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This paper investigates the problem of robust nonfragile fuzzy𝐻
∞
filtering for uncertain Takagi-Sugeno (T-S) fuzzy systems with

interval time-varying delays. Attention is focused on the design of a filter such that the filtering error system preserves a prescribed
𝐻

∞
performance, where the filter to be designed is assumed to have gain perturbations. By developing a delay decomposition

approach, both lower and upper bound information of the delayed plant states can be taken into full consideration; the proposed
delay-fractional-dependent stability condition for the filter error systems is obtained based on the direct Lyapunov method allied
with an appropriate and variable Lyapunov-Krasovskii functional choice and with tighter upper bound of some integral terms
in the derivation process. Then, a new robust nonfragile fuzzy 𝐻

∞
filter scheme is proposed, and a sufficient condition for the

existence of such a filter is established in terms of linear matrix inequalities (LMIs). Finally, some numerical examples are utilized
to demonstrate the effectiveness and reduced conservatism of the proposed approach.

1. Introduction

During the past several years, fuzzy systems of the T-S model
[1, 2] have attracted great interests from the stability and
control community [3]. It is well known that the problem of
𝐻
∞

filtering is both theoretically and practically important
in control and signal processing [4, 5]. The main advantage
of 𝐻

∞
filtering is that no statistical assumption on the noise

signals is needed and, thus, it is more general than classical
Kalman filtering [6]. Moreover, the 𝐻

∞
filter is designed

by minimizing signal estimation error for the bounded
disturbances and noises of the worst cases, which is more
robust than classical Kalman filtering [7, 8]. For the fuzzy𝐻

∞

filtering problem based on T-S fuzzymodels, some important
results have been obtained; see for example, [9–14], and the
references therein.

Among the literatures, An et al. [11] designed some 𝐻
∞

filters for uncertain systems with time-varying distributed
delays. In [12, 13], some new delay-dependent 𝐻

∞
filter

design schemes have been proposed for continuous-time T-
S fuzzy systems. Huang et al. [14] improved some existing

results on 𝐻
∞

filter design for T-S fuzzy systems with time
delay. And the 𝐻

∞
filter has been shown to be much more

robust against unmodeled dynamics [10]. Moreover, Li and
Gao [15] proposed a new comparison model by employing a
new approximation for delayed state, and then liftingmethod
and simple LK functional method are used to analyze the
scaled small gain of this comparison model and developed
reduced-order 𝐻

∞
filtering [16] and finite frequency 𝐻

∞

filtering [17] for discrete-time systems and for 2-D systems
[18], and then these new method can also be extended to T-S
fuzzy systems case.

On the other hand, the nonfragile control and filtering
problems have been attractive topics in theory analysis and
practical implement. The nonfragile concept is proposed
to this new problem: how to design a controller or filter
that will be insensitive to some error in gains [19–21]. For
the nonfragile filtering problem, some numerically effective
design methods have been obtained [21–31]. Yang et al. [21–
24] focused on the nonfragile filtering problem for linear
systems and fuzzy system, respectively. However, the time
delays are not considered [21–24]. Most recently, Chang
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and Yang [31] proposed the design of nonfragile 𝐻
∞

filter
for discrete-time T-S fuzzy systems with multiplicative gain
variations and investigated fuzzy modeling and control for
a class of inverted pendulum system in [32]; however, they
are also not considered as the time delay case. However, time
delay, as a source of instability and poor performance, often
appears in many dynamic systems, for example, chemical
process, biological systems, nuclear reactor, rolling mill sys-
tems and communication networks [2, 3], and networked
control systems. In particular, a special type of time delay,
interval time-varying delays, that is, ℎ

𝑎
≤ 𝜏(𝑡) ≤ ℎ

𝑏
and ℎ

𝑎
,

is not restricted to be zero in practical engineering systems
as NCS. Xia and Li [30] concerned with the nonfragile 𝐻

∞

filter design problem for uncertain discrete-time T-S fuzzy
systems with time delay, whereas the delay is constant case.
Li et al. [26] investigated the problem of nonfragile robust
𝐻
∞

filtering for a class of T-S fuzzy time-delay systems,
whereas the delay is limited to 0 ≤ 𝜏(𝑡) ≤ ℎ and ̇𝜏(𝑡) ≤

𝜇 < 1. Moreover, when ̇𝜏(𝑡) ≤ 𝜇 < 1, which does not
allow the fast time-varying delay, the restriction will limit the
application scope. Therefore, the robust nonfragile fuzzy𝐻

∞

filtering for uncertain nonlinear systems via T-S fuzzymodels
with interval time-varying delays has not only important
theoretical interest but also practical value. And, to best of
our knowledge, few results on robust nonfragile fuzzy 𝐻

∞

filtering for the above fuzzy systems have been reported in
the literatures. This motivates the present research.

In this paper, we will investigate the problem of robust
nonfragile fuzzy 𝐻

∞
filter designs for uncertain T-S fuzzy

systems with interval time-varying delays. Our objective is
to design a fuzzy 𝐻

∞
filter with the gain perturbations such

that the filtering error system is asymptotically stable with
a prescribed 𝐻

∞
performance. Firstly, based on the Lya-

punov stability theory and Finsler lemma, a delay-fractional-
dependent sufficient condition is derived since a new LK
functional is constructed by developing a variable delay-
decomposition method and estimating tightly the upper
bound of its derivative through some improved inequalities
techniques. Then, based on the above conditions, a sufficient
condition for the solvability of the aforementioned system is
developed in terms of LMIs. Finally, some numerical exam-
ples are provided to illustrate the feasibility and advantage of
the proposed design method.

2. Problem Formulation

Consider a nonlinear system with interval time-varying
delays which could be approximated by a time-delay T-S
fuzzy model with 𝑟 plant rules.

Plant Rule 𝑖. IF 𝜃
1
(𝑡) is𝑁

𝑖1
and . . . and 𝜃

𝑝
(𝑡) is𝑁

𝑖𝑝
, THEN

�̇� (𝑡) = 𝐴
𝑖
(𝑡) 𝑥 (𝑡) + 𝐴

𝜏𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵

𝑖
(𝑡) 𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
(𝑡) 𝑥 (𝑡) + 𝐶

𝜏𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐷

𝑖
(𝑡) 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿
𝑖
(𝑡) 𝑥 (𝑡) + 𝐿

𝜏𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐺

𝑖
(𝑡) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−ℎ
𝑏
, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; 𝑦(𝑡) ∈ R𝑚 is the
measurement vector; 𝑤(𝑡) ∈ R𝑞 is the disturbance signal
vector which belongs to 𝐿

2
[0,∞); 𝑧(𝑡) ∈ R𝑝 is the signal

vector to be estimated; 𝜙(𝑡) is the continuous initial vector
function defined on [−ℎ

𝑏
, 0]; 𝜃

1
(𝑡), 𝜃

2
(𝑡), . . . , 𝜃

𝑝
(𝑡) denote the

premise variables; and 𝑁
𝑖1
, 𝑁

𝑖2
, . . . , 𝑁

𝑖𝑝
represent the fuzzy

sets, 𝑖 = 1, 2, . . . , 𝑟, and 𝑟 is the number of IF-THEN rules.
In what follows, we define 𝜏 := ℎ

𝑏
− ℎ

𝑎
for brevity, and we

denote the coefficient matrices of system (1) as

𝜒
𝑖
(𝑡) =

[

[

𝐴
𝑖
(𝑡) , 𝐴

𝜏𝑖
(𝑡) , 𝐵

𝑖
(𝑡)

𝐶
𝑖
(𝑡) , 𝐶

𝜏𝑖
(𝑡) , 𝐷

𝑖
(𝑡)

𝐿
𝑖
(𝑡) , 𝐿

𝜏𝑖
(𝑡) , 𝐺

𝑖
(𝑡)

]

]

:=
[

[

𝐴
𝑖
, 𝐴

𝜏𝑖
, 𝐵

𝑖

𝐶
𝑖
, 𝐶

𝜏𝑖
, 𝐷

𝑖

𝐿
𝑖
, 𝐿

𝜏𝑖
, 𝐺

𝑖

]

]

+
[

[

Δ𝐴
𝑖
, Δ𝐴

𝜏𝑖
, Δ𝐵

𝑖

Δ𝐶
𝑖
, Δ𝐶

𝜏𝑖
, Δ𝐷

𝑖

Δ𝐿
𝑖
, Δ𝐿

𝜏𝑖
, Δ𝐺

𝑖

]

]

:=
[

[

𝐴
𝑖
, 𝐴

𝜏𝑖
, 𝐵

𝑖

𝐶
𝑖
, 𝐶

𝜏𝑖
, 𝐷

𝑖

𝐿
𝑖
, 𝐿

𝜏𝑖
, 𝐺

𝑖

]

]

+
[

[

𝐷
1𝑖

𝐷
2𝑖

𝐷
3𝑖

]

]

𝐹
1𝑖
(𝑡) [𝐸

1𝑖
𝐸
2𝑖
𝐸
3𝑖
] ,

(2)

where 𝐴
𝑖
, 𝐴

𝜏𝑖
, 𝐵

𝑖
, 𝐶

𝑖
, 𝐶

𝜏𝑖
, 𝐷

𝑖
, 𝐿

𝑖
, 𝐿

𝜏𝑖
, 𝐺

𝑖
denotes the

nominal part of 𝜒
𝑖
(𝑡), and the uncertainty is con-

sidered as time varying but norm bounded; that is, Δ𝐴
𝑖
,

Δ𝐴
𝜏𝑖
, Δ𝐵

𝑖
, Δ𝐶

𝑖
, Δ𝐶

𝜏𝑖
, Δ𝐷

𝑖
, Δ𝐿

𝑖
, Δ𝐿

𝜏𝑖
, Δ𝐺

𝑖
stands for the

uncertain part, 𝐷
𝑘𝑖
, 𝐸

𝑘𝑖
(𝑘 = 1, 2, 3; 𝑖 = 1, 2, . . . , 𝑟) are

constant real matrices, and 𝐹
1𝑖
(𝑡) are unknown time-varying

matrices satisfying 𝐹𝑇
1𝑖
(𝑡)𝐹

1𝑖
(𝑡) ≤ 𝐼.

