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We study the well-posedness of a 3D nonlinear stochastic wave equation which derives from the Maxwell system by the Galerkin
method. Then we study the approximate controllability of this system by the Hilbert uniqueness method.

1. Introduction

Many physical models are described by wave equations, such
as the scalar wave equations, the elastic wave equations,
and Maxwell’s equations. Therefore, the well-posedness and
controllability of wave equations are both important issues in
theories and applications.

The well-posedness of partial differential equations
(PDEs) has been studied by many authors; there are some
useful methods: the semigroup theory [1–4], the fixed point
method [5, 6], the variational method [7], and the regulariza-
tionmethod [8]. In this paper, we study the well-posedness of
the 3Dnonlinear stochastic equation by theGalerkinmethod.
In order to use this method, we have to establish the basis of
the 𝐿2(𝐺)

3, via the Hilbert-Schmidt theorem.
The controllability of PDEs has been a very active research

field since 1960s. From [9], we can know the definitions
of exact controllability, null controllability, and approximate
controllability. From the definition of controllability, we
should consider a final condition problem in PDE rather
than an initial condition problem. In fact, the problem of
controllability is related to the solution of the backward
adjoint problem. The connection of these two problems is
the famous Hilbert uniqueness method (HUM), proposed by
Lagnese. From [10], we know that “the theoretical basis of
HUM is, roughly speaking, the observation that if one has

uniqueness of solutions for a linear evolutionary system in a
Hilbert space it is possible to introduce a Hilbert space norm
‖ ⋅ ‖
𝐹
based on the uniqueness property in such a way that

the dual system is exactly controllable to the dual space 𝐹
󸀠.

The exact controllability problem is thereby transferred to
the problem of identifying (or otherwise characterizing) the
couple 𝐹, 𝐹󸀠. The latter is essentially a problem in PDEs when
the original evolutionary system is a distributed parameter
system: can a priori estimates of ‖ ⋅ ‖

𝐹
be obtained in terms of

norms in spaces which are both intrinsic to the given problem
and readily identifiable?”

For a detailed discussion of HUM, we can refer to [11].
Through this adjoint problem, onemay connect both control-
lability problems and minimization problems of appropriate
functionals. The existence of solutions to these minimiza-
tion problems is in turn related to certain inequalities, the
so-called observability inequalities, for the dynamical system
in question, which show that certain observed quantities
of the solution uniquely determine the solution of the
dynamical system. The observability inequalities are related
to continuous dependence questions of the solution on the
initial or the final data. In order to get the observation
estimates of the adjoint problem, we can use the multiplier
method [3] and microlocal analysis.

In a number of applications, the systems in question are
subject to stochastic fluctuations arising as a result of either
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uncertain forcing (stochastic external forcing) or uncertainty
of the governing laws of the system. Noise due to exper-
imental uncertainties, intrinsic randomness of the media,
and so forth plays an important role in wave propagation,
thus calling for the inclusion of stochastic terms in the
wave equations. When a physical state is modeled, external
random noise can be a serious disturbance. Apparently this
affects controllability of the model. In this paper we discuss
controllability of a vector wave equation with random noise.

The wave equation with the dissipative term has been
extensively studied by many authors (see [12–14]) and the
physical background can be found in many works of litera-
ture.

In this paper, we consider the nonlinear stochastic wave
equation

𝐻
𝑡𝑡
= Δ𝐻 + 𝑊(𝐻,𝐻

𝑡
, ∇𝐻) + (𝐹 + 𝑓𝐻)

𝑑𝐵

𝑑𝑡
+ 𝑈 in 𝑄

𝑇
,

∇ ⋅ 𝐻 = 0 in 𝑄
𝑇
,

(𝐻 (0) ,𝐻
𝑡
(0)) = 𝜉

0
in 𝐺,

𝐻 × 𝑛 = 0 in 𝑆
𝑇
,

(1)

where𝐻(⋅, ⋅, ⋅), 𝑈(⋅, ⋅, ⋅), 𝐹(⋅, ⋅, ⋅) : [0, 𝑇] × 𝐺 ×Ω → 𝑅
3 are 3D

stochastic processes, 𝑊(⋅, ⋅, ⋅) : 𝑅
3
× 𝑅
3
× 𝑅
9
→ 𝑅
3 is a map

which meets some conditions, 𝑓(⋅, ⋅, ⋅) : [0, 𝑇] ×𝐺×Ω → 𝑅
1

is 1D stochastic process, ∇ is the gradient operator and ∇𝐻 =

(∇𝐻
1
, ∇𝐻
2
, ∇𝐻
3
) ∈ 𝑅
9,Δ is the Laplace operator, and∇⋅ is the

divergence operator;𝑄
𝑇
, 𝐺, 𝑆
𝑇
, Ωwill be defined in Section 2.

System (1) can be derived from the Maxwell system.
Indeed, let us consider the classical Maxwell system

𝐸
𝑡
− ∇ × 𝐻 = 0,

𝐻
𝑡
+ ∇ × 𝐸 = 0,

(2)

where ∇× is the curl operator. Differentiating the second
equation in (2) with respect to 𝑡, it follows that

𝐻
𝑡𝑡
+ ∇ × 𝐸

𝑡
= 0. (3)

Combining this with the first equation in (2), we can obtain

𝐻
𝑡𝑡
+ ∇ × [∇ × 𝐻] = 0. (4)

Noting the identical equation,

∇ × [∇ × 𝐻] = ∇ (∇ ⋅ 𝐻) − Δ𝐻 (5)

and ∇ ⋅ 𝐻 = 0, (4) becomes

𝐻
𝑡𝑡
− Δ𝐻 = 0. (6)

This motivates us to consider (1). This idea can also be found
in [5, 6]. For convenience, we write (1) in the following
equivalent form:

𝐻
𝑡𝑡
= − ∇ × [∇ × 𝐻] + 𝑊(𝐻,𝐻

𝑡
, ∇𝐻)

+ (𝐹 + 𝑓𝐻)
𝑑𝐵

𝑑𝑡
+ 𝑈 in 𝑄

𝑇
,

∇ ⋅ 𝐻 = 0 in 𝑄
𝑇
,

(𝐻 (0) ,𝐻
𝑡
(0)) = 𝜉

0
in 𝐺,

𝐻 × 𝑛 = 0 in 𝑆
𝑇
.

