)
𝑇

(𝐴𝑥 − 𝑦) ≥ 0, ∀𝜆
󸀠

∈ 𝑅
𝑚

,

(3)

whereW = X × Y × 𝑅
𝑚.

Chen and Teboulle [1] investigated the problem (1)
and proposed a proximal-based decomposition method.
Tseng [2] interpreted Chen and Teboulle’s approach as an
alternating version of the proximal point method and the
extragradient method. Furthermore, Tseng generalized their
method to solve much broader classes of problems and to
yield new decomposition methods for convex programming
and variational inequalities.

Indeed, there are manymethods to deal with the problem
(1), or its equivalent version (3), in the literature. Among these
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methods, proximal point method and alternating directions
method are power tools, for example, [3–8].

Throughout this paper, we assume that the solution set of
the problem (1) or, equivalently, the solution set of SVIs (3),
denoted by W∗, is nonempty. The notation ‖ ⋅ ‖ denotes the
Euclidean norm, ‖ ⋅‖

∞
denotes the infinite norm defined by

‖ 𝑢‖
∞

= max
𝑖
{|𝑢
𝑖
|}, and ‖ ⋅‖

∞
denotes the 𝑙

1
-norm defined

by ‖ 𝑢‖
1

= ∑
𝑛

𝑖=1
|𝑢
𝑖
|.

From a given 𝑤
𝑘

= (𝑥
𝑘
, 𝑦
𝑘
, 𝜆
𝑘
), the classical proximal

alternating directions method produces the new iterate triple
𝑤
𝑘+1

= (𝑥
𝑘+1

, 𝑦
𝑘+1

, 𝜆
𝑘+1

) via the following scheme.
(1) Find 𝑥

𝑘 via solving

𝑥 ∈ X,

(𝑥
󸀠
− 𝑥)
𝑇

{𝑓 (𝑥
𝑘
) − 𝐴
𝑇

[𝜆
𝑘

− 𝛽
𝑘

(𝐴𝑥
𝑘

− 𝑦
𝑘
)]

+𝑟
𝑘

(𝑥 − 𝑥
𝑘
)} ≥ 0, ∀𝑥

󸀠
∈ X.

(4)

(2) Find 𝑦
𝑘 via solving

𝑦 ∈ Y, (𝑦
󸀠
− 𝑦)
𝑇

× {𝑔 (𝑦
𝑘
) + [𝜆

𝑘
− 𝛽
𝑘

(𝐴𝑥
𝑘

− 𝑦
𝑘
)]

+𝑠
𝑘

(𝑦 − 𝑦
𝑘
)} ≥ 0, ∀𝑦

󸀠
∈ Y.

(5)

(3) Update 𝜆̂
𝑘 via

𝜆̂
𝑘

= 𝜆
𝑘

− 𝛽
𝑘

(𝐴𝑥
𝑘

− 𝑦
𝑘
) , (6)

where 𝛽
𝑘
is a given penalty parameter of the linear constraint

𝐴𝑥 − 𝑦 = 0. The coefficients 𝑟
𝑘

> 0 in formulas (4) and 𝑠
𝑘

> 0

in (5) are referred to as proximal parameters. The method is
convergent by setting 𝑤

𝑘+1
= 𝑤
𝑘

= (𝑥
𝑘
, 𝑦
𝑘
, 𝜆̂
𝑘
) (for a proof

see [3]).
However, finding a solution of the subproblem (4) or

(5) is not an easy task, since each of them requires an
implicit projection. He et al. [4] suggested solving inexactly
the subproblems (4) and (5). Their method is referred to as
alternating projection based prediction-correction (APBPC)
method. In [4], the authors considered a generalized version
of the problem (1) with the constraints 𝐴𝑥 + 𝐵𝑦 = 𝑏. The
problem under consideration in this paper, that is, problem
(1), has some features depending on 𝐵 = −𝐼. These features
provide some advantages for constructing more efficient
method.

This paper is organized as follows. Section 2 proposes
a line-search-based partial proximal alternating directions
method for solving the problem (1) and states some useful
notation. The proposed method can be looked as to a proxi-
mal alternating directionsmethod by setting 𝑠

𝑘
= 0 in (5) and

admits inexact solution at all iterations. Thus, the proposed
method is actually an inexact partial proximal alternating
direction method using a certain line-search technique. In
Section 3, we provide two descent directions of a given merit
function and prove the descent property of the proposed
method. In Section 4, the convergence property of the pro-
posed method is established under some suitable conditions.

Section 5 gives some preliminary numerical experimental
results on the compressed sensor problem.These results show
that the proposed method has better performance compared
with the existing APBPC method, when both are used to
solve the problem with the described features. Finally, some
concluding remarks are given in Section 6.

2. Method Description

In this section, we first describe the line-search-based partial
proximal alternating directions method for the problem (3)
in what follows.

Line-Search-Based Partial Proximal Alternating Directions
(LSPPAD) Method. Let ] ∈ (0, 1). For a given 𝑤

𝑘
=

(𝑥
𝑘
, 𝑦
𝑘
, 𝜆
𝑘
) ∈ W, the LSPPAD method produces the new

triple 𝑤
𝑘+1

= (𝑥
𝑘+1

, 𝑦
𝑘+1

, 𝜆
𝑘+1

) via the following scheme.

