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Let 𝐴 be a doubly strictly diagonally dominant 𝑀-matrix. Inequalities on upper and lower bounds for the entries of the inverse of
𝐴 are given. And some new inequalities on the lower bound for the minimal eigenvalue of 𝐴 and the corresponding eigenvector
are presented to establish an upper bound for theL

1
-norm of the solution 𝑥(𝑡) for the linear differential system 𝑑𝑥/𝑑𝑡 = −𝐴𝑥(𝑡),

𝑥(0) = 𝑥
0
> 0.

1. Introduction

For a positive integer 𝑛, 𝑁 denotes the set {1, 2, . . . , 𝑛}. For
𝐴 = [𝑎

𝑖𝑗
] ∈ 𝑅
𝑛×𝑛, we write𝐴 ≥ 0 (𝐴 > 0) if all 𝑎

𝑖𝑗
≥ 0 (𝑎

𝑖𝑗
> 0),

𝑖, 𝑗 ∈ 𝑁. If 𝐴 ≥ 0 (𝐴 > 0), we say 𝐴 is nonnegative (positive,
resp.). Let 𝑍

𝑛
denote the class of all 𝑛 × 𝑛 real matrices all

of whose off-diagonal entries are nonpositive. A matrix 𝐴 is
called an𝑀-matrix [1] if𝐴 ∈ 𝑍

𝑛
and the inverse of𝐴, denoted

by 𝐴
−1, is nonnegative.
Let 𝐴 be an 𝑀-matrix. Then there exist a positive

eigenvalue of 𝐴, 𝜏(𝐴) = 𝜌(𝐴
−1

)
−1, and a corresponding

eigenvector 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

≥ 0, where 𝜌(𝐴
−1

) is the
Perron eigenvalue of the nonnegative matrix 𝐴

−1, 𝜏(𝐴) =

min{|𝜆| : 𝜆 ∈ 𝜎(𝐴)}, and 𝜎(𝐴) denotes the spectrum of
𝐴. 𝜏(𝐴) is called the minimum eigenvalue of 𝐴 [2, 3]. If, in
addition, 𝐴 is irreducible, then 𝐴

−1
> 0 and 𝜏(𝐴) is simple

and 𝑥 > 0, which is unique if we assume that theL
1
-norm of

𝑥 equals 1; that is, ‖𝑥‖
1
= ∑
𝑛

𝑖=1
|𝑥
𝑖
| = 1 [3]. If𝐷 is the diagonal

matrix of an 𝑀-matrix 𝐴 and 𝐶 = 𝐷 − 𝐴, then the spectral
radius of the Jacobi iterativematrix 𝐽

𝐴
= 𝐷
−1

𝐶of𝐴 is denoted
by 𝜌(𝐽

𝐴
). For a set Ω, we denote by |Ω| the cardinality of Ω.

Note that Ω = 0 if and only if |Ω| = 0.

For convenience, we employ the following notations
throughout. Let 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 be nonsingular with 𝑎

𝑖𝑖
̸= 0,

for all 𝑖 ∈ 𝑁, and 𝐴
−1

= [𝛽
𝑖𝑗
]. We denote, for any 𝑖, 𝑗 ∈ 𝑁,

ℎ
𝑖
=

1

𝑎𝑖𝑖


𝑛

∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗


, 𝑠

𝑖
= 𝑎
𝑖𝑖
+

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
ℎ
𝑗
,

𝑟
𝑖
=

1

𝑎𝑖𝑖


𝑛

∑

𝑗=𝑖+1


𝑎
𝑖𝑗


, 𝑙

𝑖
=

1

𝑎𝑖𝑖


𝑛

∑

𝑗=𝑖+1


𝑎
𝑗𝑖


,

𝑅
𝑖
(𝐴) =

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
, 𝑅 (𝐴) = max

𝑖∈𝑁

𝑅
𝑖
(𝐴) ,

𝑟 (𝐴) = min
𝑖∈𝑁

𝑅
𝑖
(𝐴) ,

𝑀 = max
𝑖∈𝑁

{

{

{

𝑛

∑

𝑗=1

𝛽
𝑖𝑗

}

}

}

, 𝑚 = min
𝑖∈𝑁

{

{

{

𝑛

∑

𝑗=1

𝛽
𝑖𝑗

}

}

}

,

Δ
−

= {𝑖 ∈ 𝑁 : ℎ
𝑖
> 1} , Δ

0
= {𝑖 ∈ 𝑁 : ℎ

𝑖
= 1} ,

Δ
+

= {𝑖 ∈ 𝑁 : ℎ
𝑖
< 1} .

(1)

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 535716, 8 pages
http://dx.doi.org/10.1155/2014/535716

http://dx.doi.org/10.1155/2014/535716


2 Journal of Applied Mathematics

Definition 1 (see [4]). A matrix 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛×𝑛 is called

(i) (strictly) diagonally dominant, if ℎ
𝑖

≤ 1 (ℎ
𝑖

< 1,
resp.) for all 𝑖 ∈ 𝑁, and 𝐴 is called doubly (strictly)
diagonally dominant if ℎ

𝑖
ℎ
𝑗
≤ 1 (ℎ

𝑖
ℎ
𝑗
< 1, resp.) for

all 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗;
(ii) weakly chained diagonally dominant, if ℎ

𝑖
≤ 1, 𝐽(𝐴) =

{𝑖 ∈ 𝑁 : ℎ
𝑖
< 1} ̸= 0 and for all 𝑖 ∈ 𝑁/𝐽(𝐴), there exist

indices 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
in𝑁 with 𝑎

𝑖
𝑟
𝑖
𝑟+1

̸= 0, 0 ≤ 𝑟 ≤ 𝑘 − 1,
where 𝑖

0
= 𝑖 and 𝑖

𝑘
∈ 𝐽(𝐴).