(7)

Question. Given an initial condition 𝜉
0

∈ 𝐿
2
(Ω,F

0
, 𝑋)

(where𝑋 is an appropriately chosenHilbert space) and a final
state 𝜉

1
∈ 𝐿
2
(Ω,F

𝑇
, 𝑋), can we find an adapted control 𝑈

such that the system (1) is driven 𝜀-close to the final condition
𝜉
1
in the chosen time period?
Theorem 4 is a positive answer to the above question.
For deterministic wave equations, the exact controllabil-

ity has been extensively investigated for the past few decades
(see [11]). References [9, 15] have studied the stochastic wave
equations. In this paper, the method we use to deal with our
problem is inspired by the idea of these papers.

This paper is organized as follows. In Section 2, we
establish the existence anduniqueness theorem for the initial-
boundary value problem. In Section 3, the approximate
controllability of (1) is stated and proved.

2. The Initial-Boundary Value Problem

Throughout this paper, let {𝐵(𝑡)}
0≤𝑡≤𝑇

be the standard
1D Brownian motions over the stochastic basic
(Ω,F, {F

𝑡
}
0≤𝑡≤𝑇

, 𝑃), where {F
𝑡
}
0≤𝑡≤𝑇

is the augmentation of
the filtration generated by the Brownian motions {𝐵(𝑡)}

0≤𝑡≤𝑇

under the probability measure 𝑃 (see [5]). 𝐺 is always
assumed to be a bounded and simply connected domain in
𝑅
3, 𝜕𝐺 is smooth, and 𝑄

𝑇
= 𝐺 × (0, 𝑇], 𝑆

𝑇
= 𝜕𝐺 × (0, 𝑇) with

𝑇 > 0, and 𝑛 is the outward normal vector on 𝜕𝐺. Set

𝐻(curl, 𝐺) = {𝑢 (𝑥) ∈ 𝐿
2
(𝐺)
3
: ∇ × 𝑢 ∈ 𝐿

2
(𝐺)
3
} ,

𝐻
0
(curl, 𝐺) = {𝑢 (𝑥) ∈ 𝐿

2
(𝐺)
3
: ∇ × 𝑢 ∈ 𝐿

2
(𝐺)
3
,

𝑛 × 𝑢 = 0 on 𝜕𝐺} ,

𝐻 (div, 𝐺) = {𝑢 (𝑥) ∈ 𝐿
2
(𝐺)
3
: ∇ ⋅ 𝑢 ∈ 𝐿

2
(𝐺)
3
} ,

𝐻 (div 0, 𝐺) = {𝑢 (𝑥) ∈ 𝐿
2
(𝐺)
3
: ∇ ⋅ 𝑢 = 0} ,

𝑋 = [𝐻
0
(curl, 𝐺) ∩ 𝐻 (div 0, 𝐺)] × 𝐿

2
(𝐺)
3
,

𝑌 = 𝐻
0
(curl, 𝐺) ∩ 𝐻 (div 0, 𝐺) .

(8)

The definitions and properties of these spaces can be
found in [16, 17]. (⋅, ⋅) stands for the inner product in 𝐿

2
(𝐺)
3.
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Definition 1. A stochastic process𝐻 is said to be a solution of
(1) if

(𝐻 (𝑡) ,𝐻
𝑡
(𝑡)) is 𝑋-valued and F

𝑡
-measurable

for each 𝑡 ∈ [0, 𝑇] ,

(𝐻,𝐻
𝑡
) ∈ 𝐿
2
(Ω; 𝐶 ([0, 𝑇] , 𝑋)) ,

(𝐻 (0) ,𝐻
𝑡
(0)) = 𝜉

0
= (𝜉
1

0
, 𝜉
2

0
) ;

(𝐻
𝑡
(𝑡) , Φ) = (𝐻

𝑡
(0) , Φ) − ∫

𝑡

0

(∇ × 𝐻, ∇ × Φ) 𝑑𝑠

+ ∫

𝑡

0

(𝑊 (𝐻,𝐻
𝑡
, ∇𝐻) + 𝑈,Φ) 𝑑𝑠

+ ∫

𝑡

0

(𝐹 + 𝑓𝐻,Φ) 𝑑𝐵

(9)

holds for all 𝑡 ∈ [0, 𝑇] and all Φ ∈ 𝑌, for a.s. 𝜔 ∈ Ω.

First, we consider the following system:

𝐻
𝑡𝑡
= −∇ × [∇ × 𝐻] + 𝐽 + 𝐹

𝑑𝐵

𝑑𝑡
in 𝑄
𝑇
,

∇ ⋅ 𝐻 = 0 in 𝑄
𝑇
,

(𝐻 (0) ,𝐻
𝑡
(0)) = 𝜉

0
in 𝐺,

𝐻 × 𝑛 = 0 in 𝑆
𝑇
.