(s1) Solving the following variational inequality, find 𝑥 ∈

X such that

(𝑥
󸀠
− 𝑥)
𝑇

{𝑓 (𝑥
𝑘
) − 𝐴
𝑇

[𝜆
𝑘

− 𝛽
𝑘

(𝐴𝑥
𝑘

− 𝑦
𝑘
)]

+𝑟
𝑘

(𝑥 − 𝑥
𝑘
)} ≥ 0,

∀𝑥
󸀠

∈ X.

(7)

And denote the solution by 𝑥
𝑘. Let 𝜉

𝑘

𝑥
= 𝑓(𝑥

𝑘
) −

𝑓(𝑥
𝑘
) + 𝛽
𝑘
𝐴
𝑇
𝐴(𝑥
𝑘

− 𝑥
𝑘
), if

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩
≥ ]𝑟
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

. (8)

Let 𝑟
𝑘

← 2 ∗ 𝑟
𝑘
, and go back to (s1).

(s2) Solving the following variational inequality, find 𝑦 ∈

Y such that

(𝑦
󸀠
− 𝑦)
𝑇

{𝑔 (𝑦
𝑘
) + [𝜆

𝑘
− 𝛽
𝑘

(𝐴𝑥
𝑘

− 𝑦)]} ≥ 0, ∀𝑦
󸀠

∈ Y,

(9)

And denote the solution by 𝑦
𝑘. Let 𝜉

𝑘

𝑦
= 𝑔(𝑦

𝑘
)−𝑔(𝑦

𝑘
),

if
󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘

𝑦

󵄩󵄩󵄩󵄩󵄩
≥

]𝛽
𝑘

2√2

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
𝑘󵄩󵄩󵄩󵄩󵄩

. (10)

Let 𝛽
𝑘

← 2 ∗ 𝛽
𝑘
, and go back to (s2).

(s3) Update 𝜆̂
𝑘 via

𝜆̂
𝑘

= 𝜆
𝑘

− 𝛽
𝑘

(𝐴𝑥
𝑘

− 𝑦
𝑘
) . (11)

(s4) Compute the step length 𝛼
𝑘

> 0. Let

𝑀
𝑘

= (

𝑟
𝑘
𝐼

𝛽
𝑘
𝐼

1

𝛽
𝑘

𝐼

) , 𝜉
𝑘

= (

𝜉
𝑘

𝑥

𝜉
𝑘

𝑦

0

) , (12)

𝑤
𝑘+1

= 𝑤
𝑘

− 𝛼
𝑘

(𝑀
𝑘

(𝑤
𝑘

− 𝑤
𝑘
) − 𝜉
𝑘
) . (13)
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Remark 1. (1) The main difference between the APBPC
method [4] and the proposed LSPPAD method is that the
proximal term (𝑠

𝑘
/2) ‖ 𝑦−𝑦

𝑘
‖
2 appears in the prediction step

2 of the APBPC method, while it vanishes in the LAPPAD
method.

(2) In the LSPPAD method, (s1) is inherent one iteration
of the projection gradient method for the 𝑥-subproblem
based on the augmented Lagrangian function 𝐿

𝛽
(𝑥, 𝑦, 𝜆) (see

(2)) with the fixed 𝑦 = 𝑦
𝑘 and step length 1/𝑟

𝑘
. That is

𝑥
𝑘

= 𝑃X {𝑥
𝑘

−
1

𝑟
𝑘

[𝑓 (𝑥
𝑘
) − 𝐴
𝑇

(𝜆
𝑘

− 𝛽
𝑘

(𝐴𝑥
𝑘

− 𝑦
𝑘
))]} .

(14)

And (s2) is one iteration of the same method for the 𝑦-
subproblem with the fixed 𝑥 = 𝑥

𝑘 and step length 1/𝛽
𝑘
; that

is,

𝑦
𝑘

= 𝑃Y {𝑦
𝑘

−
1

𝛽
𝑘

[𝑔 (𝑦
𝑘
) + (𝜆

𝑘
− 𝛽
𝑘

(𝐴𝑥
𝑘

− 𝑦
𝑘
))]} .

(15)

Combining (7) and (9) together with (11) and by a
manipulation we have

(

𝑥
󸀠

− 𝑥
𝑘

𝑦
󸀠

− 𝑦
𝑘

𝜆
󸀠

− 𝜆̂
𝑘

)

𝑇

× (

𝑓 (𝑥
𝑘
) − 𝐴
𝑇
𝜆̂
𝑘

+ 𝛽
𝑘
𝐴
𝑇

(𝑦
𝑘

− 𝑦
𝑘
) +𝑟
𝑘

(𝑥
𝑘

− 𝑥
𝑘
) + 𝜉
𝑘

𝑥

𝑔 (𝑦
𝑘
) + 𝜆̂
𝑘

− 𝛽
𝑘

(𝑦
𝑘

− 𝑦
𝑘
) +𝛽

𝑘
(𝑦
𝑘

− 𝑦
𝑘
) + 𝜉
𝑘

𝑦

𝐴𝑥
𝑘

− 𝑦
𝑘

+
1

𝛽
𝑘

(𝜆̂
𝑘

− 𝜆
𝑘
)

) ≥ 0.

(16)

The following notations are useful for convenience in the
future discussion:

𝐹 (𝑤) = (

𝑓 (𝑥) − 𝐴
𝑇
𝜆

𝑔 (𝑦) + 𝜆

𝐴𝑥 − 𝑦

) ,

𝜂 (𝛽, 𝑤, 𝑤) = (

𝛽𝐴
𝑇

(𝑦 − 𝑦)

−𝛽 (𝑦 − 𝑦)

0

) .