The time-varying delay 𝜏(𝑡) is assumed to be either
differentiable case satisfiedwith 0 < ℎ

𝑎
≤ 𝜏(𝑡) ≤ ℎ

𝑏
, ̇𝜏(𝑡) ≤ ℎ

𝑑
,

where ℎ
𝑑
are given bounds, or fast-varying case (i.e., 0 < ℎ

𝑎
≤

𝜏(𝑡) ≤ ℎ
𝑏
, but no constraints on the delay derivatives, ℎ

𝑑
is

unknown).
Let ℎ

𝑖
(𝜃(𝑡)) = 𝜇

𝑖
(𝜃(𝑡))/∑

𝑟

𝑖=1
𝜇
𝑖
(𝜃(𝑡)), 𝜇

𝑖
(𝜃(𝑡)) =

∏
𝑝

𝑗=1
𝑁
𝑖𝑗
(𝜃

𝑗
(𝑡)), in which 𝑁

𝑖𝑗
(𝜃

𝑗
(𝑡)) is the membership func-

tion of 𝜃
𝑗
(𝑡) in 𝑁

𝑖𝑗
. It is assumed that 𝜇

𝑖
(𝜃(𝑡)) ≥ 0, and then

∑
𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡)) = 1. By fuzzy blending, the final output of the

fuzzy system (1) is inferred as follows:

�̇� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) [𝐴

𝑖
(𝑡) 𝑥 (𝑡) + 𝐴

𝜏𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐵
𝑖
(𝑡) 𝑤 (𝑡) ] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) [𝐶

𝑖
(𝑡) 𝑥 (𝑡) + 𝐶

𝜏𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

+𝐷
𝑖
(𝑡) 𝑤 (𝑡) ] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) [𝐿

𝑖
(𝑡) 𝑥 (𝑡) + 𝐿

𝜏𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

+𝐺
𝑖
(𝑡) 𝑤 (𝑡) ] ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−ℎ
𝑏
, 0] .

(3)
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Motivated by the parallel distributed compensation
(PDC), in this paper, we consider the following full order
nonfragile fuzzy𝐻

∞
filter.

Rule 𝑗. IF 𝜃
1
(𝑡) is𝑁

𝑗1
and . . . and 𝜃

𝑝
(𝑡) is𝑁

𝑗𝑝
, THEN

�̇�
𝑓
(𝑡) = (𝐴

𝑓𝑗
+ Δ𝐴

𝑓𝑗
) 𝑥

𝑓
(𝑡) + (𝐵

𝑓𝑗
+ Δ𝐵

𝑓𝑗
) 𝑦 (𝑡) ,

𝑥
𝑓
(0) = 0,

𝑧
𝑓
(𝑡) = (𝐶

𝑓𝑗
+ Δ𝐶

𝑓𝑗
) 𝑥

𝑓
(𝑡) + (𝐷

𝑓𝑗
+ Δ𝐷

𝑓𝑗
) 𝑦 (𝑡) ,

(𝑗 = 1, 2, . . . , 𝑟) ,

(4)

where 𝑥
𝑓
(𝑡) ∈ R𝑛 and 𝑧

𝑓
(𝑡) ∈ R𝑝 are the state and output of

the filter, respectively. The filter matrices 𝐴
𝑓𝑗
∈ R𝑛×𝑛

, 𝐵
𝑓𝑗
∈

R𝑛×𝑚

, 𝐶
𝑓𝑗

∈ R𝑝×𝑛

, 𝐷
𝑓𝑗

∈ R𝑝×𝑚 are to be determined,
and [Δ𝐴

𝑓𝑗
Δ𝐵

𝑓𝑗
] := 𝐷

4𝑗
𝐹
2𝑗
(𝑡) [𝐸

4𝑗
𝐸
5𝑗
], [Δ𝐶

𝑓𝑗
Δ𝐷

𝑓𝑗
] :=

𝐷
5𝑗
𝐹
3𝑗
(𝑡) [𝐸

6𝑗
𝐸
7𝑗
] denotes the time-varying parameters of

fuzzy𝐻
∞

filter, and 𝐹
2𝑗
(𝑡), 𝐹

3𝑗
(𝑡) are unknown time-varying

matrices satisfying 𝐹𝑇
𝑘𝑗
(𝑡)𝐹

𝑘𝑗
(𝑡) ≤ 𝐼, (𝑘 = 2, 3). For simplicity,

we define 𝐴
𝑓𝑗
(𝑡) = 𝐴

𝑓𝑗
+ Δ𝐴

𝑓𝑗
; 𝐵

𝑓𝑗
(𝑡) = 𝐵

𝑓𝑗
+ Δ𝐵

𝑓𝑗
; 𝐶

𝑓𝑗
(𝑡) =

𝐶
𝑓𝑗
+ Δ𝐶

𝑓𝑗
; and𝐷

𝑓𝑗
(𝑡) = 𝐷

𝑓𝑗
+ Δ𝐷

𝑓𝑗
. The defuzzified output

of fuzzy filter system (4) is inferred as follows:

�̇�
𝑓
(𝑡) =

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [𝐴

𝑓𝑗
(𝑡) 𝑥

𝑓
(𝑡) + 𝐵

𝑓𝑗
(𝑡) 𝑦 (𝑡)] ,

𝑥
𝑓
(0) = 0,

𝑧
𝑓
(𝑡) =

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [𝐶

𝑓𝑗
(𝑡) 𝑥

𝑓
(𝑡) + 𝐷

𝑓𝑗
(𝑡) 𝑦 (𝑡)] .

(5)

Defining the augmented state vector 𝑥(𝑡) :=

col {𝑥(𝑡) 𝑥
𝑓
(𝑡)}, 𝑒(𝑡) := 𝑧(𝑡) − 𝑧

𝑓
(𝑡), and 𝐸 = [𝐼 0],

we can obtain the following filtering error system:

̇
�̃� (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐴

𝜏
(𝑡) 𝐸𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵 (𝑡) 𝑤 (𝑡) ,

𝑒 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) + 𝐶
𝜏
(𝑡) 𝐸𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐷 (𝑡) 𝑤 (𝑡) ,

𝑥 (𝑡) = col {𝜙 (𝑡) 0} , ∀𝑡 ∈ [−ℎ
𝑏
, 0] ,

(6)

where

[

𝐴 (𝑡) 𝐴
𝜏
(𝑡) 𝐵 (𝑡)

𝐶 (𝑡) 𝐶
𝜏
(𝑡) 𝐷 (𝑡)

]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑡) ℎ

𝑗
(𝑡) [

𝐴 (𝑡) 𝐴
𝜏
(𝑡) 𝐵 (𝑡)

𝐶 (𝑡) 𝐶
𝜏
(𝑡) 𝐷 (𝑡)

] ,

𝐴 (𝑡) = [

𝐴
𝑖
+ Δ𝐴

𝑖
(𝑡) 0

𝐵
𝑓𝑗
(𝐶

𝑖
+ Δ𝐶

𝑖
(𝑡)) 𝐴

𝑓𝑗

]

+ [

0 0

Δ𝐵
𝑓𝑗
(𝑡) (𝐶

𝑖
+ Δ𝐶

𝑖
(𝑡)) Δ𝐴

𝑓𝑗
(𝑡)
] ,

𝐴
𝜏
(𝑡) = [

𝐴
𝜏𝑖
+ Δ𝐴

𝜏𝑖
(𝑡)

𝐵
𝑓𝑗
(𝐶

𝜏𝑖
+ Δ𝐶

𝜏𝑖
(𝑡))

]

+ [

0

Δ𝐵
𝑓𝑗
(𝑡) (𝐶

𝜏𝑖
+ Δ𝐶

𝜏𝑖
(𝑡))

] ,

𝐵 (𝑡) = [

𝐵
𝑖
+ Δ𝐵

𝑖
(𝑡)

𝐵
𝑓𝑗
(𝐷

𝑖
+ Δ𝐷

𝑖
(𝑡))

]

+ [

0

Δ𝐵
𝑓𝑗
(𝑡) (𝐷

𝑖
+ Δ𝐷

𝑖
(𝑡))

] ,

𝐶 (𝑡) = [(𝐿
𝑖
+ Δ𝐿

𝑖
(𝑡)) − 𝐷

𝑓𝑗
(𝐶

𝑖
+ Δ𝐶

𝑖
(𝑡)) −𝐶

𝑓𝑗
]

+ [−Δ𝐷
𝑓𝑗
(𝑡) (𝐶

𝑖
+ Δ𝐶

𝑖
(𝑡)) −Δ𝐶

𝑓𝑗
(𝑡)] ,

𝐶
𝜏
(𝑡) = [(𝐿

𝜏𝑖
+ Δ𝐿

𝜏𝑖
(𝑡)) − 𝐷

𝑓𝑗
(𝐶

𝜏𝑖
+ Δ𝐶

𝜏𝑖
(𝑡))]

+ [−Δ𝐷
𝑓𝑗
(𝑡) (𝐶

𝜏𝑖
+ Δ𝐶

𝜏𝑖
(𝑡))] ,

𝐷 (𝑡) = [(𝐺
𝑖
+ Δ𝐺

𝑖
(𝑡)) − 𝐷

𝑓𝑗
(𝐷

𝑖
+ Δ𝐷

𝑖
(𝑡))]

+ [−Δ𝐷
𝑓𝑗
(𝑡) (𝐷

𝑖
+ Δ𝐷

𝑖
(𝑡))] .

