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We are interested in the existence of solutions to initial-value problems for second-order nonlinear singular differential equations.
We show that the existence of a solution can be explained in terms of a more simple initial-value problem. Local existence and
uniqueness of solutions are proven under conditions which are considerably weaker than previously known conditions.

1. Introduction

In recent years, the studies of singular initial-value problems
(IVPs) of the type

𝑥
󸀠󸀠
+ 2𝑡
−1
𝑥
󸀠
+ 𝑥
𝑛

(𝑡) = 0, 𝑥 (0) = 1, 𝑥
󸀠

(0) = 0,

(1)

have attracted the attention of many mathematicians and
physicists (see, e.g., [1–8]). It is the aim of this paper to study
the more general IVPs of the form

𝑥
󸀠󸀠
+ 𝑝 (𝑡) 𝑥

󸀠
+ 𝑞 (𝑡, 𝑥 (𝑡)) = 0, 𝑥 (0) = 𝑎, 𝑥

󸀠

(0) = 𝑏,

𝑡 > 0,

(2)

and to make further progress beyond the achievements made
so far in this regard. The case 𝑞 = 𝑓(𝑡)𝑔(𝑥) corresponds to
Emden-Fowler equations [3, 8–10].

The function 𝑝(𝑡) in (2) may be singular at 𝑡 = 0. Note
that the problem (2) extends some well-known IVPs in the
literature; see, for example, [11–18].

In the case 𝑏 = 0 the existence of the solution for the
problem (2) has been studied in [19], where the authors
demonstrated the importance of the condition 𝑏 = 0 for the
existence. We find the conditions for 𝑝(𝑡) and 𝑞(𝑡, 𝑥(𝑡)) to
guarantee the existence of the solution for 𝑏 ̸= 0.

2. Existence Theorems

We say that 𝑥(𝑡) is a solution to (2) if and only if there exists
some 𝑇 > 0 such that

(1) 𝑥(𝑡) and 𝑥󸀠(𝑡) are absolutely continuous on [0, 𝑇],
(2) 𝑥(𝑡) satisfies the equation given in (2) a.e. on [0, 𝑇],
(3) 𝑥(𝑡) satisfies the initial conditions given in (2).

In this section, we generalize the existence theorem of
solutions in [19] (see also, [20]).

Theorem 1. Let 𝑝 and 𝑞 satisfy the following conditions:

(D1) 𝑝 is measurable on [0, 1];
(D2) 𝑝 ≥ 0;

(D3) ∫1
0
𝑠𝑝(𝑠)𝑑𝑠 < ∞;

(D4) there exist 𝛼, 𝛽 with 𝛼 < 𝑎 < 𝛽 and 𝐾 > 0 such that

(a) for each 𝑡 ∈ (0, 1], 𝑞(𝑡, ⋅) is continuous on [𝛼, 𝛽];
(b) for each 𝑥 ∈ [𝛼, 𝛽], 𝑞(⋅, 𝑥) is measurable on [0, 1];
(c) |𝑞(𝑡, 𝑥)| ≤ 𝐾.

Then a solution to the initial-value problem (2) with 𝑏 = 0
exists.

In [5] the authors demonstrated the importance of the
condition 𝑏 = 0 for the existence.
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To overcome the difficulties in the case 𝑏 ̸= 0 we consider
a generalization ofTheorem 1 and show that the statement of
the theorem is true without condition (D3) and with weaker
conditions on 𝑞(𝑡, 𝑥).

Theorem 2. Suppose that 𝑝(𝑡) is integrable on the interval
[𝑐, 𝑑] for all 𝑐 > 0 and 𝑝 and 𝑞 satisfy the following conditions:

(D1) 𝑝 is measurable on [0, 1];

(D2) 𝑝 ≥ 0;

(D4∗) there exist 𝛼, 𝛽 with 𝛼 < 𝑎 < 𝛽, 𝐾 > 0, and an inte-
grable (improper, in general) 𝜑(𝑡) such that

(a) for each 𝑡 ∈ (0, 1], 𝑞(𝑡, ⋅) is continuous on [𝛼, 𝛽];
(b) for each 𝑥 ∈ [𝛼, 𝛽], 𝑞(⋅, 𝑥) is measurable on [0, 1];
(c) |𝑞(𝑡, 𝑥) − 𝜑(𝑡)| ≤ 𝐾.