Remark. (i) It is well known that a doubly strictly diagonally
dominant matrix 𝐴 is nonsingular and that |Δ

−
⋃Δ
0
| ≤ 1

[5]. If |Δ
−
⋃Δ
0
| = 1, we denote by 𝑖

0
the unique element

throughout; that is, Δ−⋃Δ
0
= {𝑖
0
}. Meanwhile, if𝐴 is doubly

strictly diagonally dominant and Δ
−
⋃Δ
0

= 0, then 𝐴 is
strictly diagonally dominant.

(ii) It is clear that a strictly diagonally dominant matrix is
doubly strictly diagonally dominant and also weakly chained
diagonally dominant. Also clearly, for a doubly strictly diago-
nally dominant matrix𝐴, if Δ− = 0, then𝐴 is weakly chained
diagonally dominant; otherwise, 𝐴 is not weakly chained
diagonally dominant.

Estimating the bounds of the minimum eigenvalue 𝜏(𝐴)

of an 𝑀-matrix 𝐴 and its corresponding eigenvector is
an interesting subject in matrix theory and has important
applications in many practical problems; see [4, 6–8]. In
particular, these bounds are used to estimate upper bounds
of theL

1
-norm of the solution 𝑥(𝑡) for the following system

of ordinary differential equations:

𝑑𝑥

𝑑𝑡
= −𝐴𝑥 (𝑡) , 𝑥 (0) = 𝑥

0
> 0, (2)

where 𝑥(𝑡), 𝑥0 ∈ 𝑅
𝑛, and 𝐴 ∈ 𝑅

𝑛×𝑛 is a constant 𝑀-matrix.
And it is proved in [6] that

‖𝑥(𝑡)‖1 ≤ 𝑄𝑒
−𝜏(𝐴)𝑡

𝑥
01

, (3)

where 𝑄 = max
𝑖,𝑗∈𝑁

(𝑧
𝑖
/𝑧
𝑗
) and 𝑧 = [𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
]
𝑇 is the

positive eigenvector of 𝐴𝑇 corresponding to 𝜏(𝐴). When the
order 𝑛 of 𝐴 is large, it is difficult to compute 𝜏(𝐴) and 𝑧.
Hence it is necessary to estimate the bounds of 𝜏(𝐴) and 𝑧.

In [4], Shivakumar et al. obtained the following bounds
of 𝜏(𝐴) when 𝐴 is a weakly chained diagonally dominant𝑀-
matrix.

Theorem 2 (see [4, Theorem 4.1]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be
a weakly chained diagonally dominant 𝑀-matrix and 𝐴

−1
=

[𝛽
𝑖𝑗
]. Then

𝑟 (𝐴) ≤ 𝜏 (𝐴) ≤ 𝑅 (𝐴) , 𝜏 (𝐴) ≤ min
𝑖∈𝑁

𝑎
𝑖𝑖
,

1

𝑀
≤ 𝜏 (𝐴) ≤

1

𝑚
.

(4)

Recently, Tian and Huang [9] provided lower bounds of
𝜏(𝐴) by using the spectral radius of the Jacobi iterativematrix
𝐽
𝐴
for a general 𝑀-matrix 𝐴.

Theorem 3 (see [9,Theorem 3.1]). Let𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 be an

𝑀-matrix and 𝐴
−1

= [𝛽
𝑖𝑗
]. Then

𝜏 (𝐴) ≥
1

1 + (𝑛 − 1) 𝜌 (𝐽
𝐴
)

1

max
𝑖∈𝑁

{𝛽
𝑖𝑖
}
. (5)

Also in [9], a lower bound of 𝜏(𝐴), which depends only
on the entries of 𝐴, has been presented when 𝐴 is a strictly
diagonally dominant 𝑀-matrix.

Theorem 4 (see [9, Corollary 3.4]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 be a

strictly diagonally dominant 𝑀-matrix. Then

𝜏 (𝐴) ≥
1

1 + (𝑛 − 1)max
𝑖∈𝑁

{ℎ
𝑖
}
min
𝑖∈𝑁

{𝑠
𝑖
} . (6)

As shown in [9], it is possible that 𝑟(𝐴) equals zero or that
1/𝑀 is very small, and moreover, whenever 𝐴 is not weakly
chained diagonally dominant, Theorems 2 and 4 cannot be
used to estimate the bounds of 𝜏(𝐴) effectively. On the other
hand, it is difficult to estimate 𝜏(𝐴) by using Theorem 3
because of the difficulty of computing the diagonal elements
of 𝐴−1 and 𝜌(𝐽

𝐴
) when 𝑛 is very large.

In this paper, we continue to research the problems
mentioned previously. For a doubly strictly diagonally dom-
inant 𝑀-matrix 𝐴, we in Section 3 give some inequalities
on the bounds of the entries of 𝐴

−1. And in Section 4,
some inequalities on bounds of 𝜏(𝐴) and the corresponding
eigenvector are established. Lastly, an example, in which we
estimate theL

1
-norm of the solution for the system (2) when

𝐴 is a doubly strictly diagonally dominant𝑀-matrix, is given
in Section 5.