(7)

Then the robust fuzzy 𝐻
∞

filter design problem to be
addressed in this paper can be expressed as follows.

Robust Nonfragile Fuzzy𝐻
∞

Filtering Problem. Given uncer-
tain fuzzy system (3), design a suitable robust nonfragile
fuzzy filter in the form of (5) such that the following two
requirements are satisfied simultaneously:

(R1) the filtering error system (6) with 𝑤(𝑡) ≡ 0 is
asymptotically stable;

(R2) the 𝐻
∞

performance ‖𝑒‖
2
< 𝛾‖𝑤‖

2
is guaranteed for

all nonzero 𝑤(𝑡) ∈ 𝐿
2
[0,∞) and a prescribed 𝛾 > 0

under zero initial condition.
The following lemmas will be useful in establishing our

main results.

Lemma 1 (integral inequalities, Gu et al. [3] and Zhang et al.
[33]). Let 𝑥(𝑡) ∈ R𝑛 be a vector-valued function with first-
order continuous-derivative entries. Then, for any matrices
𝑀,𝑁 ∈ R𝑛×𝑛, 𝑍 ∈ R2𝑛×2𝑛, 𝑋 = 𝑋

𝑇

∈ R𝑛×𝑛, and some given
scalars 0 ≤ 𝜏

1
< 𝜏

2
, the following integral inequality holds.

(1) When𝑋 > 0 and 𝜏
1
, 𝜏

2
are constant values,

(𝜏
2
− 𝜏

1
) ∫

𝑡−𝜏
1

𝑡−𝜏
2

𝑥
𝑇

(𝑠)𝑋𝑥 (𝑠) 𝑑𝑠

≥ ∫

𝑡−𝜏
1

𝑡−𝜏
2

𝑥
𝑇

(𝑠) 𝑑𝑠𝑋∫

𝑡−𝜏
1

𝑡−𝜏
2

𝑥 (𝑠) 𝑑𝑠,

− (𝜏
2
− 𝜏

1
) ∫

𝑡−𝜏
1

𝑡−𝜏
2

�̇�
𝑇

(𝑠)𝑋�̇� (𝑠) 𝑑𝑠

≤ [

𝑥 (𝑡 − 𝜏
1
)

𝑥 (𝑡 − 𝜏
2
)
]

𝑇

[

−𝑋 𝑋

∗ −𝑋
][

𝑥 (𝑡 − 𝜏
1
)

𝑥 (𝑡 − 𝜏
2
)
] .

(8)
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(2) When𝑋 > 0 and 𝜏
1
, 𝜏

2
are time-varying, ℎ = 𝜏

2
−𝜏

1
:=

ℎ(𝑡) ≥ 0,

− ∫

𝑡−𝜏
1

𝑡−𝜏
2

�̇�
𝑇

(𝑠)𝑋�̇� (𝑠) 𝑑𝑠

≤ [

𝑥 (𝑡 − 𝜏
1
)

𝑥 (𝑡 − 𝜏
2
)
]

𝑇

{[

𝑀 +𝑀
𝑇

−𝑀 +𝑁
𝑇

∗ −𝑁 −𝑁
𝑇
]

+ℎ [

𝑀

𝑁
]𝑋

−1

[𝑀
𝑇

𝑁
𝑇

]} × [

𝑥 (𝑡 − 𝜏
1
)

𝑥 (𝑡 − 𝜏
2
)
] .

(9)

(3) When 𝜏
1
, 𝜏

2
are time-varying, ℎ = 𝜏

2
− 𝜏

1
:= ℎ(𝑡) ≥ 0,

and 𝑋 is any symmetric matrix,

− ∫

𝑡−𝜏
1

𝑡−𝜏
2

�̇�
𝑇

(𝑠)𝑋�̇� (𝑠) 𝑑𝑠

≤ [

𝑥(𝑡 − 𝜏
1
)

𝑥(𝑡 − 𝜏
2
)
]

𝑇

{[

𝑀 +𝑀
𝑇

−𝑀 +𝑁
𝑇

∗ −𝑁 −𝑁
𝑇
] + ℎ𝑍}[

𝑥 (𝑡 − 𝜏
1
)

𝑥 (𝑡 − 𝜏
2
)
]

(10)

with [𝑋 𝑌

∗ 𝑍
] ≥ 0 and 𝑌 = [𝑀 𝑁].

Lemma 2 (Wang et al. [34]). Let 𝐺, 𝐿, 𝐸, and 𝐹(𝑡) be real
matrices of appropriate dimensions with 𝐹(𝑡) being a matrix
function satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼. Then, for any scalar
𝜀 > 0, we have 𝐿𝐹(𝑡)𝐸 + 𝐸𝑇𝐹𝑇(𝑡)𝐿𝑇 ≤ 𝜀

−1

𝐿𝐿
𝑇

+ 𝜀𝐸
𝑇

𝐸.
Furthermore, for any scalar 𝜀 > 0 such that 𝐼 − 𝜀𝐸𝑇𝐸 > 0,
we have [𝐺 + 𝐿𝐹(𝑡)𝐸][𝐺𝑇

+ 𝐸
𝑇

𝐹
𝑇

(𝑡)𝐿
𝑇

] ≤ 𝜀
−1

𝐿𝐿
𝑇

+ 𝐺
𝑇

(𝐼 −

𝜀𝐸
𝑇

𝐸)𝐺.

3. Main Results

In this section, we provide a delay-fractional-dependent
sufficient condition for the solvability of robust nonfragile
fuzzy 𝐻

∞
filtering problem for the system (1), which is

formulated in the previous section.
The following proposition will be useful in establishing

our main results.

Proposition 3. For real matrices 𝑃
1
, 𝑃

2
, 𝐴, 𝐴

𝜏
, 𝐵 and 𝐷

𝑖
, 𝑋

𝑗
,

(𝑗 = 1, 2, . . . , 8; 𝑖 = 1, 2, . . . , 14) with compatible dimensions,
the following inequalities are equivalent, where 𝑈 is an extra
slack nonsingular matrix:

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1
Ξ
2
𝐷
2
0 0 0 𝐴

𝑇

𝑃
1
𝐵 + 𝑃

𝑇

2
𝐵 𝑋

1

∗ Ξ
3
0 𝐷

4
𝐷
5
𝐷
6

𝐴
𝑇

𝜏
𝑃
1
𝐵 𝑋

2

∗ ∗ 𝐷
7
𝐷
8

0 0 0 𝑋
3

∗ ∗ ∗ 𝐷
9
𝐷
10

0 0 𝑋
4

∗ ∗ ∗ ∗ 𝐷
11
𝐷
12

0 𝑋
5

∗ ∗ ∗ ∗ ∗ 𝐷
13

0 𝑋
6

∗ ∗ ∗ ∗ ∗ ∗ 𝐵
𝑇

𝑃
1
𝐵 + 𝐷

14
𝑋
7

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑋
8

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
1
− 𝐻𝑒 {𝑈} 𝑃

2
+ 𝑈𝐴 𝑈𝐴

𝜏
0 0 0 0 𝑈𝐵 0

∗ 𝐷
1

0 𝐷
2
0 0 0 0 𝑋

1

∗ ∗ 𝐷
3

0 𝐷
4
𝐷
5
𝐷
6

0 𝑋
2

∗ ∗ ∗ 𝐷
7
𝐷
8

0 0 0 𝑋
3

∗ ∗ ∗ ∗ 𝐷
8
𝐷
9

0 0 𝑋
4

∗ ∗ ∗ ∗ ∗ 𝐷
10
𝐷
12

0 𝑋
5

∗ ∗ ∗ ∗ ∗ ∗ 𝐷
13

0 𝑋
6

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝐷
14
𝑋
7

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑋
8

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(11)

where Ξ
1
= 𝐴

𝑇

𝑃
1
𝐴 + 𝐻𝑒{𝑃

𝑇

2
𝐴} + 𝐷

1
, Ξ

2
= 𝐴

𝑇

𝑃
1
𝐴
𝜏
+

𝑃
𝑇

2
𝐴
𝜏
, Ξ

3
= 𝐴

𝑇

𝜏
𝑃
1
𝐴
𝜏
+ 𝐷

3
.

Proof. See the Appendix.