(10)

By using the Galerkin method in [15], we can obtain the
following theorem.

Theorem 2. Let 0 < 𝑇 < +∞, let 𝐹 and 𝐽 be 𝐿
2
(𝐺)
3-valued

predictable processes, and let 𝐹, 𝐽 ∈ 𝐿
2
(Ω; 𝐿
2
(𝑄
𝑇
)
3
), 𝜉
0

=

(𝜉
1

0
, 𝜉
2

0
) ∈ 𝐿
2
(Ω,F

0
; 𝑋). There is a solution to the system (10).

Furthermore, the solution is pathwise unique, and

𝐸[ sup
0≤𝑠≤𝑡

(
󵄩󵄩󵄩󵄩󵄩
𝐻
󸀠

𝑡
(𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 + ‖∇ × 𝐻 (𝑠)‖

2

𝐿
2
(𝐺)
3)]

≤ CE [
󵄩󵄩󵄩󵄩󵄩
𝐻
󸀠

𝑡
(0)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 + ‖∇ × 𝐻 (0)‖

2

𝐿
2
(𝐺)
3]

+ CE [∫

𝑡

0

‖𝐹 (𝑠)‖
2

𝐿
2
(𝐺)
3𝑑𝑠] + CE [∫

𝑡

0

‖𝐽 (𝑠)‖
2

𝐿
2
(𝐺)
3𝑑𝑠] ,

(11)

for every 𝑡 ∈ [0, 𝑇].

Next, we consider the system (1).

Theorem 3. Assume the following conditions:

(i) 𝐹 is an 𝐿
2
(𝐺)
3-valued predictable process and 𝐹 ∈

𝐿
2
(Ω; 𝐿
2
(𝑄
𝑇
)
3
);

(ii) 𝑓 is an𝐿
∞
(𝐺)
3-valued predictable process and for some

nonnegative constant 𝑏 : |𝑓(𝑡, 𝑥, 𝜔)| ≤ 𝑏, for all
(𝑡, 𝑥) ∈ [0, 𝑇] × 𝐺, for a.s. 𝜔 ∈ Ω;

(iii) 𝜉
0
∈ 𝐿
2
(Ω,F

0
; 𝑋);

(iv) 𝑊: 𝑅
3
× 𝑅
3
× 𝑅
9
→ 𝑅
3 satisfies

󵄨󵄨󵄨󵄨𝑊 (𝑥
1
, 𝑦
1
, 𝑧
1
) − 𝑊(𝑥

2
, 𝑦
2
, 𝑧
2
)
󵄨󵄨󵄨󵄨

≤ 𝐿 (
󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦1 − 𝑦

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑧1 − 𝑧

2

󵄨󵄨󵄨󵄨) ,

(12)

for all (𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) ∈ 𝑅
3
× 𝑅
3
× 𝑅
9
, 𝑖 = 1, 2, where | ⋅ | :

𝑅
3
𝑜𝑟𝑅
9

→ 𝑅 is the Euclid norm and 𝐿 is a positive
constant;

(v) 𝑈 is an 𝐿
2
(𝐺)
3-valued predictable process and 𝑈 ∈

𝐿
2
(Ω; 𝐿
2
(𝑄
𝑇
)
3
).

Then there is a solution to problem (1). Furthermore, the
solution is pathwise unique.

Proof. We formally write (𝐻
0
(𝑡),𝐻

0

𝑡
(𝑡)) = 𝜉

0
= (𝜉
1

0
, 𝜉
2

0
) ∈

𝐿
2
(Ω,F

0
; 𝑋) for all 𝑡 ∈ [0, 𝑇].

Let 𝐻𝑚 (𝑚 = 1, 2 . . .) be the solution of the following
linear problem:

𝐻
𝑡𝑡
= − ∇ × [∇ × 𝐻] + 𝑈 + 𝑊(𝐻

𝑚−1
, 𝐻
𝑚−1

𝑡
, ∇𝐻
𝑚−1

)

+ (𝐹 + 𝑓𝐻
𝑚−1

)
𝑑𝐵

𝑑𝑡
in 𝑄
𝑇
,

∇ ⋅ 𝐻 = 0 in 𝑄
𝑇
,

(𝐻 (0) ,𝐻
𝑡
(0)) = 𝜉

0
in 𝐺,

𝐻 × 𝑛 = 0 in 𝑆
𝑇
.

(13)

Since 𝜉
0
is 𝑋-valued F

0
-measurable, 𝑊(𝜉

1

0
, 𝜉
2

0
, ∇𝜉
1

0
) is

independent of time and 𝐿
2
(𝑄
𝑇
)
3-valued F

0
-measurable by

(12). Also, 𝐹 + 𝑓𝜉
1

0
is 𝐿2(𝐺)

3-valuedF
0
-measurable, and

󵄩󵄩󵄩󵄩󵄩
𝐹 + 𝑓𝜉

1

0

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω;𝐿2(𝑄
𝑇
)
3
)

≤ ‖𝐹‖
𝐿
2
(Ω;𝐿
2
(𝑄
𝑇
)
3
)
+ 𝑏𝑇
1/2󵄩󵄩󵄩󵄩󵄩

𝜉
1

0

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω;𝐿2(𝐺)3)
.