(17)

𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) = 𝑀

𝑘
(𝑤
𝑘

− 𝑤
𝑘
) − 𝜉
𝑘
. (18)

𝑑
2

(𝑤
𝑘
, 𝑤
𝑘
) = 𝐹 (𝑤

𝑘
) − 𝜂 (𝛽

𝑘
, 𝑤
𝑘
, 𝑤
𝑘
) . (19)

𝜑 (𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) = (𝜆̂

𝑘
− 𝜆
𝑘
)
𝑇

(𝑦
𝑘

− 𝑦
𝑘
)

+ (𝑤
𝑘

− 𝑤
𝑘
)
𝑇

𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) .

(20)

By these notations, the variational inequality (16) can be
rewritten into a compact form:

𝑤
𝑘

∈ W, (𝑤
󸀠
− 𝑤
𝑘
)
𝑇

[𝑑
2

(𝑤
𝑘
, 𝑤
𝑘
) − 𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)] ≥ 0,

∀𝑤
󸀠

∈ W.

(21)

3. Descent Directions of the Merit Function
(1/2) ‖ 𝑤−𝑤

∗
‖
2

For the convenience of analysis, we ignore the index 𝑘 of the
matrices, vectors, and scalars in the section.

It is easy to show that, for all 𝑤
∗

∈ W∗, (𝑤 − 𝑤
∗
) is the

gradient of the unknown merit function (1/2) ‖ 𝑤 − 𝑤
∗
‖
2 at

the point 𝑤. The vector 𝑑 is a descent direction of the merit
function (1/2) ‖ 𝑤 − 𝑤

∗
‖
2 if and only if (𝑤 − 𝑤

∗
)
𝑇
𝑑 < 0. In

the section, under suitable conditions, we will show that both
−𝑑
1
(𝑤, 𝑤, 𝜉) and −𝑑

2
(𝑤, 𝑤) (see (18) and (19), resp.) are the

descent directions of (1/2) ‖ 𝑤 − 𝑤
∗
‖
2 while 𝑤 ∈ W \ W∗.

Hereafter, we denote 𝑢
𝑇
𝐻𝑢 by the compact form ‖ 𝑢‖

2

𝐻

whenever 𝐻 is a semidefinite symmetric matrix. It is obvious
that ‖ 𝑢‖

2

𝐻
≥ 0 by the semidefinite property of matrix 𝐻.

Lemma 2. For a given 𝑤 ∈ W, let 𝑤 = (𝑥, 𝑦, 𝜆̂) be generated
by (s1) to (s3) of the LSPPAD method, and let 𝜑(𝑤, 𝑤, 𝜉) be
defined by (20). Then one has

𝜑 (𝑤, 𝑤, 𝜉) >
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

+
𝜏

2

󵄩󵄩󵄩󵄩𝑑
1

(𝑤, 𝑤, 𝜉)
󵄩󵄩󵄩󵄩
2

, (22)

where 𝜏 = min{1/𝑟, 1/2𝛽, 𝛽} > 0.

Proof. By a manipulation, we get

𝜑 (𝑤, 𝑤, 𝜉)

= (𝜆̂ − 𝜆)
𝑇

(𝑦 − 𝑦) + (𝑤 − 𝑤)
𝑇

[𝑀 (𝑤 − 𝑤) − 𝜉]

= (𝜆̂ − 𝜆)
𝑇

(𝑦 − 𝑦) + ‖𝑤 − 𝑤‖
2

𝑀
− (𝑤 − 𝑤)

𝑇
𝜉

= (𝜆̂ − 𝜆)
𝑇

(𝑦 − 𝑦) + 𝑟‖𝑥 − 𝑥‖
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩
2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

− (𝑥 − 𝑥)
𝑇
𝜉
𝑥

− (𝑦 − 𝑦)
𝑇

𝜉
𝑦

= [(𝜆̂ − 𝜆)
𝑇

(𝑦 − 𝑦) +
1

2
𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

+
1

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

]

+
1

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑟‖𝑥 − 𝑥‖
2

− (𝑥 − 𝑥)
𝑇
𝜉
𝑥

+
1

2
𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

− (𝑦 − 𝑦)
𝑇

𝜉
𝑦
.

(23)

Substituting 𝜆̂−𝜆 = −𝛽(𝐴𝑥−𝑦) into the first term of the right
side of (23), we get

(𝜆̂ − 𝜆)
𝑇

(𝑦 − 𝑦) +
1

2
𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

+
1

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

=
𝛽

2
[−2(𝐴𝑥 − 𝑦)

𝑇

(𝑦 − 𝑦) +
󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

]

=
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

.