Then, we divide the delay interval [0, ℎ
𝑎
] and [ℎ

𝑎
, ℎ

𝑏
] into

four segments: [ℎ
𝑖−1
, ℎ

𝑖
], 𝑖 = 1, 2, 3, 4, where ℎ

0
= 0, ℎ

1
=

ℎ
𝑎
/2, ℎ

2
= ℎ

𝑎
, ℎ

3
= ℎ

𝑎
+𝛼𝜏, ℎ

4
= ℎ

𝑏
, 0 < 𝛼 < 1. For simplicity,

we denote 𝜏
𝑖
= ℎ

𝑖
− ℎ

𝑖−1
, 𝑟

𝑖
= ℎ

2

𝑖
− ℎ

2

𝑖−1
, (𝑖 = 1, 2, 3, 4), and

𝜏
0
= ℎ

𝑎
− 0. For the T-S fuzzy filter error system (6), based

on the Lyapunov stability theorem, we will give a sufficient
condition for the solvability of the fuzzy filter design problem

for the system (1) by using the novel delay decomposition
approach.

Theorem 4. Given scalars 0 < ℎ
𝑎
≤ ℎ

𝑏
, 0 < 𝛼 < 1, ℎ

𝑑
and

𝛾 > 0, the𝐻
∞
filter error system (6), for all differentiable delay

𝜏(𝑡) ∈ [ℎ
𝑎
, ℎ

𝑏
]with ̇𝜏(𝑡) ≤ ℎ

𝑑
, is asymptotically stable and has a

prescribed𝐻
∞
performance level 𝛾 if there exist real symmetric

matrices, 𝑄
𝑘
≥ 0, 𝑅

𝑘
≥ 0, (𝑘 = 1, 2, 3, 4), 𝑄

𝜏
≥ 0, 𝑅

𝜏
≥ 0,

𝑃 = [
𝑃
1
𝑃
2

∗ 𝑃
3

] > 0, 𝑆 = [
𝑆
1
𝑆
2

∗ 𝑆
3

] > 0, the nonsingular matrix
𝑈 = [

𝑈
1
0

𝑈
2
𝑈
3

] and matrices 𝑍
𝑚
= [

𝑍
𝑚1

𝑍
𝑚2

∗ 𝑍
𝑚3

] , (𝑚 = 1, 2),
A

𝑓𝑗
,B

𝑓𝑗
,C

𝑓𝑗
,D

𝑓𝑗
,𝑀

𝑙
, 𝑁

𝑙
with appropriate dimensions, and
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positive scalars 𝜀
𝑙𝑖𝑗
, 𝜀
5𝑖𝑗
, (𝑙 = 1, 2, 3, 4; 𝑖, 𝑗 = 1, 2, . . . , 𝑟), such

that the inequalities in (12) hold:

[

[

Π
𝑚

𝑘𝑘
+ Θ

𝑘𝑘
Γ
1

𝑘𝑘
Γ
2

𝑘𝑘

∗ −𝜀
1𝑘𝑘
𝐼 0

∗ ∗ −𝜀
2𝑘𝑘
𝐼

]

]

< 0,

(𝑚 = 1, 2, 3, 4; 𝑘 = 1, 2, . . . , 𝑟) ,

[

[

[

[

[

[

Π
𝑚

𝑖𝑗
+ Θ

𝑖𝑗
+ Π

𝑚

𝑗𝑖
+ Θ

𝑗𝑖
Γ
1

𝑖𝑗
Γ
2

𝑖𝑗
Γ
1

𝑗𝑖
Γ
2

𝑗𝑖

∗ −𝜀
1𝑖𝑗
𝐼 0 0 0

∗ ∗ −𝜀
2𝑖𝑗
𝐼 0 0

∗ ∗ ∗ −𝜀
1𝑗𝑖
𝐼 0

∗ ∗ ∗ ∗ −𝜀
2𝑗𝑖
𝐼

]

]

]

]

]

]

< 0, (𝑚 = 1, 2, 3, 4; 0 < 𝑖 < 𝑗 ≤ 𝑟) ,

𝐼 − 𝜀
3𝑖𝑗
Γ
3

𝑖𝑗
(Γ

3

𝑖𝑗
)

𝑇

> 0, 𝐼 − 𝜀
5𝑖𝑗
Γ
5

𝑖𝑗
(Γ

5

𝑖𝑗
)

𝑇

> 0,

(0 < 𝑖, 𝑗 ≤ 𝑟) ,

[

𝜏
3
𝑅
3
+ (1 − ℎ

𝑑
) 𝑅

𝜏
[𝑀

1
𝑁
1
]

∗ 𝑍
1

] ≥ 0,

[

𝜏
4
𝑅
4
+ (1 − ℎ

𝑑
) 𝑅

𝜏
[𝑀

4
𝑁
4
]

∗ 𝑍
2

] ≥ 0,

(12)

where

Π
1

𝑖𝑗
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
1

1
− 𝐻𝑒 {𝑈} 𝑃

2
+ Π

1
Π
2

0 0 0 0 Π
3

0

∗ Λ
1

0 Λ
2
0 0 0 0 Π

4

∗ ∗ Λ
3
0 Λ

4
Λ

5
0 0 Π

5

∗ ∗ ∗ Λ
6
Λ

7
0 0 0 0

∗ ∗ ∗ ∗ Λ
8
0 0 0 0

∗ ∗ ∗ ∗ ∗ Λ
9
Λ

10
0 0

∗ ∗ ∗ ∗ ∗ ∗ Λ
11

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ
12
Π
6

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Π
2

𝑖𝑗
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
2

1
− 𝐻𝑒 {𝑈} 𝑃

2
+ Π

1
Π
2

0 0 0 0 Π
3

0 0

∗ Λ
1

0 Λ
2
0 0 0 0 Π

4
0

∗ ∗ Λ
2

3
0 Λ

2

4
Λ

5
0 0 Π

5
𝜏
3
𝑀

2

∗ ∗ ∗ Λ
6
Λ

7
0 0 0 0 0

∗ ∗ ∗ ∗ Λ
2

8
0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Λ
9
Λ

10
0 0 𝜏

3
𝑁
2

∗ ∗ ∗ ∗ ∗ ∗ Λ
11

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ
12
Π
6

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Π
3

𝑖𝑗
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
3

1
− 𝐻𝑒 {𝑈} 𝑃

2
+ Π

1
Π
2

0 0 0 0 Π
3

0 0

∗ Λ
1

0 Λ
2
0 0 0 0 Π

4
0

∗ ∗ Λ
3

3
0 0 Λ

3

4
Λ
3

5
0 Π

5
𝜏
4
𝑁
3

∗ ∗ ∗ Λ
6
Λ

7
0 0 0 0 0

∗ ∗ ∗ ∗ Λ
3

8
Λ
3

9
0 0 0 0

∗ ∗ ∗ ∗ ∗ Λ
3

10
0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Λ
3

11
0 0 𝜏

4
𝑀

3

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ
12
Π
6

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
4

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Π
4

𝑖𝑗
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
4

1
− 𝐻𝑒 {𝑈} 𝑃

2
+ Π

1
Π
2

0 0 0 0 Π
3

0

∗ Λ
1

0 Λ
2
0 0 0 0 Π

4

∗ ∗ Λ
4

3
0 0 Λ

3

4
Λ
4

5
0 Π

5

∗ ∗ ∗ Λ
6
Λ

7
0 0 0 0

∗ ∗ ∗ ∗ Λ
3

8
Λ
3

9
0 0 0

∗ ∗ ∗ ∗ ∗ Λ
3

10
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Λ
4

11
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ
12
Π
6

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,
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Θ
𝑖𝑗
= 𝜀

1𝑖𝑗
(Υ

1

𝑖𝑗
)

𝑇

Υ
1

𝑖𝑗
+ 𝜀

−1

4𝑖𝑗
Γ
2

𝑖𝑗
(Γ

2

𝑖𝑗
)

𝑇

+ 𝜀
2𝑖𝑗
𝜀
−1

3𝑖𝑗
(Υ

3

𝑖𝑗
)

𝑇

Υ
3

𝑖𝑗
+ 𝜀

2𝑖𝑗
(Υ

2

𝑖𝑗
)

𝑇

[𝐼 − 𝜀
3𝑖𝑗
Γ
3

𝑖𝑗
(Γ

3

𝑖𝑗
)

𝑇

]

−1

Υ
2

𝑖𝑗

+ 𝜀
4𝑖𝑗
𝜀
−1

5𝑖𝑗
(Υ

5

𝑖𝑗
)

𝑇

Υ
5

𝑖𝑗
+ 𝜀

4𝑖𝑗
(Υ

4

𝑖𝑗
)

𝑇

[𝐼 − 𝜀
5𝑖𝑗
Γ
5

𝑖𝑗
(Γ

5

𝑖𝑗
)

𝑇

]