Then a solution to the initial-value problem (2) exists for
all 𝑏 ∈ 𝑅 such that

𝑏 = 𝑧
󸀠

(0) , (3)

where 𝑧(𝑡) ∈ 𝐶[0, 1] is a solution of the problem

𝑧
󸀠󸀠
+ 𝑝 (𝑡) 𝑧

󸀠
+ 𝜑 (𝑡) = 0, 𝑧 (0) = 𝑎, 𝑧

󸀠

(0) = 𝑏, 𝑡 > 0.

(4)

That is we suppose the existence of solution of the problem
(4) for some 𝜑(𝑡). For the problems with 𝑏 = 0, the initial-
value problem (4) always has a solution 𝑧(𝑡) = 𝑎, for 𝜑(𝑡) ≡ 0.
SoTheorem 1 corresponds to the cases 𝜑(𝑡) = 0 and 𝑧(𝑡) = 𝑎.

One of the advantages of Theorem 2 is that the problem
(4) always has a solution for some appropriate 𝜑(𝑡); for
example, for 𝜑(𝑡) = −𝑏𝑝(𝑡), the problem (4) has a solution
𝑧(𝑡) = 𝑎 + 𝑏𝑡. The conclusion of the theorem remains valid
for all solutions of (4).

It is also clear from the conclusion of Theorem 2 that the
interval [0, 1] can be taken as [0, 𝑡

0
] for some small enough

𝑡
0
> 0.

Proof of Theorem 2. For 𝑡 ∈ (0, 1], we define the functions

ℎ (𝑡) ≡ exp(∫
𝑡

1

𝑝 (𝑠) 𝑑𝑠) ≥ 0,

ℎ
1
(𝑡) = exp(−∫

𝑡

1

𝑝 (𝑠) 𝑑𝑠) ,

𝐸 (𝑡) = ∫

𝑡

1

ℎ
1
(𝑠) 𝑑𝑠.

(5)

The function ℎ(𝑡) is a bounded function which is contin-
uous for 𝑡 ∈ (0, 1]. It is continuous or has a removable dis-
continuity at 𝑡 = 0 and is differentiable a.e.

We will show that the problem (2) is equivalent to the
following integral equation:

𝑥 (𝑡) = ∫

𝑡

0

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧 (𝑡) .

(6)

First, let us show the existence of the integral in (6). We have
for any 𝛿 > 0 that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝛿

𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝛿

𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝛿

∫

𝑠

1

ℎ
1
(𝑢) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
𝑑𝑢 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝛿

∫

𝑠

1

𝑒
−∫
𝑢

1

𝑝(V)𝑑V
𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
𝑑𝑢 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(7)

It follows from 𝑢 ≥ 𝑠 on the set [𝑠, 1] × [0, 𝑡] that

𝑒
−∫
𝑢

1

𝑝(V)𝑑V
𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
= 𝑒
−∫
𝑢

𝑠

𝑝(V)𝑑V
≤ 1, (8)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝛿

𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡 −

𝑡
2

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(9)

In like manner we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝛿

𝐸 (𝑡) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝛿

𝐸 (𝑡) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝛿

∫

𝑡

1

ℎ
1
(𝑢) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
𝑑𝑢 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡
2󵄨󵄨
󵄨
󵄨
󵄨
.

(10)

So the right-hand side of (6) makes sense for any 𝑝(𝑡) ≥ 0

and |𝑞(𝑡, 𝑥(𝑡)) − 𝜑(𝑡)| ≤ 𝐾 and

lim
𝛿→0

∫

𝑡

𝛿

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧 (𝑡)

= ∫

𝑡

0

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧 (𝑡) .

(11)
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Now let us calculate the derivatives 𝑥󸀠(𝑡) and 𝑥󸀠󸀠(𝑡) from (6)
by using the Leibniz rule:

𝑥
󸀠

(𝑡) = (∫

𝑡

0

𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

−∫

𝑡

0

𝐸 (𝑡) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧 (𝑡))

󸀠

= 𝐸 (𝑡) 𝑒
∫
𝑡

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑡, 𝑥 (𝑡)) − 𝜑 (𝑡)]

− 𝐸
󸀠

(𝑡) ∫

𝑡

0

𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

− 𝐸 (𝑡) 𝑒
∫
𝑡

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑡, 𝑥 (𝑡)) − 𝜑 (𝑡)] + 𝑧

󸀠

(𝑡)

= −ℎ
1
(𝑡) ∫

𝑡

0

𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧

󸀠

(𝑡) ,

𝑥
󸀠󸀠

(𝑡) = (−ℎ
1
(𝑡) ∫

𝑡

0

𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧

󸀠

(𝑡))

󸀠

= −ℎ
󸀠

1
(𝑡) ∫

𝑡

0

𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

− ℎ
1
(𝑡) 𝑒
∫
𝑡

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑡, 𝑥 (𝑡)) − 𝜑 (𝑡)] + 𝑧

󸀠󸀠

(𝑡)

= −ℎ
󸀠

1
(𝑡) ∫

𝑡

0

𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

− [𝑞 (𝑡, 𝑥 (𝑡)) − 𝜑 (𝑡)] + 𝑧
󸀠󸀠

(𝑡) .

(12)

It follows from (12) that

𝑥
󸀠󸀠

(𝑡) + 𝑝 (𝑡) 𝑥
󸀠

(𝑡) + 𝑞 (𝑡, 𝑥 (𝑡))

= −ℎ
󸀠

1
(𝑡) ∫

𝑡

0

𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

− [𝑞 (𝑡, 𝑥 (𝑡)) − 𝜑 (𝑡)] + 𝑧
󸀠󸀠

(𝑡)

− 𝑝 (𝑡) ℎ
1
(𝑡) ∫

𝑡

0

𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
[𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

+ 𝑝 (𝑡) 𝑧
󸀠

(𝑡) + 𝑞 (𝑡, 𝑥 (𝑡))

= 𝑧
󸀠󸀠

(𝑡) + 𝑝 (𝑡) 𝑧
󸀠

(𝑡) + 𝜑 (𝑡) = 0.

(13)

That is, the problem (2) is equivalent to (6). Let us define
the recurrence relations

𝑥
0
(𝑡) = 𝑧 (𝑡) , (14)

𝑥
𝑛
(𝑡) = ∫

𝑡

0

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥
𝑛−1

(𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧 (𝑡) ,

(15)

where 𝑧(𝑡) is a solution of the problem (4). It follows from (9),
(10), and (14) that 𝛼 < 𝑥

𝑛
(𝑡) < 𝛽 for 𝛼 < 𝑥

𝑛−1
(𝑡) < 𝛽 and for

small enough 𝑡 ∈ [0, 𝑡
0
).

Now, for 𝑡
1
, 𝑡
2
∈ [0, 𝑡

0
), we have from (9) and (10) that

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
(𝑡
2
) − 𝑥
𝑛
(𝑡
1
)
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
2

𝑡
1

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥
𝑛−1

(𝑠)) − 𝜑 (𝑠)] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2𝐾[(𝑡
2
−

𝑡
2

2

2

) − (𝑡
1
−

𝑡
2

1

2

)]

≤ 2𝐾 (𝑡
2
− 𝑡
1
) (1 +

𝑡
1

2

+

𝑡
2

2

)

≤ 𝐾
1
(𝑡
2
− 𝑡
1
) ,

(16)

for some constant 𝐾
1
. Thus, the sequence 𝑥

𝑛
(𝑡) is uniformly

bounded and uniformly continuous and, by Ascoli-Arzela
lemma, there exists a continuous𝑥(𝑡) such that𝑥

𝑛
𝑘

(𝑡) → 𝑥(𝑡)

uniformly on [0, 𝑇], for any fixed 𝑇 ∈ [0, 𝑡
0
). Without loss of

generality, say 𝑥
𝑛
(𝑡) → 𝑥(𝑡). Then

𝑥 (𝑡) = lim
𝑛→∞

∫

𝑡

0

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥
𝑛
(𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧 (𝑡)

= ∫

𝑡

0

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥 (𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧 (𝑡) ,

(17)

using the Lebesgue dominated convergence theorem.

Note that the positivity condition of the function 𝑝(𝑡) can
be weakened.