(24)
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By (s1), we have ‖ 𝜉
𝑘

𝑥
‖≤ ]𝑟
𝑘

‖ 𝑥
𝑘

− 𝑥
𝑘

‖. Note that ] ∈ (0, 1);
we get

𝑟‖𝑥 − 𝑥‖
2

− (𝑥 − 𝑥)
𝑇
𝜉
𝑥

=
1

2
𝑟‖𝑥 − 𝑥‖

2
− (𝑥 − 𝑥)

𝑇
𝜉
𝑥

+
1

2
𝑟‖𝑥 − 𝑥‖

2

=
1

2𝑟
[𝑟
2
‖𝑥 − 𝑥‖

2
− 2𝑟(𝑥 − 𝑥)

𝑇
𝜉
𝑥

+ 𝑟
2
‖𝑥 − 𝑥‖

2
]

>
1

2𝑟
[𝑟
2
‖𝑥 − 𝑥‖

2
− 2𝑟(𝑥 − 𝑥)

𝑇
𝜉
𝑥

+
󵄩󵄩󵄩󵄩𝜉
𝑥

󵄩󵄩󵄩󵄩
2

]

=
1

2𝑟

󵄩󵄩󵄩󵄩𝑟 (𝑥 − 𝑥) − 𝜉
𝑥

󵄩󵄩󵄩󵄩
2

.

(25)

Similarly, we have
1

2
𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

− (𝑦 − 𝑦)
𝑇

𝜉
𝑦

=
1

4
𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

− (𝑦 − 𝑦)
𝑇

𝜉
𝑦

+
1

4
𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

=
1

𝛽
[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
𝛽 (𝑦 − 𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

−
1

2
𝛽(𝑦 − 𝑦)

𝑇

𝜉
𝑦

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
𝜉
𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+
1

4
𝛽
2󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩
2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
𝜉
𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

−
1

2
𝛽(𝑦 − 𝑦)

𝑇

𝜉
𝑦
]

=
1

4𝛽

󵄩󵄩󵄩󵄩󵄩
𝛽 (𝑦 − 𝑦) − 𝜉

𝑦

󵄩󵄩󵄩󵄩󵄩

2

+
1

𝛽
[

1

4
𝛽
2󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩
2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
𝜉
𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

−
1

2
𝛽(𝑦 − 𝑦)

𝑇

𝜉
𝑦
] .

(26)

By (s2), we have ‖ 𝜉
𝑘

𝑦
‖≤ (]𝛽

𝑘
/2√2) ‖ 𝑦

𝑘
− 𝑦
𝑘

‖. Using
Cauchy-Schwarz inequality, we get

𝛽

2
(𝑦 − 𝑦)

𝑇

𝜉
𝑦

≤
𝛽

2

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑦

󵄩󵄩󵄩󵄩󵄩
≤

𝛽
2

4√2

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

. (27)

Again using ‖ 𝜉
𝑘

𝑦
‖≤ (]𝛽

𝑘
/2√2) ‖ 𝑦

𝑘
− 𝑦
𝑘

‖, we get

1

𝛽
[

1

4
𝛽
2󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩
2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
𝜉
𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

−
1

2
𝛽(𝑦 − 𝑦)

𝑇

𝜉
𝑦
]

≥
𝛽

4

7√2 − 8

8√2

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

≥ 0.

(28)

Thus
1

2
𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

− (𝑦 − 𝑦)
𝑇

𝜉
𝑦

≥
1

4𝛽

󵄩󵄩󵄩󵄩󵄩
𝛽 (𝑦 − 𝑦) − 𝜉

𝑦

󵄩󵄩󵄩󵄩󵄩

2

. (29)

Substituting (24), (25), and (29) into (23), we have

𝜑 (𝑤, 𝑤, 𝜉) >
1

2
𝛽

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

+
1

2𝑟

󵄩󵄩󵄩󵄩𝑟 (𝑥 − 𝑥) − 𝜉
𝑥

󵄩󵄩󵄩󵄩
2

+
1

4𝛽

󵄩󵄩󵄩󵄩󵄩
𝛽 (𝑦 − 𝑦) − 𝜉

𝑦

󵄩󵄩󵄩󵄩󵄩

2

+
1

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

.

(30)

Recalling

𝜏 = min{
1

𝑟
,

1

2𝛽
, 𝛽} , (31)

we obtain

𝜑 (𝑤, 𝑤, 𝜉) >
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

+
𝜏

2

󵄩󵄩󵄩󵄩𝑑
1

(𝑤, 𝑤, 𝜉)
󵄩󵄩󵄩󵄩
2

. (32)

Lemma 3. By the same conditions of Lemma 2 one has

𝜑 (𝑤, 𝑤, 𝜉) ≥ (1 − ]) 𝑟‖𝑥 − 𝑥‖
2

+
1

2
(1 −

√2

2
]) 𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

+
1

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

.

(33)

Proof. By Cauchy-Schwarz inequality, we get

(𝑥 − 𝑥)
𝑇
𝜉
𝑥

≤ ‖𝑥 − 𝑥‖
󵄩󵄩󵄩󵄩𝜉
𝑥

󵄩󵄩󵄩󵄩 ,

(𝑦 − 𝑦)
𝑇

𝜉
𝑦

≤
󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑦

󵄩󵄩󵄩󵄩󵄩
.

(34)

Noting that 𝛽 > 0, we have

1

2
(𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

)

≥ √
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩
√𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩 ≥ (𝜆 − 𝜆̂)

𝑇

(𝑦 − 𝑦) .