(14)

If (𝐻
𝑚−1

, 𝐻
𝑚−1

𝑡
) ∈ 𝐿

2
(Ω; 𝐶([0, 𝑇]; 𝑋)) is adapted to

{𝐹
𝑡
},𝑊(𝐻

𝑚−1
, 𝐻
𝑚−1

𝑡
, ∇𝐻
𝑚−1

) is an 𝐿
2
(𝐺)
3-valued predictable

process and

󵄩󵄩󵄩󵄩󵄩
𝐹 + 𝑓𝐻

𝑚−1󵄩󵄩󵄩󵄩󵄩𝐿2(Ω;𝐿2(𝑄
𝑇
)
3
)

≤ ‖𝐹‖
𝐿
2
(Ω;𝐿
2
(𝑄
𝑇
)
3
)
+ 𝑏

󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚−1󵄩󵄩󵄩󵄩󵄩𝐿2(Ω;𝐿2(𝑄

𝑇
)
3
)
.

(15)

Therefore, we apply Theorem 2 to problem (13) for 𝑚 =

1, 2 . . ..
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By virtue of (12), we have

󵄩󵄩󵄩󵄩󵄩
𝑊 (𝐻

𝑚
, 𝐻
𝑚

𝑡
, ∇𝐻
𝑚
) − 𝑊(𝐻

𝑚−1
, 𝐻
𝑚−1

𝑡
, ∇𝐻
𝑚−1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚
− 𝐻
𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 +

󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚

𝑡
− 𝐻
𝑚−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩󵄩
∇𝐻
𝑚
− ∇𝐻

𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
9)

≤ 𝐶 (
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚
− 𝐻
𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3
+
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚

𝑡
− 𝐻
𝑚−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚
− 𝐻
𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
(𝐺)
3
)

≤ 𝐶 (
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚
− 𝐻
𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 +

󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚

𝑡
− 𝐻
𝑚−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩󵄩
∇ × 𝐻

𝑚
− ∇ × 𝐻

𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3)

≤ 𝐶 (
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚

𝑡
− 𝐻
𝑚−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3
+
󵄩󵄩󵄩󵄩󵄩
∇ × 𝐻

𝑚
− ∇ × 𝐻

𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3
) ,

(16)
󵄩󵄩󵄩󵄩󵄩
𝑓𝐻
𝑚
(𝑡) − 𝑓𝐻

𝑚−1
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐺)3
≤ 𝑏

󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚
(𝑡) − 𝐻

𝑚−1
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐺)3
,

(17)

for all 𝑡 ∈ [0, 𝑇] and a.s. 𝜔 ∈ Ω.
We have

(𝐻
𝑚+1

− 𝐻
𝑚
)
𝑡𝑡
= − ∇ × [∇ × (𝐻

𝑚+1
− 𝐻
𝑚
)]

+ [𝑊 (𝐻
𝑚
, 𝐻
𝑚

𝑡
, ∇𝐻
𝑚
)

−𝑊(𝐻
𝑚−1

, 𝐻
𝑚−1

𝑡
, ∇𝐻
𝑚−1

)]

+ (𝑓𝐻
𝑚
− 𝑓𝐻

𝑚−1
)
𝑑𝐵

𝑑𝑡
in 𝑄
𝑇
,

∇ ⋅ (𝐻
𝑚+1

− 𝐻
𝑚
) = 0 in 𝑄

𝑇
,

(𝐻
𝑚+1

(0) − 𝐻
𝑚
(0) ,𝐻

𝑚+1

𝑡
(0) − 𝐻

𝑚

𝑡
(0)) = (0, 0) in 𝐺,

(𝐻
𝑚+1

− 𝐻
𝑚
) × 𝑛 = 0 on 𝑆

𝑇
.

(18)

Then by (11), (16), and (17) we know

𝐸[ sup
0≤𝑠≤𝑡

(
󵄩󵄩󵄩󵄩󵄩
(𝐻
𝑚+1

𝑡
− 𝐻
𝑚

𝑡
) (⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩󵄩
(∇ × 𝐻

𝑚+1
− ∇ × 𝐻

𝑚
) (⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3
) ]

≤ 𝐶𝐸∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑓𝐻
𝑚
(𝑠) − 𝑓𝐻

𝑚−1
(𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3
𝑑𝑠

+ 𝐶𝐸[∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑊 (𝐻

𝑚
, 𝐻
𝑚

𝑡
, ∇𝐻
𝑚
)

−𝑊(𝐻
𝑚−1

, 𝐻
𝑚−1

𝑡
, ∇𝐻
𝑚−1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3
𝑑𝑠]

≤ 𝐶𝐸∫

𝑡

0

(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚
− 𝐻
𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3
+
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑚

𝑡
− 𝐻
𝑚−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩󵄩
∇ × 𝐻

𝑚
− ∇ × 𝐻

𝑚−1󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3) 𝑑𝑠

≤ 𝐶𝐸∫

𝑡

0

(
󵄩󵄩󵄩󵄩󵄩
(𝐻
𝑚

𝑡
− 𝐻
𝑚−1

𝑡
) (⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩󵄩
(∇ × 𝐻

𝑚
− ∇ × 𝐻

𝑚−1
) (⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3
) 𝑑𝑠

(19)

for every 𝑡 ∈ [0, 𝑇]. In the last step, we have used the fact that

‖𝑢‖
𝐻
1
(𝐺)
3 ≤ 𝐶‖∇ × 𝑢‖

𝐿
2
(𝐺)
3 (20)

for every 𝑢 ∈ 𝑌.
Let

𝑄
𝑚
(𝑡)

= 𝐸 [ sup
0≤𝑠≤𝑡

(
󵄩󵄩󵄩󵄩󵄩
(𝐻
𝑚+1

𝑡
− 𝐻
𝑚

𝑡
) (⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩󵄩
∇ × 𝐻

𝑚+1
(⋅, 𝑠) − ∇ × 𝐻

𝑚
(⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3) ] ,

(21)

for every 𝑡 ∈ [0, 𝑇] and each𝑚 = 1, 2 . . ..
Then we can derive that, for some positive constant 𝐶,