−1

Υ
4

𝑖𝑗
,

(13)

with

𝑃
1

1
= 𝑃

2

1
= (

4

∑

𝑖=1

𝑅
𝑖
+ 𝜏

3
𝑅
𝜏
0

0 0

) ,

𝑃
3

1
= 𝑃

4

1
= (

4

∑

𝑖=1

𝑅
𝑖
+ 𝜏

4
𝑅
𝜏
0

0 0

) , 𝑃
2
= 𝑃,

Π
1
= (

𝑈
1
𝐴
𝑖

0

𝑈
2
𝐴
𝑖
+B

𝑓𝑗
𝐶
𝑖
A

𝑓𝑗

) ,

Π
2
= (

𝑈
1
𝐴
𝜏𝑖

𝑈
2
𝐴
𝜏𝑖
+B

𝑓𝑗
𝐶
𝜏𝑖

) ,

Π
3
= (

𝑈
1
𝐵
𝑖

𝑈
2
𝐵
𝑖
+B

𝑓𝑗
𝐷
𝑖

) , Π
4
= (

𝐿
𝑇

𝑖
− 𝐶

𝑇

𝑖
D𝑇

𝑓𝑗

−C𝑇

𝑓𝑗

) ,

Π
5
= (𝐿

𝑇

𝜏𝑖
− 𝐶

𝑇

𝜏𝑖
D𝑇

𝑓𝑗
) , Π

6
= (𝐺

𝑇

𝑖
− 𝐷

𝑇

𝑖
D𝑇

𝑓𝑗
) ,

Λ
1
= (

𝑄
1
+ 𝑆

1
− 𝑅

1
0

0 0
) , Λ

2
= (

𝑆
2
+ 𝑅

1

0
) ,

Λ
3
= − (1 − ℎ

𝑑
) 𝑄

𝜏
− 𝑁

1
− 𝑁

𝑇

1
+ 𝜏

3
(𝑀

2
+𝑀

𝑇

2
) + 𝜏

3
𝑍
13
,

Λ
4
= −𝑀

𝑇

1
+ 𝑁

1
+ 𝜏

3
𝑍
𝑇

12
, Λ

5
= 𝜏

3
(−𝑀

2
+ 𝑁

𝑇

2
) ,

Λ
6
= 𝑄

2
− 𝑄

1
+ 𝑆

2
− 𝑆

1
− 𝑅

1
− 𝑅

2
,

Λ
7
= −𝑆

2
+ 𝑅

2
,

Λ
8
= 𝑄

3
− 𝑄

2
+ 𝑄

𝜏
− 𝑆

3
− 𝑅

2
+ 𝜏

3
𝑍
11
+𝑀

1
+𝑀

𝑇

1
,

Λ
9
= 𝑄

4
− 𝑄

3
− 𝑅

4
− 𝜏

3
(𝑁

2
+ 𝑁

𝑇

2
) ,

Λ
10
= 𝑅

4
, Λ

11
= −𝑄

4
− 𝑅

4
,

Λ
12
= −𝛾

2

𝐼,

Λ
2

3
= − (1 − ℎ

𝑑
) 𝑄

𝜏
− 𝑁

1
− 𝑁

𝑇

1
+ 𝜏

3
(𝑀

2
+𝑀

𝑇

2
) ,

Λ
2

4
= −𝑀

𝑇

1
+ 𝑁

1
,

Λ
2

8
= 𝑄

3
− 𝑄

2
+ 𝑄

𝜏
− 𝑆

3
− 𝑅

2
+𝑀

1
+𝑀

𝑇

1
,

Λ
3

3
= − (1 − ℎ

𝑑
) 𝑄

𝜏
+𝑀

4
+𝑀

𝑇

4
− 𝜏

4
(𝑁

3
+ 𝑁

𝑇

3
) ,

Λ
3

4
= 𝜏

4
(−𝑀

3
+ 𝑁

𝑇

3
) , Λ

3

5
= −𝑀

4
+ 𝑁

𝑇

4
,

Λ
3

8
= 𝑄

3
− 𝑄

2
+ 𝑄

𝜏
− 𝑆

3
− 𝑅

2
+ 𝑅

3
,

Λ
3

9
= 𝑅

3
,

Λ
3

10
= 𝑄

4
− 𝑄

3
− 𝑅

3
+ 𝜏

4
(𝑀

3
+𝑀

𝑇

3
) ,

Λ
3

11
= −𝑄

4
− 𝑁

4
− 𝑁

𝑇

4
,

Λ
4

3
= − (1 − ℎ

𝑑
) 𝑄

𝜏
+𝑀

4
+𝑀

𝑇

4
− 𝜏

4
(𝑁

3
+ 𝑁

𝑇

3
) + 𝜏

4
𝑍
21
,

Λ
4

5
= −𝑀

4
+𝑀

𝑇

4
+ 𝜏

4
𝑍
22
,

Λ
4

11
= −𝑄

4
− 𝑁

4
− 𝑁

𝑇

4
+ 𝜏

4
𝑍
23
,

Γ
1

𝑖𝑗
= [(

𝑈
1
𝐷
1𝑖

0

𝑈
2
𝐷
1𝑖

B
𝑓𝑗
𝐷
2𝑖

) 0 ⋅ ⋅ ⋅ 0
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

(𝐷
3𝑖
−D

𝑓𝑗
𝐷
2𝑖
)]

𝑇

,

Γ
2

𝑖𝑗
= [(

0

𝑈
3
𝐷
4𝑗

) 0 ⋅ ⋅ ⋅ 0
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

0]

𝑇

,

Γ
4

𝑖𝑗
= [

0 0 ⋅ ⋅ ⋅ 0
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

(−𝐷
5𝑗
)
]

𝑇

,

Γ
3

𝑖𝑗
= 𝐸

5𝑗
𝐷
2𝑖
, Γ

5

𝑖𝑗
= 𝐸

7𝑗
𝐷
2𝑖
,

Υ
1

𝑖𝑗
= [0 (

𝐸
1𝑖
0

𝐸
1𝑖
0
) (

𝐸
2𝑖

𝐸
2𝑖

) 0 0 0 0 (

𝐸
3𝑖

𝐸
3𝑖

) 0] ,

Υ
2

𝑖𝑗
= [0 (𝐸

5𝑗
𝐶
𝑖
𝐸
4𝑗
) (𝐸

5𝑗
𝐶
𝜏𝑖
) 0 0 0 0 (𝐸

5𝑗
𝐷
𝑖
) 0] ,

Υ
3

𝑖𝑗
= [0 (𝐸

1𝑖
0) (𝐸

2𝑖
) 0 0 0 0 (𝐸

3𝑖
) 0] ,

Υ
4

𝑖𝑗
= [0 (𝐸

7𝑗
𝐶
𝑖
𝐸
6𝑗
) (𝐸

7𝑗
𝐶
𝜏𝑖
) 0 0 0 0 (𝐸

7𝑗
𝐷
𝑖
) 0] ,

Υ
5

𝑖𝑗
= Υ

3

𝑖𝑗
.

(14)

A suitable filter in the form of (4) can be given by

𝐴
𝑓𝑗
= 𝑈

−1

3
A

𝑓𝑗
, 𝐵

𝑓𝑗
= 𝑈

−1

3
B

𝑓𝑗
,

𝐶
𝑓𝑗
= C

𝑓𝑗
, 𝐷

𝑓𝑗
= D

𝑓𝑗
,

(𝑗 = 1, 2, . . . , 𝑟) .

(15)

Proof. The delay-dependent LK functional can be con-
structed as follows:

𝑉 (𝑡, 𝑥
𝑡
) = 𝑉

1
(𝑡, 𝑥

𝑡
) + 𝑉

2
(𝑡, 𝑥

𝑡
) + 𝑉

3
(𝑡, 𝑥

𝑡
) + 𝑉

4
(𝑡, 𝑥

𝑡
) ,

(16)
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where 𝑥
𝑡
denotes the function 𝑥(𝑠) defined on the interval

[𝑡 − ℎ
𝑏
, 𝑡] and

𝑉
1
(𝑡, 𝑥

𝑡
) = 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑡, 𝑥

𝑡
) =

4

∑

𝑖=1

∫

𝑡−ℎ
𝑖−1

𝑡−ℎ
𝑖

𝑥
𝑇

(𝑠) 𝐸
𝑇

𝑄
𝑖
𝐸𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡−ℎ
2

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝐸
𝑇

𝑄
𝜏
𝐸𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡, 𝑥

𝑡
)

= ∫

𝑡

𝑡−ℎ
1

[

[

𝑥 (𝑠)

𝑥 (𝑠 −

𝜏
0

2

)

]

]

𝑇

[

𝐸 0

0 𝐸
]

𝑇

[

𝑆
1
𝑆
2

∗ 𝑆
3

] [

𝐸 0

0 𝐸
]

×
[

[

𝑥 (𝑠)

𝑥 (𝑠 −

𝜏
0

2

)

]

]

𝑑𝑠,

𝑉
4
(𝑡, 𝑥

𝑡
) =

4

∑

𝑖=1

𝜏
𝑖
∫

−ℎ
𝑖−1

−ℎ
𝑖

∫

𝑡

𝑡+𝜃

̇
�̃�

𝑇

(𝑠) 𝐸
𝑇

𝑅
𝑖
𝐸
̇
�̃� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−ℎ
2

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

̇
�̃�

𝑇

(𝑠) 𝐸
𝑇

𝑅
𝜏
𝐸
̇
�̃� (𝑠) 𝑑𝑠 𝑑𝜃,

(17)

with 𝑃 = [ 𝑃1 𝑃2
∗ 𝑃
3

] > 0, 𝑄
𝑘
> 0, 𝑅

𝑘
> 0, (𝑘 = 1, 2, 3, 4), 𝑄

𝜏
≥

0, 𝑅
𝜏
≥ 0, 𝑆 = [ 𝑆1 𝑆2

∗ 𝑆
3

] > 0 being real symmetry matrices to be
determined.