2. Preliminaries

In this section, we give a lemma which involves some results
for a doubly strictly diagonally dominant 𝑀-matrix. First,
some notations are listed: for a doubly strictly diagonally
dominant matrix 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 and 𝑖, 𝑗 ∈ 𝑁,

ℎ̂
𝑖

=

{{{{{

{{{{{

{

ℎ
𝑖
, if (Δ

−
⋃Δ
0
) = 0,

ℎ
𝑖
, if 𝑖 ∈ (Δ

−
⋃Δ
0
) = {𝑖
0
} ,

1

𝑎𝑖𝑖


(

𝑎
𝑖𝑖
0


ℎ
𝑖
0

+ ∑

𝑗 ̸=𝑖,𝑖
0


𝑎
𝑖𝑗


) , if 𝑖 ∉ (Δ

−
⋃Δ
0
) = {𝑖
0
} ,

𝑠
𝑖
=

{{{{{{

{{{{{{

{

𝑠
𝑖
, if (Δ

−
⋃Δ
0
) = 0,

𝑎
𝑖𝑖
+

1

ℎ̂
𝑖

∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
ℎ̂
𝑗
, if 𝑖 ∈ (Δ

−
⋃Δ
0
) = {𝑖
0
} ,

𝑎
𝑖𝑖
+ ∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
ℎ̂
𝑗
, if 𝑖 ∉ (Δ

−
⋃Δ
0
) = {𝑖
0
} ,



Journal of Applied Mathematics 3

𝑟
𝑖
=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

𝑟
𝑖
,

if (Δ
−
⋃Δ
0
) = 0,

1

𝜔
𝑎𝑖𝑖



∑

𝑗=𝑖+1


𝑎
𝑖𝑗


,

if (Δ
−
⋃Δ
0
) = {𝑖
0
} , 𝑖 = 𝑖

0
,

1

𝑎𝑖𝑖


( ∑

𝑗=𝑖+1,𝑗 ̸=𝑖
0


𝑎
𝑖𝑗


+


𝑎
𝑖𝑖
0


ℎ
𝑖
0

) ,

if (Δ
−
⋃Δ
0
) = {𝑖
0
} , 𝑖 < 𝑖

0
,

𝑟
𝑖
,

if (Δ
−
⋃Δ
0
) = {𝑖
0
} , 𝑖 > 𝑖

0
,

(7)

where

𝜔 =
{

{

{

1, if (Δ
−
⋃Δ
0
) = 0,

min
𝑖 ̸=𝑖
0

1

ℎ
𝑖

, if (Δ
−
⋃Δ
0
) = {𝑖
0
} .

(8)

Note here that let 1/ℎ
𝑖
= +∞ if ℎ

𝑖
= 0 (𝑖 ̸= 𝑖

0
).

Lemma 5. Let𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 be a doubly strictly diagonally

dominant 𝑀-matrix and (Δ
−
⋃Δ
0
) = {𝑖

0
}. And, for any 𝜀 ∈

(ℎ
𝑖
0

,min
𝑖 ̸=𝑖
0

(1/ℎ
𝑖
)), let 𝑋 = diag(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), where 𝑥

𝑖
0

= 𝜀

and 𝑥
𝑖
= 1, 𝑖 ̸= 𝑖

0
. Then 𝐴𝑋 is a strictly diagonally dominant

𝑀-matrix. Furthermore, ℎ̂
𝑖
0

≥ 1, ℎ̂
𝑖
< 1 for 𝑖 ̸= 𝑖

0
and 𝑠
𝑖
> 0

for any 𝑖 ∈ 𝑁.

Proof. Since 𝐴 is a doubly strictly diagonally dominant 𝑀-
matrix and (Δ

−
⋃Δ
0
) = {𝑖
0
}, we have

1 ≤ ℎ
𝑖
0

< min
𝑖 ̸=𝑖
0

1

ℎ
𝑖

; (9)

hence, from 𝜀 ∈ (ℎ
𝑖
0

,min
𝑖 ̸=𝑖
0

(1/ℎ
𝑖
)),

1

𝑎
𝑖
0
𝑖
0

𝜀
∑

𝑗 ̸=𝑖
0


𝑎
𝑖
0
𝑗


< 1. (10)

And, for any 𝑖 ̸= 𝑖
0
, if ∑
𝑗 ̸=𝑖

|𝑎
𝑖𝑗
| ̸= 0,

1 <
𝑎
𝑖𝑖

𝜀∑
𝑗 ̸=𝑖


𝑎
𝑖𝑗



≤
𝑎
𝑖𝑖


𝑎
𝑖𝑖
0


𝜀 + ∑
𝑗 ̸=𝑖,𝑖
0


𝑎
𝑖𝑗



, (11)

and if ∑
𝑗 ̸=𝑖

|𝑎
𝑖𝑗
| = 0, inequality (11) is obvious.

From inequality (11), we have

𝑎
𝑖𝑖
0


𝜀 + ∑
𝑗 ̸=𝑖,𝑖
0


𝑎
𝑖𝑗



𝑎
𝑖𝑖

< 1, 𝑖 ̸= 𝑖
0
. (12)

Let 𝐴𝑋 = [𝑎
𝑖𝑗
]. Then

𝑎
𝑖𝑗

= {
𝑎
𝑖𝑗
𝜀, 𝑗 = 𝑖

0
, 𝑖 ∈ 𝑁,

𝑎
𝑖𝑗
, 𝑗 ̸= 𝑖

0
, 𝑖 ∈ 𝑁.

(13)

From inequality (10), we have

1

𝑎
𝑖
0
𝑖
0

∑

𝑗 ̸=𝑖
0


𝑎
𝑖
0
𝑗


=

1

𝑎
𝑖
0
𝑖
0

𝜀
∑

𝑗 ̸=𝑖
0


𝑎
𝑖
0
𝑗


< 1. (14)

And, for any 𝑖 ̸= 𝑖
0
, from inequality (12), we have

1

𝑎
𝑖𝑖

∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗


=


𝑎
𝑖𝑖
0


𝜀 + ∑
𝑗 ̸=𝑖,𝑖
0


𝑎
𝑖𝑗



𝑎
𝑖𝑖

< 1. (15)

From inequality (14) and inequality (15), 𝐴𝑋 is strictly
diagonally dominant. Moreover, it is clear that 𝐴𝑋 ∈ 𝑍

𝑛
and

(𝐴𝑋)
−1

= 𝑋
−1

𝐴
−1

≥ 0, which implies that 𝐴𝑋 is an 𝑀-
matrix.