𝑄
𝑚
(𝑡) ≤ 𝐶∫

𝑡

0

𝑄
𝑚−1

(𝑠) 𝑑𝑠, (22)

for all 𝑡 ∈ [0, 𝑇] and all𝑚 ≥ 1.
By (11) and (14) we can obtain some positive constant𝐾 >

0 such that

𝑄
0
(𝑡) ≤ 𝐾 ∀𝑡 ∈ [0, 𝑇] . (23)

By induction, it follows that

𝑄
𝑚
(𝑡) ≤

𝐾𝐶
𝑚
𝑡
𝑚

𝑚
∀𝑡 ∈ [0, 𝑇] ; (24)

then
𝑚

∑

𝑘=1

√𝑄
𝑚
(𝑇) < +∞. (25)

Consequently, {(𝐻
𝑚
, 𝐻
𝑚

𝑡
)} is a Cauchy sequence in

𝐿
2
(Ω, 𝐶([0, 𝑇]; 𝑋)).
Then

(𝐻 (𝑡) ,𝐻
𝑡
(𝑡)) is 𝑋-valued and F

𝑡
-measurable

for each 𝑡 ∈ [0, 𝑇] ,

(𝐻,𝐻
𝑡
) ∈ 𝐿
2
(Ω; 𝐶 ([0, 𝑇] , 𝑋))

(𝐻 (0) ,𝐻
𝑡
(0)) = 𝜉

0
= (𝜉
1

0
, 𝜉
2

0
) ,

(𝐻
𝑚
, 𝐻
𝑚

𝑡
) 󳨀→ (𝐻,𝐻

𝑡
) in 𝐿

2
(Ω, 𝐶 ([0, 𝑇] ; 𝑋)) ;

(26)
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namely, as𝑚 → ∞,

𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩(𝐻
𝑚
, 𝐻
𝑚

𝑡
) − (𝐻,𝐻

𝑡
)
󵄩󵄩󵄩󵄩

2

𝑋
󳨀→ 0. (27)

From (13), we can get that, for every𝑚 ≥ 1,

(𝐻
𝑚

𝑡
(𝑡) , Φ) = (𝐻

𝑚

𝑡
(0) , Φ) − ∫

𝑡

0

(∇ × 𝐻
𝑚
, ∇ × Φ) 𝑑𝑠

+ ∫

𝑡

0

(𝑊(𝐻
𝑚−1

, 𝐻
𝑚−1

𝑡
, ∇𝐻
𝑚−1

) + 𝑈,Φ) 𝑑𝑠

+ ∫

𝑡

0

(𝐹 + 𝑓𝐻
𝑚−1

, Φ) 𝑑𝐵

(28)

holds for every 𝑡 ∈ [0, 𝑇], every Φ ∈ 𝑌, and a.s. 𝜔 ∈ Ω.
By the diagonal process and taking limits, we get that

(𝐻
𝑡
(𝑡) , Φ) = (𝐻

𝑡
(0) , Φ) − ∫

𝑡

0

(∇ × 𝐻, ∇ × Φ) 𝑑𝑠

+ ∫

𝑡

0

(𝑊 (𝐻,𝐻
𝑡
, ∇𝐻) + 𝑈,Φ) 𝑑𝑠

+ ∫

𝑡

0

(𝐹 + 𝑓𝐻,Φ) 𝑑𝐵

(29)

holds for every 𝑡 ∈ [0, 𝑇], every Φ ∈ 𝑌, and a.s. 𝜔 ∈ Ω.
In the end, we prove the uniqueness of the solution.
Let 𝐻

1
and 𝐻

2
be two solutions. We define 𝑊

𝑖
=

𝑊(𝐻
𝑖
, 𝐻
𝑖𝑡
, ∇𝐻
𝑖
) and 𝐽

𝑖
= 𝑓𝐻
𝑖
for 𝑖 = 1, 2.

Let Φ
𝑖
be the solution of the following linear problem:

𝐻
𝑡𝑡
= −∇ × [∇ × 𝐻] + 𝑊

𝑖
+ (𝐹 + 𝐽

𝑖
)
𝑑𝐵

𝑑𝑡
+ 𝑈 in 𝑄

𝑇
,

∇ ⋅ 𝐻 = 0 in 𝑄
𝑇
,

(𝐻 (0) ,𝐻
𝑡
(0)) = 𝜉

0
in 𝐺,

𝐻 × 𝑛 = 0 in 𝑆
𝑇
.

(30)

By virtue of (11), we see that, for all 𝑡 ∈ [0, 𝑇], Φ
1
− Φ
2

satisfies

𝐸[ sup
0≤𝑠≤𝑡

(
󵄩󵄩󵄩󵄩󵄩
(Φ
1
− Φ
2
)
󸀠

𝑡
(⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩(∇ × Φ

1
− ∇ × Φ

2
) (⋅, 𝑠)

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3) ]

≤ 𝐶𝐸∫

𝑡

0

󵄩󵄩󵄩󵄩𝑊1 (⋅, 𝑠) − 𝑊
2
(⋅, 𝑠)

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 𝑑𝑠

+ 𝐸∫

𝑡

0

󵄩󵄩󵄩󵄩𝐽1 (⋅, 𝑠) − 𝐽
2
(⋅, 𝑠)

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 𝑑𝑠.