Taking the derivative of (16) with respect to 𝑡 along the
trajectory of the filtering error system (6), we have

�̇�
1
(𝑡, 𝑥

𝑡
)

=
̇
�̃�

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃
̇
�̃� (𝑡)

= [𝐴 (𝑡) 𝑥 (𝑡) + 𝐴
𝜏
(𝑡) 𝐸𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵 (𝑡) 𝑤 (𝑡)]

𝑇

𝑃𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃 [𝐴 (𝑡) 𝑥 (𝑡) + 𝐴
𝜏
(𝑡) 𝐸𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵 (𝑡) 𝑤 (𝑡)] ,

�̇�
2
(𝑡, 𝑥

𝑡
)

=

4

∑

𝑖=1

[𝑥
𝑇

(𝑡 − ℎ
𝑖−1
) 𝐸

𝑇

𝑄
𝑖
𝐸𝑥 (𝑡 − ℎ

𝑖−1
)

−𝑥
𝑇

(𝑡 − ℎ
𝑖
) 𝐸

𝑇

𝑄
𝑖
𝐸𝑥 (𝑡 − ℎ

𝑖
)]

+ 𝑥
𝑇

(𝑡 − ℎ
2
) 𝐸

𝑇

𝑄
𝜏
𝐸𝑥 (𝑡 − ℎ

2
)

− (1 − ̇𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐸
𝑇

𝑄
𝜏
𝐸𝑥 (𝑡 − 𝜏 (𝑡))

≤

4

∑

𝑖=1

[𝑥
𝑇

(𝑡 − ℎ
𝑖−1
) 𝑄

𝑖
𝑥 (𝑡 − ℎ

𝑖−1
) − 𝑥

𝑇

(𝑡 − ℎ
𝑖
) 𝑄

𝑖
𝑥 (𝑡 − ℎ

𝑖
)]

+ 𝑥
𝑇

(𝑡 − ℎ
2
) 𝑄

𝜏
𝑥 (𝑡 − ℎ

2
)

− (1 − ℎ
𝑑
) 𝑥

𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
𝜏
𝑥 (𝑡 − 𝜏 (𝑡)) ,

�̇�
3
(𝑡, 𝑥

𝑡
) = [

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
1
)
]

𝑇

[

𝑆
1
𝑆
2

∗ 𝑆
3

] [

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
1
)
]

− [

𝑥 (𝑡 − ℎ
1
)

𝑥 (𝑡 − ℎ
2
)
]

𝑇

[

𝑆
1
𝑆
2

∗ 𝑆
3

] [

𝑥 (𝑡 − ℎ
1
)

𝑥 (𝑡 − ℎ
2
)
] ,

�̇�
4
(𝑡, 𝑥

𝑡
) =

4

∑

𝑖=1

𝜏
2

𝑖
�̇�
𝑇

(𝑡) 𝑅
𝑖
�̇� (𝑡) + (𝜏 (𝑡) − ℎ

2
) �̇�

𝑇

(𝑡) 𝑅
𝜏
�̇� (𝑡)

−

4

∑

𝑖=1

𝜏
𝑖
∫

𝑡−ℎ
𝑖−1

𝑡−ℎ
𝑖

�̇�
𝑇

(𝑠) 𝑅
𝑖
�̇� (𝑠) 𝑑𝑠 − (1 − ̇𝜏 (𝑡))

× ∫

𝑡−ℎ
2

𝑡−𝜏(𝑡)

�̇�
𝑇

(𝑠) 𝑅
𝜏
�̇� (𝑠) 𝑑𝑠.

(18)

For any 𝑡 ≥ 0, it is a fact that ℎ
𝑎
≤ 𝜏(𝑡) ≤ ℎ

𝑎
+ 𝛼𝜏 or

ℎ
𝑎
+ 𝛼𝜏 ≤ 𝜏(𝑡) ≤ ℎ

𝑏
, (0 < 𝛼 < 1). In the case of ℎ

𝑎
≤ 𝜏(𝑡) ≤

ℎ
𝑎
+𝛼𝜏; that is, 𝜏(𝑡) ∈ [ℎ

2
, ℎ

3
], 𝑘 = 3, suitably using the integral

inequalities in Lemma 1, the following inequalities are true:

(𝜏 (𝑡) − ℎ
2
) �̇�

𝑇

(𝑡) 𝑅
𝜏
�̇� (𝑡)

≤ 𝛼𝜏�̇�
𝑇

(𝑡) 𝑅
𝜏
�̇� (𝑡) = 𝜏

3
�̇�
𝑇

(𝑡) 𝑅
𝜏
�̇� (𝑡) ,

− 𝜏
𝑖
∫

𝑡−ℎ
𝑖−1

𝑡−ℎ
𝑖

�̇�
𝑇

(𝑠) 𝑅
𝑖
�̇� (𝑠) 𝑑𝑠

≤ [

𝑥 (𝑡 − ℎ
𝑖−1
)

𝑥 (𝑡 − ℎ
𝑖
)
]

𝑇

[

−𝑅
𝑖
𝑅
𝑖

∗ −𝑅
𝑖

] [

𝑥 (𝑡 − ℎ
𝑖−1
)

𝑥 (𝑡 − ℎ
𝑖
)
] ,

(𝑖 = 1, 2, 4) ,

− 𝜏
3
∫

𝑡−ℎ
2

𝑡−ℎ
3

�̇�
𝑇

(𝑠) 𝑅
3
�̇� (𝑠) 𝑑𝑠 − (1 − ̇𝜏 (𝑡))

× ∫

𝑡−ℎ
2

𝑡−𝜏(𝑡)

�̇�
𝑇

(𝑠) 𝑅
𝜏
�̇� (𝑠) 𝑑𝑠

≤ −𝜏
3
∫

𝑡−ℎ
2

𝑡−ℎ
3

�̇�
𝑇

(𝑠) 𝑅
3
�̇� (𝑠) 𝑑𝑠 − (1 − ℎ

𝑑
)

× ∫

𝑡−ℎ
2

𝑡−𝜏(𝑡)

�̇�
𝑇

(𝑠) 𝑅
𝜏
�̇� (𝑠) 𝑑𝑠

= −∫

𝑡−ℎ
2

𝑡−𝜏(𝑡)

�̇�
𝑇

(𝑠) (𝜏
3
𝑅
3
+ (1 − ℎ

𝑑
) 𝑅

𝜏
) �̇� (𝑠) 𝑑𝑠

− 𝜏
3
∫

𝑡−𝜏(𝑡)

𝑡−ℎ
3

�̇�
𝑇

(𝑠) 𝑅
3
�̇� (𝑠) 𝑑𝑠

≤ [

𝑥 (𝑡 − ℎ
2
)

𝑥 (𝑡 − 𝜏 (𝑡))
]

𝑇

× {[

𝑀
1
+𝑀

𝑇

1
−𝑀

1
+ 𝑁

𝑇

1

∗ −𝑁
1
− 𝑁

𝑇

1

] + 𝜌 ⋅ 𝛼𝜏 ⋅ 𝑍
1
}

× [

𝑥 (𝑡 − ℎ
2
)

𝑥 (𝑡 − 𝜏 (𝑡))
]
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+ [

𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − ℎ
3
)
]

𝑇

×

{

{

{

𝜏
3

[

[

𝑀
2
+𝑀

𝑇

2
−𝑀

2
+ 𝑁

𝑇

2

∗ −𝑁
2
− 𝑁

𝑇

2

]

]

+ (1 − 𝜌) ⋅ 𝛼𝜏 ⋅ [

𝑀
2

𝑁
2

] 𝜏
3
𝑅
−1

3
[

𝑀
2

𝑁
2

]

𝑇

}

× [

𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − ℎ
3
)
]

(19)

with [ 𝜏3𝑅3+(1−ℎ𝑑)𝑅𝜏 [𝑀1 𝑁
1
]

∗ 𝑍
1

] ≥ 0 and 𝜌 = (𝜏(𝑡) − ℎ
2
)/𝛼𝜏, 0 ≤

𝜌 ≤ 1.