Furthermore, from the definition of ℎ̂
𝑖
, we have that

1 ≤ ℎ
𝑖
0

= ℎ̂
𝑖
0

(16)

and for any 𝑖 ̸= 𝑖
0
,

ℎ̂
𝑖
=


𝑎
𝑖𝑖
0


ℎ
𝑖
0

+ ∑
𝑗 ̸=𝑖,𝑖
0


𝑎
𝑖𝑗



𝑎
𝑖𝑖

≤


𝑎
𝑖𝑖
0


𝜀 + ∑
𝑗 ̸=𝑖,𝑖
0


𝑎
𝑖𝑗



𝑎
𝑖𝑖

< 1. (17)

We now prove 𝑠
𝑖
> 0 for any 𝑖 ∈ 𝑁. Since 𝐴 is doubly strictly

diagonally dominant, we get that there is 𝑘 ∈ 𝑁, 𝑘 ̸= 𝑖
0
, such

that 𝑎
𝑖
0
𝑘

̸= 0 (otherwise, a contradiction to the definition of
doubly strictly diagonally dominant matrices). Hence

0 = 𝑎
𝑖
0
𝑖
0

ℎ
𝑖
0

− ∑

𝑗 ̸=𝑖
0


𝑎
𝑖
0
𝑗


< 𝑎
𝑖
0
𝑖
0

ℎ
𝑖
0

− ∑

𝑗 ̸=𝑖
0


𝑎
𝑖
0
𝑗


ℎ̂
𝑗
, (18)

and equivalently,

𝑠
𝑖
0

= 𝑎
𝑖
0
𝑖
0

−
1

ℎ̂
𝑖
0

∑

𝑗 ̸=𝑖
0


𝑎
𝑖
0
𝑗


ℎ̂
𝑗
> 0. (19)

And for any 𝑖 ̸= 𝑖
0
,

𝑠
𝑖
= 𝑎
𝑖𝑖
− ∑

𝑗 ̸=𝑖
0


𝑎
𝑖𝑗


ℎ̂
𝑗
= 𝑎
𝑖𝑖
− (


𝑎
𝑖𝑖
0


ℎ̂
𝑖
0

+ ∑

𝑗 ̸=𝑖,𝑖
0


𝑎
𝑖𝑗


ℎ̂
𝑗
)

≥ 𝑎
𝑖𝑖
− (


𝑎
𝑖𝑖
0


ℎ
𝑖
0

+ ∑

𝑗 ̸=𝑖,𝑖
0


𝑎
𝑖𝑗


)

> 0 (by Inequality (17)) .

(20)

Hence, from inequality (19), inequality (20), and the fact that
𝐴 is an 𝑀-matrix, we have that, for any 𝑖 ∈ 𝑁,

𝑠
𝑖
> 0. (21)

The proof is completed.

Lemma 6 (see [10, Page 719]). Let 𝐴 = [𝑎
𝑖𝑗
] be an 𝑛 × 𝑛

complex matrix and let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
be positive real numbers.

Then all the eigenvalues of 𝐴 lie in the

⋃

𝑖

{

{

{

𝑧 ∈ 𝐶 :
𝑧 − 𝑎

𝑖𝑖

 ≤ 𝑥
𝑖
∑

𝑗 ̸=𝑖

1

𝑥
𝑗


𝑎
𝑗𝑖


, 𝑖 ∈ 𝑁

}

}

}

. (22)
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3. Bounds for the Entries of
the Inverse of a Doubly Strictly
Diagonally Dominant 𝑀-Matrix

In this section, upper and lower bounds for the entries of𝐴−1
are given when𝐴 is a doubly strictly diagonally dominant𝑀-
matrix.

Lemma 7 (see [11, Lemma 2.2]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be a
strictly diagonally dominant 𝑀-matrix and let 𝐴

−1
= [𝛽
𝑖𝑗
].

Then, for all 𝑖 ∈ 𝑁,

𝛽
𝑖𝑗

≤
∑
𝑘 ̸=𝑖

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑗𝑗
, 𝑗 ∈ 𝑁, 𝑗 ̸= 𝑖. (23)

Next, we present a similar result for a doubly strictly
diagonally dominant 𝑀-matrix.

Theorem 8. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be a doubly strictly
diagonally dominant 𝑀-matrix and let 𝐴−1 = [𝛽

𝑖𝑗
]. Then, for

all 𝑖 ∈ 𝑁,

𝛽
𝑖𝑗

≤ ℎ̂
𝑖
𝛽
𝑗𝑗
, 𝑗 ∈ 𝑁, 𝑗 ̸= 𝑖. (24)

Proof. If (Δ
0
⋃Δ
−
) = 0, then 𝐴 is strictly diagonally

dominant and the conclusion follows fromLemma 7.Wenext
suppose that (Δ

0
⋃Δ
−
) = {𝑖

0
}. From Lemma 5, we get that

𝐴𝑋 is a strictly diagonally dominant 𝑀-matrix for any 𝜀 ∈

(ℎ
𝑖
0

,min
𝑖 ̸=𝑖
0

(1/ℎ
𝑖
)), where 𝑋 = diag(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑥
𝑖
0

= 𝜀,
and 𝑥

𝑖
= 1, 𝑖 ̸= 𝑖

0
. Let 𝐴𝑋 = [𝑎

𝑖𝑗
] and 𝑋

−1
𝐴
−1

= [𝛽
𝑖𝑗
]. Then

𝑎
𝑖𝑗

= {
𝑎
𝑖𝑗
𝜀, 𝑗 = 𝑖

0
, 𝑖 ∈ 𝑁,

𝑎
𝑖𝑗
, 𝑗 ̸= 𝑖

0
, 𝑖 ∈ 𝑁,

𝛽
𝑖𝑗

=
{

{

{

𝛽
𝑖𝑗

𝜀
, 𝑖 = 𝑖

0
, 𝑗 ∈ 𝑁,

𝛽
𝑖𝑗
, 𝑖 ̸= 𝑖

0
, 𝑗 ∈ 𝑁.