(31)

In the meantime, by the uniqueness of solutions to the
linear problem, we can obtain Φ

𝑖
= 𝐻
𝑖
for 𝑖 = 1, 2. Then, by

using assumptions (i) and (iv), it follows from (20) that, for
all 𝑡 ∈ [0, 𝑇],

𝐸[ sup
0≤𝑠≤𝑡

(
󵄩󵄩󵄩󵄩󵄩
(Φ
1
− Φ
2
)
󸀠

𝑡
(⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩(∇ × Φ

1
− ∇ × Φ

2
) (⋅, 𝑠)

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3) ]

≤ 𝐶𝐸(∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
(Φ
1
− Φ
2
)
󸀠

𝑡
(⋅, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3

+
󵄩󵄩󵄩󵄩(∇ × Φ

1
− ∇ × Φ

2
) (⋅, 𝑠)

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 𝑑𝑠) .

(32)

From Gronwall’s inequality, we can obtain that Φ
1
= Φ
2

for all 𝑡 ∈ [0, 𝑇] and a.s. 𝜔 ∈ Ω.

3. Approximate Controllability of (1)
Now, we can answer the question in Section 1.

Theorem 4. Suppose that assumptions (i)–(iv) of Theorem 3
hold and 𝜉

1
∈ 𝐿
2
(Ω,F

𝑇
; 𝑋) is given. For each 𝜀 > 0,

there is a control 𝑈 that satisfies the following: 𝑈(𝑡) is an
𝐿
2
(𝐺)
3-valued predictable process over {Ω,F,F

𝑡
, 𝑃}, 𝑈 ∈

𝐿
2
(Ω,F

𝑇
; 𝐿
2
(𝑄
𝑇
)
3
) and

𝐸 (
󵄩󵄩󵄩󵄩(𝐻 (𝑇) ,𝐻

𝑡
(𝑇)) − 𝜉

1

󵄩󵄩󵄩󵄩

2

𝑋
) < 𝜀, (33)

where𝐻 is the solution of (1).

In the first part we derive fundamental estimates. The
proof of Theorem 4 is given in the second part.

By using the method similar to that in [9, 15], we can
establish the following lemmas.

Lemma 5. Let 𝑉 be the solution of the system

𝑉
𝑡𝑡
+ ∇ × [∇ × 𝑉] = 0 𝑖𝑛 (𝑇 − 𝜏, 𝑇) × 𝐺,

∇ ⋅ 𝑉 = 0 𝑖𝑛 (𝑇 − 𝜏, 𝑇) × 𝐺,

𝑉 × 𝑛 = 0 𝑜𝑛 [𝑇 − 𝜏, 𝑇] × 𝜕𝐺,

(𝑉 (𝑇) , 𝑉
𝑡
(𝑇)) = 𝛼 ∈ 𝑋

(34)

such that (𝑉, 𝑉
𝑡
) ∈ 𝐶([𝑇 − 𝜏, 𝑇]; 𝑋). Then it holds that

‖𝛼‖
2

𝑋
≤

𝐶

𝜏3
∫

𝑇

𝑇−𝜏

󵄩󵄩󵄩󵄩𝑉𝑡 (𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 𝑑𝑡, (35)

for every 0 < 𝜏 ≤ min(1, 𝑇), where 𝐶 is a positive constant
depending only on 𝐺.

Lemma 6. Let 𝐿 be the solution of the system

𝐿
𝑡𝑡
+ ∇ × [∇ × 𝐿] = 𝑉

𝑡
𝑖𝑛 (𝑇 − 𝜏, 𝑇) × 𝐺,

∇ ⋅ 𝐿 = 0 𝑖𝑛 (𝑇 − 𝜏, 𝑇) × 𝐺,

𝐿 × 𝑛 = 0 𝑜𝑛 [𝑇 − 𝜏, 𝑇] × 𝜕𝐺,

(𝐿 (𝑇 − 𝜏) , 𝐿
𝑡
(𝑇 − 𝜏)) = 0 𝑖𝑛 𝐺,

(36)
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where 𝑉 is the solution of the system (34). Let 𝛽 =

(𝐿(𝑇), 𝐿
𝑇
(𝑇)) ∈ 𝑋. Then it holds that

∫

𝑇

𝑇−𝜏

∫
𝐺

󵄨󵄨󵄨󵄨𝑉𝑡
󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡 ≤ ‖𝛼‖𝑋
󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩𝑋
, (37)

where𝐶 is a positive constant depending only on𝐺 and 0 < 𝜏 ≤

min(1, 𝑇).

Remark 7. The estimates (35) and (37) naturally carry over to
the case where 𝛼 is an𝑋-valued random variable.

If 𝛼 ∈ 𝐿
2
(Ω,F

𝑇−𝜏
; 𝑋), then (𝑉, 𝑉

𝑡
) ∈ 𝐿
2
(Ω,F

𝑇−𝜏
; 𝐶([𝑇 −

𝜏, 𝑇]; 𝑋)) and

𝐸 (‖𝛼‖
2

𝑋
) ≤

𝐶

𝜏3
𝐸(∫

𝑇

𝑇−𝜏

󵄩󵄩󵄩󵄩𝑉𝑡 (𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐺)
3 𝑑𝑡) . (38)

Also, 𝐸(∫𝑇
𝑇−𝜏

∫
𝐺
‖𝑉
𝑡
(𝑡)‖
2
𝑑𝑥 𝑑𝑡) ≤ 𝐸(‖𝛼‖

𝑋
‖𝛽‖
𝑋
).