(35)

Then by (s1) and (s2), we get

𝜑 (𝑤, 𝑤, 𝜆)

= (𝜆̂ − 𝜆)
𝑇

(𝑦 − 𝑦) + (𝑤 − 𝑤)
𝑇

[𝑀 (𝑤 − 𝑤) − 𝜉]

= (𝜆̂ − 𝜆)
𝑇

(𝑦 − 𝑦) + (𝑥 − 𝑥)
𝑇
𝑟 (𝑥 − 𝑥) − (𝑥 − 𝑥)

𝑇
𝜉
𝑥

+ (𝑦 − 𝑦)
𝑇

𝛽 (𝑦 − 𝑦) − (𝑦 − 𝑦)
𝑇

𝜉
𝑦

+ (𝜆 − 𝜆̂)
𝑇 1

𝛽
(𝜆 − 𝜆̂)

≥ (1 − ]) 𝑟‖𝑥 − 𝑥‖
2

+ (1 −
]

2√2
) 𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

− (𝜆 − 𝜆̂)
𝑇

(𝑦 − 𝑦)

≥ (1 − ]) 𝑟‖𝑥 − 𝑥‖
2

+
1

2
(1 −

√2

2
]) 𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩
2

+
1

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̂

󵄩󵄩󵄩󵄩󵄩

2

.

(36)

Lemma 4. For a given 𝑤 = (𝑥, 𝑦, 𝜆) ∈ W, let 𝑤 = (𝑥, 𝑦, 𝜆̂) be
generated by (s1) to (s3) of the LSPPAD method. Let 𝜑(𝑤, 𝑤, 𝜉)

be defined by (20), and let 𝑑
1
(𝑤, 𝑤, 𝜉) and 𝑑

2
(𝑤, 𝑤) be defined

by (18) and (19), respectively. One has

(𝑤 − 𝑤
∗
)
𝑇

𝑑
2

(𝑤, 𝑤) ≥ 𝜑 (𝑤, 𝑤, 𝜉) − (𝑤 − 𝑤)
𝑇
𝑑
1

(𝑤, 𝑤, 𝜉) .

(37)
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Proof. Since 𝑓(𝑥) (resp., 𝑔(𝑥)) is monotone with respect to
X (resp., Y), it follows that 𝐹(𝑤) (see (17)) is a monotone
operator with respect toW, we have

(𝑤 − 𝑤
∗
)
𝑇

[𝐹 (𝑤) − 𝐹 (𝑤
∗
)] ≥ 0, (38)

and, consequently,

(𝑤 − 𝑤
∗
)
𝑇

𝐹 (𝑤) ≥ (𝑤 − 𝑤
∗
)
𝑇

𝐹 (𝑤
∗
) . (39)

Note that 𝑤
∗ is a solution of (3), which implies (𝑤 −

𝑤
∗
)
𝑇
𝐹(𝑤
∗
) ≥ 0 for 𝑤 ∈ W. Thus (𝑤 − 𝑤

∗
)
𝑇
𝐹(𝑤) ≥ 0. We

have

(𝑤 − 𝑤
∗
)
𝑇

𝑑
2

(𝑤, 𝑤)

= (𝑤 − 𝑤
∗
)
𝑇

𝐹 (𝑤) − (𝑤 − 𝑤
∗
)
𝑇

𝜂 (𝛽
𝑘
, 𝑤
𝑘
, 𝑤
𝑘
)

≥ −(𝑤 − 𝑤
∗
)
𝑇

𝜂 (𝛽
𝑘
, 𝑤
𝑘
, 𝑤
𝑘
)

= −𝛽(𝐴𝑥 − 𝐴𝑥
∗
)
𝑇

(𝑦 − 𝑦) + (𝑦 − 𝑦
∗
) 𝛽 (𝑦 − 𝑦)

= (𝑦 − 𝑦)
𝑇

𝛽 (𝑦 − 𝐴𝑥)

= (𝑦 − 𝑦)
𝑇

(𝜆̂ − 𝜆) .

(40)

Recalling the definition of 𝜑(𝑤, 𝑤, 𝜉), the inequality (37)
follows from (40) directly.

Theorem 5. For a given 𝑤 = (𝑥, 𝑦, 𝜆) ∈ W, let 𝑤 = (𝑥, 𝑦, 𝜆̂)

be generated by (s1) to (s3) of the LSPPAD method. Then one
has

(𝑤 − 𝑤
∗
)
𝑇

𝑑
1

(𝑤, 𝑤, 𝜉) ≥ 𝜑 (𝑤, 𝑤, 𝜉) , ∀𝑤
∗

∈ W
∗
, (41)

(𝑤 − 𝑤
∗
)
𝑇

𝑑
2

(𝑤, 𝑤) ≥ 𝜑 (𝑤, 𝑤, 𝜉) , ∀𝑤
∗

∈ W
∗
. (42)

Proof. By (21), we get (by letting 𝑤
󸀠

= 𝑤
∗)

(𝑤 − 𝑤
∗
)
𝑇

𝑑
1

(𝑤, 𝑤, 𝜉) ≥ (𝑤 − 𝑤
∗
)
𝑇

𝑑
2

(𝑤, 𝑤) , ∀𝑤 ∈ W.

(43)

Combining (43) and (37), we have

(𝑤 − 𝑤
∗
)
𝑇

𝑑
1

(𝑤, 𝑤, 𝜉) ≥ 𝜑 (𝑤, 𝑤, 𝜉) − (𝑤 − 𝑤) 𝑑
1

(𝑤, 𝑤, 𝜉) .

(44)

Thus (41) follows from (44). Adding (37) and (21), we get

(𝑤
󸀠
− 𝑤
∗
)
𝑇

𝑑
2

(𝑤, 𝑤) ≥ 𝜑 (𝑤, 𝑤, 𝜉)

− (𝑤 − 𝑤
󸀠
)
𝑇

𝑑
1

(𝑤, 𝑤, 𝜉) ,

∀𝑤
󸀠

∈ W, ∀𝑤
∗

∈ W
∗
.