(25)

If 𝑖 = 𝑖
0
, from Lemma 7, we have that

𝛽
𝑖𝑗

𝜀
= 𝛽
𝑖𝑗

≤
∑
𝑘 ̸=𝑖

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑗𝑗

=
∑
𝑘 ̸=𝑖

𝑎𝑖𝑘


𝑎
𝑖𝑖
𝜀

𝛽
𝑗𝑗
, 𝑗 ̸= 𝑖; (26)

that is,

𝛽
𝑖
0
𝑗
≤

∑
𝑘 ̸=𝑖
0


𝑎
𝑖
0
𝑘



𝑎
𝑖
0
𝑖
0

𝛽
𝑗𝑗

= ℎ
𝑖
0

𝛽
𝑗𝑗

= ℎ̂
𝑖
0

𝛽
𝑗𝑗
, 𝑗 ̸= 𝑖

0
. (27)

If 𝑖 ̸= 𝑖
0
and 𝑗 = 𝑖

0
, from Lemma 7, then

𝛽
𝑖𝑗

= 𝛽
𝑖𝑗

≤
∑
𝑘 ̸=𝑖

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑗𝑗

=


𝑎
𝑖𝑖
0


𝜀 + ∑
𝑘 ̸=𝑖,𝑖
0

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑗𝑗

𝜀
, (28)

that is,

𝛽
𝑖𝑖
0

≤


𝑎
𝑖𝑖
0


𝜀 + ∑
𝑘 ̸=𝑖,𝑖
0

𝑎𝑖𝑘


𝑎
𝑖𝑖
𝜀

𝛽
𝑖
0
𝑖
0

; (29)

moreover, by 𝜀 > ℎ
𝑖
0

≥ 1, we have

𝛽
𝑖𝑖
0

≤


𝑎
𝑖𝑖
0


𝜀 + ∑
𝑘 ̸=𝑖,𝑖
0

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑖
0
𝑖
0

. (30)

And if 𝑖 ̸= 𝑖
0
and 𝑗 ̸= 𝑖

0
, from Lemma 7, then

𝛽
𝑖𝑗

= 𝛽
𝑖𝑗

≤
∑
𝑘 ̸=𝑖

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑗𝑗

=


𝑎
𝑖𝑖
0


𝜀 + ∑
𝑘 ̸=𝑖,𝑖
0

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑗𝑗
; (31)

that is,

𝛽
𝑖𝑗

≤


𝑎
𝑖𝑗


𝜀 + ∑
𝑘 ̸=𝑖,𝑖
0

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑗𝑗
, 𝑗 ̸= 𝑖. (32)

Hence, from inequality (30) and inequality (32) and letting
𝜀 → ℎ

𝑖
0

, we have that, for any 𝑖 ̸= 𝑖
0
,

𝛽
𝑖𝑗

≤


𝑎
𝑖𝑖
0


ℎ
𝑖
0

+ ∑
𝑘 ̸=𝑖,𝑖
0

𝑎𝑖𝑘


𝑎
𝑖𝑖

𝛽
𝑗𝑗

= ℎ̂
𝑖
𝛽
𝑗𝑗
, 𝑗 ̸= 𝑖. (33)

The conclusion follows from inequality (27) and inequality
(33).

We next establish the upper and lower bounds for the
diagonal entries of the inverse of a doubly strictly diagonally
dominant 𝑀-matrix.

Theorem 9. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be a doubly strictly
diagonally dominant 𝑀-matrix and let 𝐴−1 = [𝛽

𝑖𝑗
]. Then, for

all 𝑖 ∈ 𝑁,

1

𝑎
𝑖𝑖

≤ 𝛽
𝑖𝑖
≤

1

𝑠
𝑖

. (34)

Proof. If (Δ
0
⋃Δ
−
) = 0, then the conclusion follows from

Lemma 2.2 of [9]. We next suppose that (Δ
0
⋃Δ
−
) = {𝑖

0
}.

Since 𝐴 is a doubly strictly diagonally dominant 𝑀-matrix,
𝐴
−1

≥ 0 and 𝑎
𝑖𝑗

≤ 0, 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗. By 𝐴𝐴
−1

= 𝐼, we have
that, for all 𝑖 ∈ 𝑁,

1 = 𝑎
𝑖𝑖
𝛽
𝑖𝑖
+ ∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝛽
𝑗𝑖
, (35)

which implies

𝛽
𝑖𝑖
≥

1

𝑎
𝑖𝑖

. (36)

Moreover, from equality (35) and Theorem 8, we have that,
for any 𝑖 ̸= 𝑖

0
,

1 ≥ 𝑎
𝑖𝑖
𝛽
𝑖𝑖
+ ∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
ℎ̂
𝑗
𝛽
𝑖𝑖

= (𝑎
𝑖𝑖
+ ∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
ℎ̂
𝑗
)𝛽
𝑖𝑖

= 𝑠
𝑖
𝛽
𝑖𝑖
.