The positivity of 𝑝(𝑡) has been used in the proof of
Theorem 2 to show the (removable) continuity of the func-
tion ℎ(𝑡) at 0. Now assuming that the following condition
holds:

(C2) |𝑝| is integrable on [𝑐, 𝑑] for any fixed 𝑐, 𝑑 ∈ (0, 1],
𝑐 < 𝑑, and

𝐿 ≤ ∫

𝑑

𝑐

𝑝 (𝑠) 𝑑𝑠 < +∞; for some fixed 𝐿 (18)

we can prove a similar theorem.

Theorem 3. The conclusion of Theorem 2 remains valid if
condition (D2) is replaced by (C2).

Proof. We need to make some modifications to the proof of
Theorem 2; for example, instead of the inequality

𝑒
−∫
𝑢

1

𝑝(V)𝑑V
𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
≤ 1, (19)

for 𝑢 ≥ 𝑠, we will have

𝑒
−∫
𝑢

1

𝑝(V)𝑑V
𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
= 𝑒
−∫
𝑢

𝑠

𝑝(V)𝑑V
≤ 𝑒
−𝐿
, (20)

for small enough 𝑢 and 𝑠.
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It is worthy to note that the existence of the solution of the
problems like

𝑥
󸀠󸀠
+ (

𝑎
𝑚

𝑡
𝑚
+

𝑎
𝑚−1

𝑡
𝑚−1

+ ⋅ ⋅ ⋅ +

𝑎
1

𝑡

+ 𝐴 (𝑡)) 𝑥
󸀠
+ 𝑞 (𝑡, 𝑥 (𝑡)) = 0,

𝑥 (0) = 𝑎, 𝑥
󸀠

(0) = 𝑏, 𝑡 > 0,

(21)

follows from Theorem 2, where 𝐴(𝑡) is differentiable func-
tion, 𝑞(𝑡, 𝑥) satisfies the conditions (D4∗), 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
are

real constants, and 𝑎
𝑚
> 0. Indeed for small enough 𝑡we have

𝑝(𝑡) > 0 and therefore the hypotheses of Theorems 2 and 3
are true for small enough 𝑡 ∈ [0, 𝑇]; for 𝑏 = 0 the problem
(4) has a solution 𝑧(𝑡) = 𝑎, and so (21) has a solution for
all bounded 𝑞(𝑡, 𝑥(𝑡)) with Caratheodory conditions, but
for 𝑏 ̸= 0 the problem (21) has a solution for 𝑞(𝑡, 𝑥(𝑡)) with
|𝑞(𝑡, 𝑥(𝑡)) + 𝑏(𝑎

𝑚
/𝑡
𝑚
+ 𝑎
𝑚−1

/𝑡
𝑚−1

+ ⋅ ⋅ ⋅ + 𝑎
1
/𝑡)| < 𝐾 in some

small enough neighborhood of 0, since the corresponding
problem (4) can be taken (e.g.) as

𝑧
󸀠󸀠
+ (

𝑎
𝑚

𝑡
𝑚
+

𝑎
𝑚−1

𝑡
𝑚−1

+ ⋅ ⋅ ⋅ +

𝑎
1

𝑡

+ 𝐴 (𝑡)) 𝑧
󸀠

− 𝑏 (

𝑎
𝑚

𝑡
𝑚
+

𝑎
𝑚−1

𝑡
𝑚−1

+ ⋅ ⋅ ⋅ +

𝑎
1

𝑡

+ 𝐴 (𝑡)) = 0,

𝑧 (0) = 𝑎, 𝑧
󸀠

(0) = 𝑏, 𝑡 > 0,

(22)

and has a solution 𝑧(𝑡) = 𝑎 + 𝑏𝑡. It is remarkable that for 𝑏 ̸= 0

the condition for 𝑞(𝑡, 𝑥(𝑡)) can be changed by using different
functions for 𝜑(𝑡). For example, 𝜑(𝑡) can be taken as

𝜑 (𝑡) =

𝑏
𝑚

𝑡
𝑚
+

𝑏
𝑚−2

𝑡
𝑚−2

+ ⋅ ⋅ ⋅

= −

𝑏𝑎
𝑚

𝑡
𝑚

+

1

𝑡
𝑚−2

(

𝑏𝑎
2

𝑚−1

𝑎
𝑚

− 𝑏𝑎
𝑚−2

)