(45)

By letting 𝑤
󸀠

= 𝑤, we get (42) from (45) directly.

4. Convergence Analysis

For establishing the convergence, we first prove the following
contractility property.

Lemma 6. For a given 𝑤
𝑘

∈ W, let 𝑤
𝑘+1 be generated by the

LSPPAD method. Then one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

≥ 2𝛼
𝑘
𝜑 (𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)

− 𝛼
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

.

(46)

Proof. Recall the definition of 𝑑
1
(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) and the iter-

ation formula (13); by a straightforward computation and
Theorem 5, we get

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝛼
𝑘
𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) − 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

= 2𝛼
𝑘
(𝑤
𝑘

− 𝑤
∗
)
𝑇

𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)

− 𝛼
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

≥ 2𝛼
𝑘
𝜑 (𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) − 𝛼
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

.

(47)

By Lemma 6 we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑘
𝜑 (𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) .

(48)

Thus, we can get themaximal drop-out value at each iteration
by maximizing the following function:

Δ
𝑘

(𝛼) = −𝛼
2󵄩󵄩󵄩󵄩󵄩

𝑑
1

(𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼𝜑 (𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) . (49)

This quadratic function Δ
𝑘
(𝛼) reaches its maximum at the

point

𝛼
∗

𝑘
=

𝜑 (𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)

󵄩󵄩󵄩󵄩𝑑
1

(𝑤𝑘, 𝑤𝑘, 𝜉𝑘)
󵄩󵄩󵄩󵄩
2
, (50)

with its value

Δ
𝑘

(𝛼
∗

𝑘
) = 𝛼
∗

𝑘
𝜑 (𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) . (51)

Thus, by Lemma 2 we have the following.

Corollary 7. If the constant sequences {𝑟
𝑘
} and {𝛽

𝑘
} are

positive and bounded above for all iteration 𝑘, then one has

𝛼
∗

𝑘
>

𝜏

2
. (52)
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We will show later that the conditions of Corollary 7 can
be satisfied in practice.

The numerical experiment [5] suggests that for fast
convergence one can use a relaxation factor 𝛾 ∈ [1, 2) and
let 𝛼
𝑘

= 𝛾𝛼
∗

𝑘
at each iteration. To do so, we get

Δ
𝑘

(𝛾𝛼
∗

𝑘
) = 𝛾 (2 − 𝛾) Δ

𝑘
(𝛼
∗

𝑘
) . (53)

By (46) or (49), we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

− 𝛾 (2 − 𝛾) 𝛼
∗

𝑘
𝜑 (𝑤
𝑘
, 𝑤
𝑘
, 𝜉
𝑘
) .

(54)

Furthermore, by Corollary 7, we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

−
𝜏

2
𝛾 (2 − 𝛾) 𝜑 (𝑤

𝑘
, 𝑤
𝑘
, 𝜉
𝑘
)

(55)

with

𝜏 = min
𝑘

{
1

𝑟
𝑘

,
1

2𝛽
𝑘

, 𝛽
𝑘
} . (56)

The inequality (55) plays an important role in proving
convergence of the proposed method.

Letting

𝑁 = (

2 (1 − ]) 𝑟𝐼 0 0

0 (1 −
√2

2
]) 𝛽𝐼 0

0 0
1

𝛽
𝐼

) , (57)

by Lemma 3 we have

𝜑 (𝑤, 𝑤, 𝜉) ≥
1

2
‖𝑤 − 𝑤‖

2

𝑁
. (58)

Combing (55) and (58), we get the Fejér monotonicity of the
generated sequence {𝑤

𝑘
}.

Theorem 8. Suppose the sequence {𝑤
𝑘
} be generated by the

LSPPAD method and the conditions of Corollary 7 hold. Then
the sequence {𝑤

𝑘
} converges to 𝑤

∞, which is a solution of the
problem (3), or, equivalently, the problem (1).

Proof. By (55) and (58), we get

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

−
𝜏𝛾 (2 − 𝛾)

4

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝑁
. (59)

Consequently,

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

, ∀𝑘. (60)

It follows that the sequence {𝑤
𝑘
} is bounded. Moreover, we

get

𝜏𝛾 (2 − 𝛾)

4

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝑁
≤

󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

, (61)

from which it follows that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝑁
= 0. (62)

Thus {𝑤
𝑘
} is bounded and it has at least one cluster point. Let

𝑤
∞ be a cluster point of {𝑤

𝑘
}, and suppose the subsequence

{𝑤
𝑘
𝑗} converges to 𝑤

∞. It follows from (62) that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
𝑘󵄩󵄩󵄩󵄩󵄩

= 0, lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘

− 𝜆̂
𝑘󵄩󵄩󵄩󵄩󵄩

= 0,

(63)

and, consequently (by (s1) and (s2)),

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩
= 0, lim

𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘

𝑦

󵄩󵄩󵄩󵄩󵄩
= 0. (64)