It follows from (18)-(19) that

�̇� (𝑡, 𝑥
𝑡
) + 𝑒

𝑇

(𝑡) 𝑒 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡)

≤ 𝜉
𝑇

(𝑡) [Ω
1
] 𝜉 (𝑡)

+ 𝜌 ⋅ [

𝑥 (𝑡 − ℎ
2
)

𝑥 (𝑡 − 𝜏 (𝑡))
]

𝑇

{𝛼𝜏 ⋅ 𝑍
1
} [

𝑥 (𝑡 − ℎ
2
)

𝑥 (𝑡 − 𝜏 (𝑡))
]

+ (1 − 𝜌) ⋅ [

𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − ℎ
3
)
]

𝑇

{𝛼𝜏 ⋅ [

𝑀
2

𝑁
2

] 𝜏
3
𝑅
−1

3
[

𝑀
2

𝑁
2

]

𝑇

}

× [

𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − ℎ
3
)
]

= 𝜉
𝑇

(𝑡) [𝜌 ⋅ Ω
1𝜌
+ (1 − 𝜌) ⋅ Ω

1(1−𝜌)
] 𝜉 (𝑡)

(20)

with [ 𝜏3𝑅3+(1−ℎ𝑑)𝑅𝜏 [𝑀1 𝑁
1
]

∗ 𝑍
1

] ≥ 0, where

𝜉 (𝑡) := col {[𝑥 (𝑡) 𝑥
𝑓
(𝑡)] 𝑥 (𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − ℎ

1
) 𝑥 (𝑡 − ℎ

2
) 𝑥 (𝑡 − ℎ

3
) 𝑥 (𝑡 − ℎ

4
) 𝑤 (𝑡)} (21)

andΩ
1𝜌

is defined as follows:

Ω
1𝜌
=

[

[

[

[

[

[

[

[

[

[

Ω
11
Ω
12
Ω
13

0 0 0 Ω
17

∗ Ω
22

0 Ω
24
Ω
25

0 Ω
27

∗ ∗ Ω
33
Ω
34

0 0 0

∗ ∗ ∗ Ω
44

0 0 0

∗ ∗ ∗ ∗ Ω
55
Ω
56

0

∗ ∗ ∗ ∗ ∗ Ω
66

0

∗ ∗ ∗ ∗ ∗ ∗ Ω
77

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

𝐶
𝑇

(𝑡)

𝐶
𝑇

𝜏
(𝑡)

0

0

0

0

𝐷
𝑇

(𝑡)

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

𝐶
𝑇

(𝑡)

𝐶
𝑇

𝜏
(𝑡)

0

0

0

0

𝐷
𝑇

(𝑡)

]

]

]

]

]

]

]

]

]

]

𝑇

,

Ω
11
= 𝐴

𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝐴 (𝑡) + 𝐻𝑒 {𝑃𝐴 (𝑡)} + Λ
1
,

𝑅 =

4

∑

𝑖=1

𝑅
𝑖
+ 𝜏

3
𝑅
𝜏
,

Ω
12
= 𝑃𝐴

𝜏
(𝑡) + 𝐴

𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝐴
𝜏
(𝑡) ,

Ω
13
= Λ

2
,

Ω
17
= 𝑃𝐵 (𝑡) + 𝐴

𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝐵 (𝑡) ,

Ω
22
= 𝐴

𝑇

𝜏
(𝑡) 𝐸

𝑇

𝑅𝐸𝐴
𝜏
(𝑡) + Λ

3
,

Ω
24
= Λ

4
,

Ω
25
= Λ

5
,

Ω
27
= 𝐴

𝑇

𝜏
(𝑡) 𝐸

𝑇

𝑅𝐸𝐵 (𝑡) ,

Ω
33
= Λ

6
,

Ω
34
= Λ

7
,

Ω
44
= Λ

8
,

Ω
55
= Λ

9
,

Ω
56
= Λ

10
,

Ω
66
= Λ

11
,

Ω
77
= 𝐵

𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝐵 (𝑡) + Λ
12
.

(22)

Since 0 ≤ 𝜌 ≤ 1, applying the convex combination method,
we conclude that if

Ω
1𝜌
< 0, Ω

1(1−𝜌)
< 0, (23)

then

�̇� (𝑡, 𝑥
𝑡
) + 𝑒

𝑇

(𝑡) 𝑒 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡) < 0. (24)

ForΩ
1𝜌
< 0, by Schur complement, we have

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11
Ω
12
Ω
13

0 0 0 Ω
17

𝐶
𝑇

(𝑡)

∗ Ω
22

0 Ω
24
Ω
25

0 Ω
27

𝐶
𝑇

𝜏
(𝑡)

∗ ∗ Ω
33
Ω
34

0 0 0 0

∗ ∗ ∗ Ω
44

0 0 0 0

∗ ∗ ∗ ∗ Ω
55
Ω
56

0 0

∗ ∗ ∗ ∗ ∗ Ω
66

0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω
77
𝐷
𝑇

(𝑡)

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (25)

By using Proposition 3, we have the following inequality,
which is equivalent to (27):
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[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
1
− 𝐻𝑒 {𝑈} 𝑃

2
− 𝑈𝐴 (𝑡) 𝑈𝐴

𝜏
(𝑡) 0 0 0 Ω

17
𝑈𝐵 (𝑡) 0

∗ Λ
1

0 Λ
2
0 0 0 0 𝐶

𝑇

(𝑡)

∗ ∗ Λ
3

0 Λ
4
Λ

5
0 0 𝐶

𝑇

𝜏
(𝑡)

∗ ∗ ∗ Λ
6
Λ

7
0 0 0 0

∗ ∗ ∗ ∗ Λ
8
0 0 0 0

∗ ∗ ∗ ∗ ∗ Λ
9
Λ

10
0 0

∗ ∗ ∗ ∗ ∗ ∗ Λ
11

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ
12

𝐷
𝑇

(𝑡)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (26)

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑡) ℎ

𝑗
(𝑡)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
1
− 𝐻𝑒 {𝑈} 𝑃

2
− 𝑈𝐴

𝑖𝑗
(𝑡) 𝑈𝐴

𝜏𝑖𝑗
(𝑡) 0 0 0 0 𝑈𝐵

𝑖𝑗
(𝑡) 0

∗ Λ
1

0 Λ
2
0 0 0 0 𝐶

𝑇

𝑖𝑗
(𝑡)

∗ ∗ Λ
3

0 Λ
4
Λ

5
0 0 𝐶

𝑇

𝜏𝑖𝑗
(𝑡)

∗ ∗ ∗ Λ
6
Λ

7
0 0 0 0

∗ ∗ ∗ ∗ Λ
8
0 0 0 0

∗ ∗ ∗ ∗ ∗ Λ
9
Λ

10
0 0

∗ ∗ ∗ ∗ ∗ ∗ Λ
11

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ
12

𝐷
𝑇

𝑖𝑗
(𝑡)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (27)

Let A
𝑓𝑗
= 𝑈

3
𝐴
𝑓𝑗
,B

𝑓𝑗
= 𝑈

3
𝐵
𝑓𝑗
,C

𝑓𝑗
= 𝐶

𝑓𝑗
,D

𝑓𝑗
= 𝐷

𝑓𝑗
, and,

using Lemma 2, for the case of Ω
1𝜌
, we have the following

equation:

Π
1

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑡) ℎ

𝑗
(𝑡) [Π

1

𝑖𝑗
+ 𝐻𝑒 {Γ

1

𝑖𝑗
diag {𝐹

1𝑖
(𝑡) , 𝐹

1𝑖
(𝑡)} Υ

1

𝑖𝑗
}

+ 𝐻𝑒 {Γ
2

𝑖𝑗
𝐹
2𝑗
(𝑡) [Υ

2

𝑖𝑗
+ Γ

3

𝑖𝑗
𝐹
1𝑖
(𝑡) Υ

3

𝑖𝑗
]}

+ 𝐻𝑒 {Γ
4

𝑖𝑗
𝐹
3𝑗
(𝑡) [Υ

4

𝑖𝑗
+ Γ

5

𝑖𝑗
𝐹
1𝑖
(𝑡) Υ

5

𝑖𝑗
]}]

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑡) ℎ

𝑗
(𝑡) [Π

1

𝑖𝑗
+ 𝜀

−1

1𝑖𝑗
Γ
1

𝑖𝑗
(Γ

1

𝑖𝑗
)

𝑇

+ 𝜀
1𝑖𝑗
(Υ

1

𝑖𝑗
)

𝑇

Υ
1

𝑖𝑗

+ 𝜀
−1

2𝑖𝑗
Γ
2

𝑖𝑗
(Γ

2

𝑖𝑗
)

𝑇

+ 𝜀
2𝑖𝑗
[Υ

2

𝑖𝑗
+ Γ

3

𝑖𝑗
𝐹
1𝑖
(𝑡) Υ

3

𝑖𝑗
]

𝑇

× [Υ
2

𝑖𝑗
+ Γ

3

𝑖𝑗
𝐹
1𝑖
(𝑡) Υ

3

𝑖𝑗
] + 𝜀

−1

4𝑖𝑗
Γ
4

𝑖𝑗
(Γ

4

𝑖𝑗
)

𝑇

+ 𝜀
4𝑖𝑗
[Υ

4

𝑖𝑗
+ Γ

5

𝑖𝑗
𝐹
1𝑖
(𝑡) Υ

5

𝑖𝑗
]

𝑇

× [Υ
4

𝑖𝑗
+ Γ

5

𝑖𝑗
𝐹
1𝑖
(𝑡) Υ

5

𝑖𝑗
] ]

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑡) ℎ

𝑗
(𝑡) [Π

1

𝑖𝑗
+ 𝜀

−1

1𝑖𝑗
Γ
1

𝑖𝑗
(Γ

1

𝑖𝑗
)

𝑇

+ 𝜀
1𝑖𝑗
(Υ

1

𝑖𝑗
)

𝑇

Υ
1

𝑖𝑗

+ 𝜀
−1

2𝑖𝑗
Γ
2

𝑖𝑗
(Γ

2

𝑖𝑗
)

𝑇

+ 𝜀
−1

4𝑖𝑗
Γ
4

𝑖𝑗
(Γ

4

𝑖𝑗
)

𝑇

+ 𝜀
2𝑖𝑗
𝜀
−1

3𝑖𝑗
(Υ

3

𝑖𝑗
)

𝑇

Υ
3

𝑖𝑗

+ 𝜀
2𝑖𝑗
(Υ

2

𝑖𝑗
)

𝑇

[𝐼 − 𝜀
3𝑖𝑗
Γ
3

𝑖𝑗
(Γ

3

𝑖𝑗
)