+

1

𝑡
𝑚−3

(

𝑏𝑎
𝑚−1

𝑎
𝑚−2

𝑎
𝑚

− 𝑏𝑎
𝑚−3

) + ⋅ ⋅ ⋅

+

1

𝑡

(

𝑏𝑎
𝑚−1

𝑎
2

𝑎
𝑚

− 𝑏𝑎
1
) +

𝑏𝑎
𝑚−1

𝑎
1

𝑎
𝑚

− 𝑏𝐴 (𝑡) −

𝑏𝑎
𝑚−1

𝑎
𝑚

(23)

and (4) as

𝑧
󸀠󸀠
+ (

𝑎
𝑚

𝑡
𝑚
+

𝑎
𝑚−1

𝑡
𝑚−1

+ ⋅ ⋅ ⋅ +

𝑎
1

𝑡

+ 𝐴 (𝑡)) 𝑧
󸀠
+ 𝜑 (𝑡) = 0,

𝑧 (0) = 𝑎, 𝑧
󸀠

(0) = 𝑏, 𝑡 > 0,

(24)

with solution 𝑧(𝑡) = 𝑎 + 𝑏𝑡 − (𝑏𝑎
𝑚−1

/2𝑎
𝑚
)𝑡
2. Continuing in

like manner, the condition for 𝑞(𝑡, 𝑥(𝑡)) can be reduced to
|𝑞(𝑡, 𝑥(𝑡)) + 𝑏𝑎

𝑚
/𝑡
𝑚
| < 𝐾.

The inequalities of the type (7)–(10) can be easily estab-
lished for the function 𝑞(𝑡, 𝑥) with

(D4∗d) 󵄨
󵄨
󵄨
󵄨
𝑞 (𝑡, 𝑥) − 𝜑 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝑚 (𝑡) , (25)

where 𝑚(𝑡) is absolutely integrable function, and the more
general theorem can be stated as follows.

Theorem 4. The conclusion of Theorem 2 remains valid if the
condition (D4∗c) is replaced by (D4∗d).

Themore applicable version of the existence theorems can
be received from Theorems 2, 3, and 4 if the function 𝜑(𝑡) is
replaced by 𝜑(𝑡, 𝑥). For example,Theorem 2 can be improved
as follows.

Theorem 5. The conclusion of Theorem 2 remains valid if the
function 𝜑(𝑡) is replaced by 𝜑(𝑡, 𝑥) and (4) is replaced by

𝑥
󸀠󸀠
+ 𝑝 (𝑡) 𝑥

󸀠
+ 𝜑 (𝑡, 𝑥 (𝑡)) = 0, 𝑥 (0) = 𝑎, 𝑡 > 0, (26)

where 𝜑(𝑡, 𝑥(𝑡)) is a function with Caratheodory conditions
(D4∗a) and (D4∗b).

The “traditional” uniqueness theorems when 𝑞(𝑡, 𝑥) is
Lipschitz in 𝑥 on [𝛼, 𝛽] can also be established.

Theorem 6. Suppose the conditions of Theorem 2 or
Theorem 3 hold and, in addition, suppose that 𝑞 is Lipschitz in
𝑥 on [𝛼, 𝛽]. Then the IVP (2) has a unique solution.

Proof (see also [19]). Suppose 𝑥
1
(𝑡), 𝑥
2
(𝑡) are solutions to (2)

on [0, 𝑇] for some𝑇 ∈ (0, 1]. Since 𝑞 is Lipschitz in𝑥on [𝛼, 𝛽],
there exists 𝐿 > 0 such that |𝑞(𝑡, 𝑥

1
) − 𝑞(𝑡, 𝑥

2
)| ≤ 𝐿|𝑥

1
− 𝑥
2
|,

whenever 𝑥
1
, 𝑥
2
∈ [𝛼, 𝛽] and 𝑡 ∈ [0, 1]. From (6) it follows

that, for 𝑡 ∈ [0, 𝑇],

𝑥
𝑖
(𝑡) = ∫

𝑡

0

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥
𝑖
(𝑠)) − 𝜑 (𝑠)] 𝑑𝑠 + 𝑧 (𝑡) ,

𝑖 = 1, 2,

(27)

and so

󵄨
󵄨
󵄨
󵄨
𝑥
2
(𝑡) − 𝑥

1
(𝑡)
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

(𝐸 (𝑠) 𝑒
∫
𝑠

1

𝑝(𝜏)𝑑𝜏
− 𝐸 (𝑡) 𝑒

∫
𝑠

1

𝑝(𝜏)𝑑𝜏
)

× [𝑞 (𝑠, 𝑥
2
(𝑠)) − 𝑞 (𝑠, 𝑥

1
(𝑠))] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐾
3
∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑥
2
(𝑠) − 𝑥

1
(𝑠)
󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

(28)

for some constant𝐾
3
(see inequalities (9) and (10)).