(37)
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And similar to the proof of Theorem 8, 𝐴𝑋 = [𝑎
𝑖𝑗
] is a

strictly diagonally dominant 𝑀-matrix, where 𝑋 is given in
Lemma 5. Let (𝐴𝑋)

−1
= [𝛽
𝑖𝑗
].Then, from𝐴𝑋(𝐴𝑋)

−1
= 𝐼, we

have that

1 = 𝑎
𝑖
0
𝑖
0

𝛽
𝑖
0
𝑖
0

+ ∑

𝑗 ̸=𝑖
0

𝑎
𝑖
0
𝑗
𝛽
𝑗𝑖
0

≥ 𝑎
𝑖
0
𝑖
0

𝛽
𝑖
0
𝑖
0

+ ∑

𝑗 ̸=𝑖
0

𝑎
𝑖
0
𝑗

∑
𝑘 ̸=𝑗


𝑎
𝑗𝑘



𝑎
𝑗𝑗

𝛽
𝑖
0
𝑖
0

(by Lemma 8)

= (𝑎
𝑖
0
𝑖
0

+ ∑

𝑗 ̸=𝑖
0

𝑎
𝑖
0
𝑗

∑
𝑘 ̸=𝑗


𝑎
𝑗𝑘



𝑎
𝑗𝑗

)𝛽
𝑖
0
𝑖
0

= (𝑎
𝑖
0
𝑖
0

𝜀 + ∑

𝑗 ̸=𝑖
0

𝑎
𝑖
0
𝑗


𝑎
𝑗𝑖
0


𝜀 + ∑
𝑘 ̸=𝑗,𝑖
0


𝑎
𝑗𝑘



𝑎
𝑗𝑗

)

𝛽
𝑖
0
𝑖
0

𝜀

= (𝑎
𝑖
0
𝑖
0

+
1

𝜀
∑

𝑗 ̸=𝑖
0

𝑎
𝑖
0
𝑗


𝑎
𝑗𝑖
0


𝜀 + ∑
𝑘 ̸=𝑗,𝑖
0


𝑎
𝑗𝑘



𝑎
𝑗𝑗

)𝛽
𝑖
0
𝑖
0

≥ (𝑎
𝑖
0
𝑖
0

+
1

ℎ
𝑖
0

∑

𝑗 ̸=𝑖
0

𝑎
𝑖
0
𝑗


𝑎
𝑗𝑖
0


ℎ
𝑖
0

+ ∑
𝑘 ̸=𝑗,𝑖
0


𝑎
𝑗𝑘



𝑎
𝑗𝑗

)

× 𝛽
𝑖
0
𝑖
0

(by 𝜀 > ℎ
𝑖
0

)

= (𝑎
𝑖
0
𝑖
0

+
1

ℎ̂
𝑖
0

∑

𝑗 ̸=𝑖
0

𝑎
𝑖
0
𝑗
ℎ̂
𝑗
)𝛽
𝑖
0
𝑖
0

= 𝑠
𝑖
0

𝛽
𝑖
0
𝑖
0

.

(38)

Hence, from inequality (37), inequality (38), and Lemma 5,
we obtain that for any 𝑖 ∈ 𝑁

𝛽
𝑖𝑖
≤

1

𝑠
𝑖

. (39)

The conclusion follows from inequality (36) and inequality
(39).

Next a lower bound of the entries of the inverse of
a doubly strictly diagonally dominant 𝑀-matrix will be
established. Firstly, a lemma is given.

Lemma 10 (see [4, Theorem 3.5]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 be a

weakly chained diagonally dominant 𝑀-matrix and let 𝐴−1 =
[𝛽
𝑖𝑗
]. Then

min
𝑗,𝑘

𝛽
𝑗𝑘

≥
1

𝑎
𝑛𝑛

𝑛−1

∏

𝑖=1

min {𝑙
𝑖
, 𝑟
𝑖
} . (40)

Theorem 11. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be a doubly strictly
diagonally dominant 𝑀-matrix and let 𝐴−1 = [𝛽

𝑖𝑗
]. Then

min
𝑗,𝑘

𝛽
𝑗𝑘

≥
1

𝜔𝑎
𝑛𝑛

𝑛−1

∏

𝑖=1

min {𝑙
𝑖
, 𝑟
𝑖
} , (41)

where

𝜔 =
{

{

{

1, if (Δ
−
⋃Δ
0
) = 0,

min
𝑖 ̸=𝑖
0

1

ℎ
𝑖

, if (Δ
−
⋃Δ
0
) = {𝑖
0
} .

(42)

Proof. If (Δ0⋃Δ
−
) = 0, then 𝐴 is a strictly diagonally domi-

nant 𝑀-matrix, also a weakly chained diagonally dominant
𝑀-matrix. The conclusion is evident from Lemma 10. We
next suppose that (Δ

0
⋃Δ
−
) = {𝑖

0
}. Similar to the proof of

Theorem 8, 𝐴𝑋 is a strictly diagonally dominant 𝑀-matrix,
where 𝑋 is given in Lemma 5. Let 𝐴𝑋 = [𝑎

𝑖𝑗
] and (𝐴𝑋)

−1
=

[𝛽
𝑖𝑗
]. By Lemma 10, we have that

min
𝑗,𝑘

𝛽
𝑗𝑘

≥
1

𝑎
𝑛𝑛

𝑛−1

∏

𝑖=1

min{
1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑘𝑖
 ,

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
} . (43)

Moreover, note that min
𝑗,𝑘

𝛽
𝑗𝑘

≥ min
𝑗,𝑘

𝛽
𝑗𝑘

and 1/𝑎
𝑛𝑛

≥

1/𝜀𝑎
𝑛𝑛

> 1/𝜔𝑎
𝑛𝑛
; we have

min
𝑗,𝑘

𝛽
𝑗𝑘

≥
1

𝜔𝑎
𝑛𝑛

𝑛−1

∏

𝑖=1

min{
1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑘𝑖
 ,

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
} .