Lemma 8. Consider the following initial-boundary value
problem:

𝑢
𝑡𝑡
+ ∇ × [∇ × 𝑢] = 𝐹 + 𝑓𝑢

𝑑𝐵

𝑑𝑡
𝑖𝑛 (𝑇 − 𝜏, 𝑇) × 𝐺,

∇ ⋅ 𝑢 = 0 𝑖𝑛 (𝑇 − 𝜏, 𝑇) × 𝐺,

𝑢 × 𝑛 = 0 𝑖𝑛 [𝑇 − 𝜏, 𝑇] × 𝜕𝐺,

(𝑢 (𝑇 − 𝜏) , 𝑢
𝑡
(𝑇 − 𝜏)) = 0 𝑖𝑛 𝐺.

(39)

Let 𝐹 ∈ 𝐿
2
(Ω,F

𝑇−𝜏
; 𝐿
2
((𝑇 − 𝜏, 𝑇) × 𝐺)

3
) be given and let 𝑓

satisfy (ii) of Lemma 6. Then there is a unique solution 𝑢 of
(39) such that, for each 𝑡 ∈ [𝑇 − 𝜏, 𝑇], (𝑢(𝑡), 𝑢

𝑡
(𝑡)) is𝑋-valued

andF
𝑡
-measurable and, for almost all𝜔 ∈ Ω, (𝑢(𝜔), 𝑢

𝑡
(𝜔)) ∈

𝐶([𝑇 − 𝜏, 𝑇]; 𝑋). Furthermore, it holds that

𝐸( sup
𝑇−𝜏≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢 (𝑡) , 𝑢
𝑡
(𝑡)

󵄩󵄩󵄩󵄩

2

𝑋
) ≤ 𝐶𝜏𝐸(∫

𝑇

𝑇−𝜏

∫
𝐺

|𝐹|
2
𝑑𝑥 𝑑𝑡) ,

(40)

for every 0 < 𝜏 ≤ min(1, 𝑇), where 𝐶 is a positive constant
independent of 𝐹 and 𝜏.

Let 𝛼 ∈ 𝐿
2
(Ω,F

𝑇−𝜏
; 𝑋) be given and let𝑉, 𝑢, and 𝐿 be the

solutions of (34), (39), and (36), respectively. Set 𝐹 = 𝑉
𝑡
in

(39). We will estimate 𝑢(𝑇) − 𝐿(𝑇).

Lemma 9. Assume that 0 < 𝜏 ≤ min(1, 𝑇). Set 𝑧 = 𝑢 − 𝐿. Let
𝑀 be a positive constant such that 𝐸(‖𝐿(𝑇), 𝐿

𝑡
(𝑇)‖
2

𝑋
) ≤ 𝑀

2.
Then it holds that

𝐸 (
󵄩󵄩󵄩󵄩𝑧 (𝑇) , 𝑧

𝑡
(𝑇)

󵄩󵄩󵄩󵄩

2

𝑋
) ≤ 𝐶𝜏𝑀

2
, (41)

where 𝐶 is a positive constant independent of 𝜏.

Consider the map

Λ : 𝐿
2
(Ω,F

𝑇−𝜏
; 𝑋) 󳨀→ 𝐿

2
(Ω,F

𝑇−𝜏
; 𝑋) ,

𝛼 󳨀→ 𝑉 󳨀→ 𝑉
𝑡
󳨀→ 𝐿 󳨀→ (𝐿 (𝑇) , 𝐿

𝑡
(𝑇)) =: Λ (𝛼) = 𝛽.

(42)

The following property of Λ is essential for Theorem 4.

Lemma 10. For every F
𝑇−𝜏

-measurable random variable 𝜉
𝜀

with values in 𝑋, there exists an 𝛼
∗

∈ 𝐿
2
(Ω,F

𝑇−𝜏
; 𝑋) such

that

Λ (𝛼
∗
) = 𝜉
𝜀
. (43)

In fact, Lemma 10 can be obtained from Lemmas 5 and 6
and Lax-Milgram lemma.

The major technical result, essential in our work, is a
generalization of the Martingale representation theorem (see
[18]) that is summarized in the following lemma from [9, 15].

Lemma 11. Given an F
𝑇
-measurable random variable 𝜉, for

any 𝜀 > 0, there exist 𝜏 > 0 and anF
𝑇−𝜏

-measurable random
variable 𝜉

𝜀
such that, for some 𝜀 = 𝜀(𝜏) > 0, 𝐸[‖𝜉

𝜀
− 𝜉‖
2

𝑋
] < 𝜀

and 𝐸[‖𝜉
𝜀
‖
2

𝑋
] ≤ 𝐸[‖𝜉‖

2

𝑋
].

Remark 12. The proof of Lemma 11 is similar to [15, Lemma
1.2] and [9, Lemma 1].

Now, we can prove our main result.

Proof of Theorem 4. The following procedure shows the con-
struction of the approximate control. We use the Hilbert
uniqueness method.

(1) Choose an 𝜀 > 0 and a desired final state 𝜉
1
for the

system (1).
(2) Solve the forward uncontrolled system

𝑢
𝑡𝑡
+ ∇ × [∇ × 𝑢] = (𝐹 + 𝑓𝑢)

𝑑𝐵

𝑑𝑡
in 𝑄
𝑇
,

∇ ⋅ 𝑢 = 0 in 𝑄
𝑇
,

𝑢 × 𝑛 = 0 on 𝑆
𝑇
,

(𝑢 (0) , 𝑢
𝑡
(0)) = 𝜉

0
in 𝐺

(44)

and find the solution 𝑢(𝑡); set 𝜉
2

= (𝑢(𝑇), 𝑢
𝑡
(𝑇)) ∈

𝐿
2
(Ω,F

𝑇
; 𝑋). This is an F

𝑇
-measurable random

variable.
(3) Find the distance of the uncontrolled solution 𝜉

2
from

the desired state 𝜉
1
and set 𝜉 = 𝜉

1
− 𝜉
2
. This is an

F
𝑇
-measurable random variable.