Now we use Gronwall’s lemma (see, e.g., [21]). Applying
this lemmawith 𝜎 = 0 and 𝑟(𝑠) = |𝑥

2
(𝑠)−𝑥

1
(𝑠)| yields |𝑥

2
(𝑡)−

𝑥
1
(𝑡)| ≤ 0, from which it follows that 𝑥

2
(𝑡) = 𝑥

1
(𝑡), thereby

proving the theorem.

Remark 7. Biles et al. [19] give an example which satisfies
conditions of Theorem 1 except condition 𝑝 ≥ 0. They con-
sidered the problem

𝑥
󸀠󸀠
− 𝑡
−1
𝑥
󸀠
= 0, 𝑥 (0) = 1, 𝑥

󸀠

(0) = 0, (29)

with the family of solutions 𝑥 = 𝑐𝑡2+1, where 𝑐 is an arbitrary
constant.
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Note that here 𝑆 ≡ {∫𝑏
𝑎
𝑝(𝑠)𝑑𝑠 : 𝑎 ≤ 𝑏 ∈ (0, 1)} = (−∞, 0].

Thus, in fact, not the condition 𝑝(𝑠) ≥ 0 but the boundedness
below of the set 𝑆 is important for the uniqueness.

3. Applications

Now we can find wide classes of IVPs with corresponding
existence and uniqueness criteria. The class of solvable
problems can be extended by adding a function 𝜑(𝑡) to the
function 𝑞(𝑡, 𝑥), where 𝜑(𝑡) is taken from the equation of the
type (4) with a solution.

Let us rephrase the main conclusion of Theorem 5 as
follows. If the (singular) problem

𝑥
󸀠󸀠
+ 𝑝 (𝑡) 𝑥

󸀠
+ 𝜑 (𝑡, 𝑥 (𝑡)) = 0,

𝑥 (0) = 𝑎, 𝑥
󸀠

(0) = 𝑏, 𝑡 > 0,

(30)

has a solution, then the problem

𝑥
󸀠󸀠
+ 𝑝 (𝑡) 𝑥

󸀠
+ 𝜑 (𝑡, 𝑥 (𝑡)) + 𝑞 (𝑡, 𝑥 (𝑡)) = 0,

𝑥 (0) = 𝑎, 𝑥
󸀠

(0) = 𝑏, 𝑡 > 0,

(31)

where 𝑞(𝑡, 𝑥) is a bounded function with Caratheodory
conditions, has a solution as well.

Example 8. The problem

𝑥
󸀠󸀠
+ 𝑝 (𝑡) 𝑥

󸀠
+ 𝑞 (𝑡, 𝑥 (𝑡)) − 𝑏𝑝 (𝑡) = 0,

𝑥 (0) = 𝑎, 𝑥
󸀠

(0) = 𝑏, 𝑡 ≥ 0,

(32)

has a solution for all bounded 𝑞(𝑡, 𝑥(𝑡)). Indeed the problem

𝑧
󸀠󸀠

(𝑡) + 𝑝 (𝑡) 𝑧
󸀠

(𝑡) − 𝑏𝑝 (𝑡) = 0, 𝑧 (0) = 𝑎, 𝑧
󸀠

(0) = 𝑏,

(33)

has a solution 𝑧(𝑡) = 𝑏𝑡+𝑎. Then existence of solution of (32)
follows fromTheorem 2.