Then, by (7), (9), and (11), we get

𝑤
𝑘

∈ W,

{{{{

{{{{

{

lim
𝑘→∞

(𝑥
󸀠
− 𝑥
𝑘
)
𝑇

{𝑓 (𝑥
𝑘
) − 𝐴
𝑇
𝜆̂
𝑘
} ≥ 0,

lim
𝑘→∞

(𝑦
󸀠
− 𝑦
𝑘
)
𝑇

{𝑔 (𝑦
𝑘
) + 𝜆̂
𝑘
} ≥ 0,

lim
𝑘→∞

(𝐴𝑥
𝑘

− 𝑦
𝑘
) = 0,

∀𝑤
󸀠

∈ W,

(65)

𝑤
𝑘
𝑗 ∈ W,

{{{{{{

{{{{{{

{

lim
𝑘
𝑗
→∞

(𝑥
󸀠
− 𝑥
𝑘
𝑗)
𝑇

{𝑓 (𝑥
𝑘
𝑗) − 𝐴

𝑇
𝜆̂
𝑘
𝑗} ≥ 0,

lim
𝑘
𝑗
→∞

(𝑦
󸀠
− 𝑦
𝑘
𝑗)
𝑇

{𝑔 (𝑦
𝑘
𝑗) + 𝜆̂

𝑘
𝑗} ≥ 0,

lim
𝑘
𝑗
→∞

(𝐴𝑥
𝑘
𝑗 − 𝑦
𝑘
𝑗) = 0,

∀𝑤
󸀠

∈ W,

(66)

which implies that

𝑤
∞

∈ W,

{{

{{

{

(𝑥
󸀠
− 𝑥
∞

)
𝑇

{𝑓 (𝑥
∞

) − 𝐴
𝑇
𝜆̂
∞

} ≥ 0,

(𝑦
󸀠
− 𝑦
∞

)
𝑇

{𝑔 (𝑦
∞

) + 𝜆̂
∞

} ≥ 0,

(𝐴𝑥
∞

− 𝑦
∞

) = 0,

∀𝑤
󸀠

∈ W.

(67)

Thus 𝑤
∞ solves the variational inequalities (3).

Since {𝑤
𝑘
𝑗} → 𝑤

∞, by (62), for any 𝜀 > 0, there exists an
integer 𝑙 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
𝑙 − 𝑤
𝑘
𝑙
󵄩󵄩󵄩󵄩󵄩𝑁

<
𝜀

2
,

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
𝑙 − 𝑤
∞󵄩󵄩󵄩󵄩󵄩𝑁

<
𝜀

2
. (68)

Therefore, for any 𝑘 ≥ 𝑘
𝑙
, we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∞󵄩󵄩󵄩󵄩󵄩𝑁

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
𝑙 − 𝑤
∞󵄩󵄩󵄩󵄩󵄩𝑁

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
𝑙 − 𝑤
𝑘
𝑙
󵄩󵄩󵄩󵄩󵄩𝑁

+
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
𝑙 − 𝑤
∞󵄩󵄩󵄩󵄩󵄩𝑁

< 𝜀,

(69)

which implies that the sequence {𝑤
𝑘
} converges to𝑤

∞, which
is a solution of the problem (3) or the problem (1).
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5. Practical Implementation and Numerical
Results

For the implementation of the proposed method, we have to
give some rules to determine the proximal parameter 𝑟

𝑘
and

penalty parameter 𝛽
𝑘
.

It follows from (56) that if the sequences {𝑟
𝑘
}, {𝛽
𝑘
} are

positive and bounded, then 𝜏 is well defined and 𝜏 > 0, which
guarantees that the conditions of Corollary 7 hold.

On the penalty parameter sequence {𝛽
𝑘
}, He et al. [9]

proposed a self-adaptive rule at each iteration based on
the iterate information, which is referred to as self-adaptive
penalty parameters method, and showed that the sequence
{𝛽
𝑘
} generated by themethod is bounded and away from zero.

In the proposedmethod of this paper, we use directly the self-
adaptive penalty parameters method (Method 3, Strategy S3
in [9]). The self-adaptive rule is

2 ∗ 𝛽
𝑘
, if 󵄩󵄩󵄩󵄩𝑦

𝑘+1
− 𝑦
𝑘

󵄩󵄩󵄩󵄩∞ < 0.25
󵄩󵄩󵄩󵄩𝜆
𝑘+1

− 𝜆
𝑘

󵄩󵄩󵄩󵄩∞,

0.5 ∗ 𝛽
𝑘
, if 0.25

󵄩󵄩󵄩󵄩𝑦
𝑘+1

− 𝑦
𝑘

󵄩󵄩󵄩󵄩∞ >
󵄩󵄩󵄩󵄩𝜆
𝑘+1

− 𝜆
𝑘

󵄩󵄩󵄩󵄩∞,

𝛽
𝑘
, otherwise.

(70)

Combing (70) and the line search in (s2) of the LSPPAD
method, we have that the sequence {𝛽

𝑘
} is positive, away from

zero and bounded above.
We next focus on the proximal parameter sequence {𝑟

𝑘
}.

Lemma 9. If 𝑓 is monotone and Lipschitz continuous with
constant 𝐿

𝑓
, that is,

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑓 ‖𝑥 − 𝑥‖ , ∀𝑥, 𝑥 ∈ X, (71)

then, whenever

𝑟
𝑘

≥
𝐿
𝑓

+ 𝛽
𝑘

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝐴

󵄩󵄩󵄩󵄩󵄩

]
(72)

one has ‖ 𝜉
𝑥

‖≤ ]𝑟
𝑘

‖ 𝑥 − 𝑥
𝑘

‖.