(44)

And also note that, for any 𝑖 ∈ 𝑁,

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑘𝑖
 =

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑘𝑖
 = 𝑙
𝑖
. (45)

Hence, we need only prove that (1/𝑎
𝑖𝑖
) ∑
𝑛

𝑘=𝑖+1
|𝑎
𝑖𝑘
| ≥ 𝑟
𝑖
for any

𝑖 ∈ 𝑁. In fact, if 𝑖 < 𝑖
0
, then

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
 =

1

𝑎
𝑖𝑖

(

𝑛

∑

𝑘=𝑖+1, 𝑘 ̸=𝑖
0

𝑎𝑖𝑘
 +


𝑎
𝑖𝑖
0


𝜀)

≥
1

𝑎
𝑖𝑖

(

𝑛

∑

𝑘=𝑖+1, 𝑘 ̸=𝑖
0

𝑎𝑖𝑘
 +


𝑎
𝑖𝑖
0


ℎ
𝑖
0

) = 𝑟
𝑖
.

(46)

If 𝑖 = 𝑖
0
, then

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
 =

1

𝜀𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
 ≥

1

𝜔𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
 = 𝑟
𝑖
. (47)

If 𝑖 > 𝑖
0
, then

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
 =

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
 = 𝑟
𝑖
= 𝑟
𝑖
. (48)

Hence, for any 𝑖 ∈ 𝑁,

1

𝑎
𝑖𝑖

𝑛

∑

𝑘=𝑖+1

𝑎𝑖𝑘
 ≥ 𝑟
𝑖
. (49)

The conclusion follows from inequalities (44), (45), and (49).
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4. Bounds for the Minimum
Eigenvalue of a Doubly Strictly Diagonally
Dominant 𝑀-Matrix

In this section, we give some lower bounds for 𝜏(𝐴) which
depend only on the entries of 𝐴 when 𝐴 is a doubly
strictly diagonally dominant 𝑀-matrix. First, for 𝐴

−1
=

[𝛽
𝑖𝑗
], we give an upper bound of ‖𝐴

−1
‖
1
, where ‖𝐴

−1
‖
1

=

max
𝑖∈𝑁

{∑
𝑛

𝑗=1
|𝛽
𝑗𝑖
|}.

Theorem 12. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be a doubly strictly
diagonally dominant 𝑀-matrix. Then


𝐴
−11

≤ max
𝑖∈𝑁

{

{

{

1

𝑠
𝑖

(1 + ∑

𝑗 ̸=𝑖

ℎ̂
𝑗
)

}

}

}

. (50)

Proof. Let 𝐴−1 = [𝛽
𝑖𝑗
]. Then


𝐴
−11

= max
𝑖∈𝑁

{

{

{

∑

𝑗

𝛽
𝑗𝑖

}

}

}

≤ max
𝑖∈𝑁

{

{

{

𝛽
𝑖𝑖
+ ∑

𝑗 ̸=𝑖

ℎ̂
𝑗
𝛽
𝑖𝑖

}

}

}

(by Theorem 9)

= max
𝑖∈𝑁

{

{

{

(1 + ∑

𝑗 ̸=𝑖

ℎ̂
𝑗
)𝛽
𝑖𝑖

}

}

}

≤ max
𝑖∈𝑁

{

{

{

1

𝑠
𝑖

(1 + ∑

𝑗 ̸=𝑖

ℎ̂
𝑗
)

}

}

}

(by Theorem 10) .

(51)

The proof is completed.

Theorem 13. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be a doubly strictly
diagonally dominant 𝑀-matrix. Then

𝜏 (𝐴) ≥ min
𝑖∈𝑛

{
𝑠
𝑖

1 + (𝑛 − 1) ℎ̂
𝑖

} . (52)

Proof. If 𝐴 is irreducible, then 𝐴
−1

> 0; meanwhile, from the
irreducibility of 𝐴 and the definition of ℎ̂

𝑖
, we have ℎ̂

𝑖
> 0

for any 𝑖 ∈ 𝑁. We next consider the spectral radius 𝜌(𝐴−1) of
𝐴
−1. From Lemma 6, we have that there is 𝑘

0
∈ 𝑁 such that


𝜌 (𝐴
−1

) − 𝛽
𝑘
0
𝑘
0


≤ ℎ̂
𝑘
0

∑

𝑘 ̸=𝑘
0

𝛽
𝑘𝑘
0

ℎ̂
𝑘

, (53)

which, from 𝜌(𝐴
−1

) > 𝛽
𝑘
0
𝑘
0

[12], leads to

𝜌 (𝐴
−1

) ≤ 𝛽
𝑘
0
𝑘
0

+ ℎ̂
𝑘
0

∑

𝑘 ̸=𝑘
0

𝛽
𝑘𝑘
0

ℎ̂
𝑘

≤ 𝛽
𝑘
0
𝑘
0

+ ℎ̂
𝑘
0

∑

𝑘 ̸=𝑘
0

𝛽
𝑘
0
𝑘
0

(by Theorem 9)

= (1 + (𝑛 − 1) ℎ̂
𝑘
0

) 𝛽
𝑘
0
𝑘
0

≤

1 + (𝑛 − 1) ℎ̂
𝑘
0

𝑠
𝑘
0

(by Theorem 10)

≤ max
𝑖∈𝑁

{
1 + (𝑛 − 1) ℎ

𝑖

𝑠
𝑖

} .

(54)

Hence,

𝜏 (𝐴) =
1

𝜌 (𝐴−1)
≥ min
𝑖∈𝑛

{
𝑠
𝑖

1 + (𝑛 − 1) ℎ̂
𝑖

} . (55)

If 𝐴 is reducible, then we can obtain a doubly strictly
diagonally dominant 𝑀-matrix 𝐴(𝜖) such that 𝐴(𝜖) is irre-
ducible by replacing some nondiagonal zero entries of 𝐴

with sufficiently small negative real number −𝜖. Now replace
𝐴 with 𝐴(𝜖) in the previous case. Let 𝜖 approach 0; the
conclusion follows by the continuity of 𝜏(𝐴) about the entries
of 𝐴.

FromTheorems 12 and 13, we have the following result.