Example 9. Consider the problem

𝑥
󸀠󸀠
+

𝑘

𝑡
𝑟
𝑥
󸀠
+ 𝑐𝑡
𝑚
𝑓 (𝑥) −

𝑏𝑘

𝑡
𝑟
= 0,

𝑥 (0) = 𝑎, 𝑥
󸀠

(0) = 𝑏, 𝑡 ≥ 0,

(34)

where 𝑘 ≥ 0, 𝑟 ∈ (0,∞), 𝑚 > −1, and 𝑓(𝑥) is bounded
function. It follows from Theorem 4 that this problem has
a solution. The functions 𝑚(𝑡) and 𝜑(𝑡) can be taken as
(const)𝑡𝑚 and −𝑏𝑘/𝑡𝑟, respectively.The equation correspond-
ing to (4)

𝑧
󸀠󸀠
+

𝑘

𝑡
𝑟
𝑧
󸀠
−

𝑏𝑘

𝑡
𝑟
= 0, 𝑧 (0) = 𝑎, 𝑧

󸀠

(0) = 𝑏, 𝑡 ≥ 0,

(35)

has a solution 𝑧(𝑡) = 𝑎 + 𝑏𝑡. The case 𝑏 = 0 and 𝑓(𝑥) = 𝑥
𝑛

correspond to the standard Emden-Fowler equation.

Example 10. Now consider the problem

𝑥
󸀠󸀠
+

𝑘

𝑡
𝑟
𝑥
󸀠
+ (ln𝑛𝑡) 𝑡𝑚𝑔 (𝑥) = 0, 𝑥 (0) = 𝑎, 𝑥

󸀠

(0) = 0,

𝑡 ≥ 0,

(36)

where 𝑔(𝑥) is continuous on [0, 1] function, 𝑘 ≥ 0, 𝑟 ∈

(−∞,∞), 𝑛 ≥ 0, and𝑚 > −1.

Since

𝑡
𝛼ln𝑛𝑡 󳨀→ 0 as 𝑡 󳨀→ 0, (37)

for any 𝛼 > 0 and 𝑟 ≥ 0, we have that (ln𝑛𝑡)𝑡𝑚 is integrable
and so the problem has a solution. For the approximate
solution of the problems like (36) see [22].

Example 11. The problem

𝑥
󸀠󸀠
+ 𝑥
󸀠 sin 1

𝑡

−

𝑥

𝑡

sin 1
𝑡

+ 𝑓 (𝑡) 𝑔 (𝑥) = 0,

𝑥 (0) = 0, 𝑥
󸀠

(0) = 1, 𝑡 ≥ 0,

(38)

where 𝑓(𝑡), 𝑔(𝑥) are continuous functions, satisfies the con-
ditions of Theorem 3. Indeed, the problem

𝑥
󸀠󸀠
+ 𝑥
󸀠 sin 1

𝑡

−

𝑥

𝑡

sin 1
𝑡

= 0,

𝑥 (0) = 0, 𝑥
󸀠

(0) = 1, 𝑡 ≥ 0,

(39)

has a solution 𝑥(𝑡) = 𝑡. It is worthy to note that every neigh-
borhood of 0 contains the points 𝑡

1
, 𝑡
2
with 𝑝(𝑡

1
) > 0 and

𝑝(𝑡
2
) < 0.

4. Concluding Remarks

Weextended the class of solvable second-order singular IVPs.
We established that the difficulties related to the singularity
can be overcome for the problems of the type (2) with 𝑝 ≥ 0
or

𝐿 ≤ ∫

𝑑

𝑐

𝑝 (𝑠) 𝑑𝑠 < +∞; for some fixed 𝐿. (40)

The problem of the existence of a solution is reduced to the
finding of a solution of some more easy problems like (4).

The approach used here can be useful for the problems on
the existence of solutions of boundary value problems [23–
26]. The authors in [23, 24] established remarkable theorems
on the existence and uniqueness of the solution of the
equation

𝑢
󸀠󸀠
+ 𝑝 (𝑡) 𝑢

󸀠
+ 𝑞 (𝑡) 𝑢 + 𝜑 (𝑡) = 0, (41)

with some boundary conditions, in terms of an auxiliary
homogeneous equation

𝑢
󸀠󸀠
+ 𝑝 (𝑡) 𝑢

󸀠
+ 𝑞 (𝑡) 𝑢 = 0. (42)
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Our approach is different from the approach in [23–25]. We
consider the new auxiliary (nonhomogeneous, but easily
solvable) (4) instead of (42).

The conditions we obtained are weaker than the previ-
ously known ones and can be easily reduced to several special
cases.
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