Proof. Recall the definition of 𝜉
𝑘

𝑥
in (s1) of the LSPPAD

method; by (71) we get
󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑘
) − 𝑓 (𝑥) + 𝛽

𝑘
𝐴
𝑇
𝐴 (𝑥
𝑘

− 𝑥)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑘
) − 𝑓 (𝑥)

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩
𝛽
𝑘
𝐴
𝑇
𝐴 (𝑥
𝑘

− 𝑥)
󵄩󵄩󵄩󵄩󵄩

≤ 𝐿
𝑓

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
󵄩󵄩󵄩󵄩󵄩

+ 𝛽
𝑘

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝐴

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
󵄩󵄩󵄩󵄩󵄩

≤ ]𝑟
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

.

(73)

Lemma 9 indicates that the line search in (s1) will termi-
nate in finite number of iterations.

In practice we use a self-adaptive rule to guarantee 𝑟
𝑘
not

tend to infinity under the line search in (s1) of the LSPPAD
method. The self-adaptive rule is letting 𝑟

𝑘
= 𝑟
𝑘

∗ 𝜅 ∗ 𝜌

whenever 𝜅 =‖ 𝜉
𝑘

𝑥
‖ /𝑟
𝑘

‖ 𝑥
𝑘

− 𝑥
𝑘

‖< 0.5, where 𝜌 = 1.85.

By this rule and the step (s1) of the LAPPAD method, {𝑟
𝑘
}

is obviously bounded away from zero; thus the condition on
{𝑟
𝑘
} of Corollary 7 holds.
Finally, we give some numerical experiments on com-

pressed sensor problem; see [10]. These experiments are
tested on a laptop with 166GHz CPU, 2.5 GB RAM, and
Matlab 6.5.

The separable convex optimization formulation of com-
pressed sensor problem is

min 1

2
‖𝐷𝑥 − 𝑏‖

2

2
+ 𝜇

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩1,

s.t. 𝑥 − 𝑦 = 0,

(74)

where 𝑥, 𝑦 ∈ 𝑅
𝑛
, 𝐷 ∈ 𝑅

𝑚×𝑛
, 𝑏 ∈ 𝑅

𝑚
, and 𝜇 > 0. In the test

problem, 𝜃
2
(𝑦) = 𝜇 ‖ 𝑦‖

1
is nonsmooth. However, the special

structure of the problem (74) admits the equivalence relation
between the problems (1) and (3) if the subderivative of the
absolute value function |𝑢| is specialized as follows:

𝜕 (|𝑢|) ∋ 𝑔 (𝑢) =

{{

{{

{

1, if 𝑢 > 0,

0, if 𝑢 = 0,

−1, if 𝑢 < 0.

(75)

So the proposed method is available for this problem.
The test data of the problem (74) is generated by the

following style:𝐷 ∈ 𝑅
𝑚×𝑛 is a randommatrix with𝐷

𝑖𝑗
∈ (1, 2)

according to uniform distribution, and 𝑏 ∈ 𝑅
𝑚 is a given

signal vector with a random noise, 𝜇 = 0.2. The practical
parameters of the LSPPADmethod are given in the following:
] = 0.95, 𝑟

0
= 0.51 ∗ max(𝜎(𝐴𝐴

𝑇
)) (where 𝜎(𝐴𝐴

𝑇
) denotes

the eigenvalue of 𝐴𝐴
𝑇), 𝛽
0

= 1.5, 𝑥
0

= 0
𝑛×1

, 𝑦
0

= 1
𝑛×1

, 𝜆
0

=

1
𝑛×1

, and 𝛾 = 1.5. The experimental results are stated in
Table 1.Thenotation inTable 1 is as follows:𝑚, 𝑛, and cputime
are clear; sp denotes the required sparse degree; function
evaluations is the number of computation of product on
matrix and vector (which is the main cost of the proposed
method). The process stops whenever max{‖ 𝑥

𝑘
− 𝑥
𝑘
‖
∞

, ‖

𝑦
𝑘

− 𝑦
𝑘
‖
∞

, ‖ 𝜆
𝑘

− 𝜆̂
𝑘
‖
∞

} < 1.0 × 10
−3.

The numerical results show that the proposed LSPPAD
method has better performance compared with the APBPC
method for the test problem.

6. Conclusions

In this paper, we present a line-search-based partial proximal
alternating directions (LSPPAD) method for solving a class
of structured convex optimization problems. This kind of
problems is common in practice.TheLSPPADmethodmakes
full use of the special structure of the described problem.
In the LSPPAD method, two subproblems are solved in an
alternative fashion. The subproblem of 𝑦 variable is solved
without the proximal term, while the 𝑥-subproblem is solved
by a proximal point method; both used line-search technique
to guarantee the convergence. To do so provides some
advantages for the tractability. The convergence property of
the LSPPAD method is established. Numerical tests show
that, due to the described problem, the LSPPAD method
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Table 1: Numerical results on compressed sensor problems.

𝑚 𝑛 sp Iteration number Function evaluations Cputime (in second)
LSPPAD APBPC LSPPAD APBPC LSPPAD APBPC

1024 4096 160/4096 95 152 291 496 3.92 7.24
1600 8192 320/8192 104 212 318 632 13.0 24.4
2048 12000 400/12000 104 238 318 756 24.8 56.8
3052 16438 512/16438 106 252 324 812 49.1 120.6

has better performance compared with the APBPC method
which solves both subproblems by the inexact proximal point
method.
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