Theorem 14. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be a doubly strictly
diagonally dominant 𝑀-matrix. Then

𝜏 (𝐴) ≥ max {𝐻, �̃�} , (56)

where

𝐻 = min
𝑖

{
𝑠
𝑖

1 + (𝑛 − 1) ℎ̂
𝑖

} ,

�̃� = min
𝑖

{

{

{

𝑠
𝑖

1 + ∑
𝑗 ̸=𝑖

ℎ̂
𝑗

}

}

}

.

(57)

Proof. By Theorem 12 and the fact that 𝜌(𝐴−1) ≤ ‖𝐴
−1

‖
1
, we

have that

𝜏 (𝐴) =
1

𝜌 (𝐴−1)
≥

1

𝐴
−11

≥ min
𝑖∈𝑛

{

{

{

𝑠
𝑖

1 + ∑
𝑗 ̸=𝑖

ℎ̂
𝑗

}

}

}

= �̃�.

(58)

Hence, fromTheorem 13, 𝜏(𝐴) ≥ max{𝐻, �̃�}.

We now give upper and lower bounds for the compo-
nents of the eigenvector 𝑧 corresponding to the minimum
eigenvalue 𝜏(𝐴) for an irreducible doubly strictly diagonally
dominant 𝑀-matrix.
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Theorem 15. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 be an irreducible doubly
strictly diagonally dominant 𝑀-matrix and let 𝐴

−1
= [𝛽
𝑖𝑗
].

And let 𝑧 = [𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
]
𝑇 be the positive eigenvector of 𝐴

corresponding to 𝜏(𝐴) with ‖𝑧‖
1
= 1. Then, for all 𝑖 ∈ 𝑁,

𝜏 (𝐴)min
𝑗,𝑘

𝛽
𝑗𝑘

≤ 𝑧
𝑖
≤ 𝜏 (𝐴)max

𝑗,𝑘

𝛽
𝑗𝑘
. (59)

Furthermore,

max
𝑖,𝑗

𝑧
𝑖

𝑧
𝑗

≤ max
𝑖,𝑗,𝑘

ℎ̂
𝑖
𝛽
𝑘𝑘

𝛽
𝑗𝑘

. (60)

Proof. It is clear that 𝐴
−1 exists and 𝐴

−1
> 0. From 𝐴𝑧 =

𝜏(𝐴)𝑧 and 𝑧 > 0, we have 𝐴
−1

𝑧 = 𝜌(𝐴
−1

)𝑧 = 𝜏(𝐴)
−1

𝑧 and
𝑧 > 0; hence,

𝑧
𝑖
= 𝜏 (𝐴)

𝑛

∑

𝑘=1

𝛽
𝑖𝑘
𝑧
𝑘
≤ 𝜏 (𝐴)max

𝑗,𝑘

𝛽
𝑗𝑘

𝑛

∑

𝑘=1

𝑧
𝑘
= 𝜏 (𝐴)max

𝑗,𝑘

𝛽
𝑗𝑘
,

(61)

where∑
𝑛

𝑘=1
𝑧
𝑘
= 1.The lower bound for 𝑧

𝑖
is proved similarly.

Furthermore, by Theorem 3.1 of [12],

max
𝑖,𝑗

𝑧
𝑖

𝑧
𝑗

≤ max
𝑖,𝑗,𝑘

𝛽
𝑖𝑘

𝛽
𝑗𝑘

. (62)

ByTheorem 8, 𝛽
𝑖𝑘

≤ ℎ̂
𝑖
𝛽
𝑘𝑘
. Hence,

max
𝑖,𝑗

𝑧
𝑖

𝑧
𝑗

≤ max
𝑖,𝑗,𝑘

ℎ̂
𝑖
𝛽
𝑘𝑘

𝛽
𝑗𝑘

. (63)

The proof is completed.

5. Example

Consider the following system:

𝑑𝑥

𝑑𝑡
= −𝐴𝑥 (𝑡) , 𝑥 (0) = 𝑥

0
, (64)

where

𝐴 =

[
[
[
[
[

[

1 −0.2 −0.2 −0.2 −0.6

−0.2 1 −0.2 −0.2 −0.2

−0.2 −0.2 1 −0.2 −0.2

−0.2 −0.2 −0.2 1 −0.2

−0.2 −0.2 −0.2 −0.2 1

]
]
]
]
]

]

. (65)

It is easy to verify that 𝐴 is an irreducible doubly strictly
diagonally dominant 𝑀-matrix and that Δ

−
= {1}. Hence

𝐴 is not a weakly chained diagonally dominant 𝑀-matrix.
We now establish the upper bound for the L

1
-norm of the

solution 𝑥(𝑡). Let 𝐴−1 = [𝛽
𝑖𝑗
]. By Theorems 8 and 9, we have

max
𝑗,𝑘

𝛽
𝑗𝑘

≤ 7.5000. (66)

ByTheorem 11, we have

min
𝑗,𝑘

𝛽
𝑗𝑘

≥ 0.0307. (67)

ByTheorem 14, we have

𝜏 (𝐴) ≥ 0.0276. (68)

Hence, by inequality (3) andTheorem 15, we have

𝑄 = max
𝑖,𝑗

𝑧
𝑖

𝑧
𝑗

≤ max
𝑖,𝑗,𝑘

ℎ̂
𝑖
𝛽
𝑘𝑘

𝛽
𝑗𝑘

≈ 244.1406. (69)

Hence,

‖𝑥(𝑡)‖1 ≤ 244.1406𝑒
−0.0276𝑡

𝑥
01

. (70)

Note here that we cannot estimate the lower bound of 𝜏(𝐴)

by using Theorem 2 (Theorem 4.1 of [4]) and Theorem 4
(Corollary 3.4 of [9]) because 𝐴 is not a strictly diagonally
dominant 𝑀-matrix and not a weakly chained diagonally
dominant 𝑀-matrix.
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