(4) According to Lemma 11, we can approximate 𝜉 by
F
𝑇−𝜏

-measurable random variable 𝜉
𝜀
such that

𝐸 (
󵄩󵄩󵄩󵄩𝜉 − 𝜉

𝜀

󵄩󵄩󵄩󵄩

2

𝑋
) <

𝜀

4
, (45)

𝐸 (
󵄩󵄩󵄩󵄩𝜉𝜀

󵄩󵄩󵄩󵄩

2

𝑋
) ≤ 𝐸 (

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝑋
) . (46)

We can take 𝜏 small sufficiently such that

0 < 𝜏 < min (1, 𝑇) , (47)

𝐶𝜏𝑀
2
<

𝜀

4
, (48)

where 𝐶 is the same as in (41) and𝑀
2
= 𝐸(‖𝜉‖

2

X).
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(5) From Lemma 10, we can find the solution 𝛼
∗ of the

equation Λ(𝛼) = 𝜉
𝜀
.

(6) Find the solution 𝑉
∗ of (34) with 𝛼 = 𝛼

∗.
(7) According to Lemma 8, we can obtain the solution 𝑢

∗

of (39) with 𝐹 = 𝑉
∗

𝑡
.

(8) Extend 𝑢
∗ to [0, 𝑇− 𝜏] such that 𝑢∗ = 0 for 𝑡 ∈ [0, 𝑇−

𝜏].
Then (𝑢

∗
, 𝑢
∗

𝑡
) ∈ 𝐿
2
(Ω,F

𝑇
; 𝐶([0, 𝑇]; 𝑋)) and (𝑢

∗
, 𝑢
∗

𝑡
)

is F
𝑡
-measurable for each 𝑡 ∈ [0, 𝑇]. Furthermore,

𝑢
∗ is a pathwise unique solution of the following

problem:

𝑢
∗

𝑡𝑡
+ ∇ × [∇ × 𝑢

∗
] = 𝑉
∗

𝑡
𝜒
(𝑇−𝜏,𝑇]

+ 𝑓𝑢
∗ 𝑑𝐵

𝑑𝑡
in 𝑄
𝑇
,

∇ ⋅ 𝑢
∗
= 0 in 𝑄

𝑇
,

𝑢
∗
× 𝑛 = 0 in 𝑆

𝑇
,

(𝑢
∗
(0) , 𝑢

∗

𝑡
(0)) = 0 in 𝐺,

(49)

where 𝜒
(𝑇−𝜏,𝑇]

is the characteristic function of the
time interval (𝑇 − 𝜏, 𝑇].

(9) Define𝑈 = 𝑉
∗

𝑡
𝜒
(𝑇−𝜏,𝑇]

−𝑊(𝑢+𝑢
∗
, 𝑢
𝑡
+𝑢
∗

𝑡
, ∇𝑢+∇𝑢

∗
),

where 𝑢 is the solution of (44).

Now we verify that 𝑈 is indeed a desired control for
system (1). It is obvious that𝑈 is an 𝐿

2
(𝐺)
3-valued predictable

process over {Ω,F,F
𝑡
, 𝑃} and 𝑈 ∈ 𝐿

2
(Ω,F

𝑇
; 𝐿
2
(𝑄
𝑇
)
3
). We

set𝐻 = 𝑢 + 𝑢
∗. Then𝐻 is a solution of (1). Furthermore,

(𝐻 (𝑇) ,𝐻
𝑡
(𝑇)) = 𝜉

2
+ (𝐿
∗
(𝑇) , 𝐿

∗

𝑡
(𝑇)) + (𝑧

∗
(𝑇) , 𝑧

∗

𝑡
(𝑇)) ,

(50)

where 𝐿∗ is the solution of (36) with 𝑉
𝑡
being replaced by 𝑉

∗

𝑡

such that (𝐿∗(𝑇), 𝐿∗
𝑡
(𝑇)) = 𝜉

𝜀
, and 𝑧

∗
= 𝑢
∗
− 𝐿
∗. Hence, by

virtue of (41), (45)–(48), we have

𝐸 (
󵄩󵄩󵄩󵄩(𝐻 (𝑇) ,𝐻

𝑡
(𝑇)) − 𝜉

1

󵄩󵄩󵄩󵄩

2

𝑋
)

= 𝐸 (
󵄩󵄩󵄩󵄩𝜉2 − 𝜉

1
+ (𝐿
∗
(𝑇) , 𝐿

∗

𝑡
(𝑇)) + (𝑧

∗
(𝑇) , 𝑧

∗

𝑡
(𝑇))

󵄩󵄩󵄩󵄩

2

𝑋
)

= 𝐸 (
󵄩󵄩󵄩󵄩𝜉𝜀 − 𝜉 + (𝑧

∗
(𝑇) , 𝑧

∗

𝑡
(𝑇))

󵄩󵄩󵄩󵄩

2

𝑋
)

≤ 2𝐸 ((
󵄩󵄩󵄩󵄩𝜉 − 𝜉

𝜀

󵄩󵄩󵄩󵄩

2

𝑋
)) + 2𝐸 (

󵄩󵄩󵄩󵄩𝑧
∗
(𝑇) , 𝑧

∗

𝑡
(𝑇)

󵄩󵄩󵄩󵄩

2

𝑋
) < 𝜀.

(51)

This completes the proof of Theorem 4.
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