𝑇

]

−1

Υ
2

𝑖𝑗

+ 𝜀
4𝑖𝑗
𝜀
−1

5𝑖𝑗
(Υ

5

𝑖𝑗
)

𝑇

Υ
5

𝑖𝑗

+𝜀
4𝑖𝑗
(Υ

4

𝑖𝑗
)

𝑇

[𝐼 − 𝜀
5𝑖𝑗
Γ
5

𝑖𝑗
(Γ

5

𝑖𝑗
)

𝑇

]

−1

Υ
4

𝑖𝑗
]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑡) ℎ

𝑗
(𝑡) [Π

1

𝑖𝑗
+ 𝜀

−1

1𝑖𝑗
Γ
1

𝑖𝑗
(Γ

1

𝑖𝑗
)

𝑇

+𝜀
−1

2𝑖𝑗
Γ
2

𝑖𝑗
(Γ

2

𝑖𝑗
)

𝑇

+ Θ
𝑖𝑗
]

=

𝑟

∑

𝑖=1

ℎ
2

𝑖
(𝑡) [Π

1

𝑖𝑖
+ Θ

𝑖𝑖
+ 𝜀

−1

1𝑖𝑖
Γ
1

𝑖𝑖
(Γ

1

𝑖𝑖
)

𝑇

+𝜀
−1

2𝑖𝑖
Γ
2

𝑖𝑖
(Γ

2

𝑖𝑖
)

𝑇

]

+

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑡) ℎ

𝑗
(𝑡) [Π

1

𝑖𝑗
+ Θ

𝑖𝑗
+ Π

1

𝑗𝑖
+ Θ

𝑗𝑖
+ 𝜀

−1

1𝑖𝑗
Γ
1

𝑖𝑗
(Γ

1

𝑖𝑗
)

𝑇

+ 𝜀
−1

2𝑖𝑗
Γ
2

𝑖𝑗
(Γ

2

𝑖𝑗
)

𝑇

+𝜀
−1

1𝑗𝑖
Γ
1

𝑗𝑖
(Γ

1

𝑗𝑖
)

𝑇

+ 𝜀
−1

2𝑗𝑖
Γ
2

𝑗𝑖
(Γ

2

𝑗𝑖
)

𝑇

] ,

(28)

where

Θ
𝑖𝑗
= 𝜀

1𝑖𝑗
(Υ

1

𝑖𝑗
)

𝑇

Υ
1

𝑖𝑗
+ 𝜀

−1

4𝑖𝑗
Γ
4

𝑖𝑗
(Γ

4

𝑖𝑗
)

𝑇

+ 𝜀
2𝑖𝑗
𝜀
−1

3𝑖𝑗
(Υ

3

𝑖𝑗
)

𝑇

Υ
3

𝑖𝑗
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+ 𝜀
2𝑖𝑗
(Υ

2

𝑖𝑗
)

𝑇

[𝐼 − 𝜀
3𝑖𝑗
Γ
3

𝑖𝑗
(Γ

3

𝑖𝑗
)

𝑇

]

−1

Υ
2

𝑖𝑗

+ 𝜀
4𝑖𝑗
𝜀
−1

5𝑖𝑗
(Υ

5

𝑖𝑗
)

𝑇

Υ
5

𝑖𝑗
+ 𝜀

4𝑖𝑗
(Υ

4

𝑖𝑗
)

𝑇

[𝐼 − 𝜀
5𝑖𝑗
Γ
5

𝑖𝑗
(Γ

5

𝑖𝑗
)

𝑇

]

−1

Υ
4

𝑖𝑗
.

(29)

If (12) when𝑚 = 1 hold, then Π1

< 0, which implies that the
first term of (23) is true. Similar to the above process, if (12)
when 𝑚 = 2 hold and we also have Ω

1(1−𝜌)
< 0, then (24)

hold.
Meanwhile, if ℎ

𝑎
+ 𝛼𝜏 ≤ 𝜏(𝑡) ≤ ℎ

𝑏
; that is, 𝜏(𝑡) ∈ [ℎ

3
, ℎ

4
],

𝑘 = 4, similar to the above deduction process, we also can
obtain the conclusion that if (12) hold, then (24) hold.

So far, when assuming the zero disturbance input, from
(18)–(19), we can obtain that

�̇� (𝑡, 𝑥
𝑡
) ≤

̃
𝜉
𝑇

(𝑡)

[

[

[

[

[

[

[

[

Ω
11
Ω
12
Ω
13

0 0 0

∗ Ω
22

0 Ω
24
Ω
25

0

∗ ∗ Ω
33
Ω
34

0 0

∗ ∗ ∗ Ω
44

0 0

∗ ∗ ∗ ∗ Ω
55
Ω
56

∗ ∗ ∗ ∗ ∗ Ω
66

]

]

]

]

]

]

]

]

̃
𝜉 (𝑡) ,

(30)

where

̃
𝜉 (𝑡) := col {[𝑥 (𝑡) 𝑥

𝑓
(𝑡)] 𝑥 (𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − ℎ

1
) 𝑥 (𝑡 − ℎ

2
) 𝑥 (𝑡 − ℎ

3
) 𝑥 (𝑡 − ℎ

4
)} . (31)

By Schur complement, the inequalities in (25) imply
�̇�(𝑡, 𝑥

𝑡
) < 0. We can conclude that filtering error system

(6) with 𝑤(𝑡) = 0 is asymptotically stable. Now, to establish
the 𝐻

∞
performance for system (6), assume zero-initial

condition and consider the following index:

𝐽 = ∫

∞

𝑡=0

[𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡)] 𝑑𝑡. (32)

Under zero initial condition and (24), we have 𝐽 ≤

−∫

∞

𝑡=0

�̇�(𝑡, 𝑥
𝑡
)𝑑𝑡 = −𝑉(∞) + 𝑉(0) = −𝑉(∞) < 0, which

means that ‖𝑒‖
2
< 𝛾‖𝑤‖

2
. Thus, this completes the proof.

Remark 5. It may be noted that, in the above, no approx-
imation of the delay term is involved excepting exploiting
a convex combination of the uncertain terms involved. In
fact, Lemma 1 plays a key effect on the present results, which
is different from the common Jensen’s inequality. Although
their similarity can be established following the equivalency
results in [41], if ℎ = 𝜏

2
− 𝜏

1
:= ℎ(𝑡) is uncertain and

required to be approximated with its lower or upper bound
then use of (9) or (10) would be beneficial since the free
variables 𝑍

𝑗
= [

𝑍
𝑗1
𝑍
𝑗2

∗ 𝑍
𝑗3

] and 𝑀
𝑖
, 𝑁

𝑖
are introduced. Such

a feature leads to less conservative results compared to the
existing ones as is shown in the next section using numerical
examples.

Remark 6. In Proposition 3, by introduction of the auxil-
iary slack matrix variable 𝑈, matrices 𝑃

1
, 𝑃

2
, 𝐷

𝑖
, 𝑋

𝑗
(𝑗 =

1, 2, . . . , 8; 𝑖 = 1, 2, . . . , 14) and 𝐴
𝑖
, 𝐴

𝜏𝑖
, 𝐵

𝑖
are decoupled.

This novel technique is proposed in this paper to transform
the nonlinear matrix inequalities (25) into a set of LMIs,
which is different from the existing literatures.

Remark 7. In the proof of Theorem 4, the interval [ℎ
𝑎
, ℎ

𝑏
] is

divided into two variable subintervals [ℎ
𝑎
, ℎ

𝑎
+ 𝛼𝜏] and [ℎ

𝑎
+

𝛼𝜏, ℎ
𝑏
]; meanwhile, the lower bound of the delay [0, ℎ

𝑎
] is also

divided into two equal subintervals [0, ℎ
𝑎
/2] and [ℎ

𝑎
/2, ℎ

𝑎
]

for the sake of simplification. Therefore, the information of

delayed state 𝑥(𝑡 − ℎ
𝑎
/2) and 𝑥(𝑡 − ℎ

𝑎
−𝛼𝜏) can be fully taken

into account. And it is clear that the LK functional (16) are
more general than the existing ones [26, 35, 37]. Moreover,
since the variable delay decomposition approach in this paper
is introduced in constructing the LK functional and the upper
bound of its derivative is also estimated by suitably utilizing
integral inequalities in Lemma 1, the proposed result is much
less conservative and ismore general than some existing ones.
Meanwhile, the stability criteria of proposed approach are
also different when the tuning delay-fractional parameter 𝛼
is varying. Examples below show that the proposed method
yields less conservatism than the existing ones and also
show that the delay decomposition is different; themaximum
upper bound of the delay may be different.

Without considering the filter gain uncertainties, that
is, 𝐹

2𝑗
(𝑡) = 0 and 𝐹

3𝑗
(𝑡) = 0, the following corollary

gives a delay-fractional-dependent condition of designing
a standard fuzzy 𝐻

∞
filter for the uncertain system (1) as

[12–14], which system uncertainties have not been consid-
ered.

Corollary 8. For uncertain system (1), given scalars 0 <

ℎ
𝑎
≤ ℎ

𝑏
, 0 < 𝛼 < 1, ℎ

𝑑
and 𝛾 > 0, the 𝐻

∞
filter error

system (6), for all differentiable delay 𝜏(𝑡) ∈ [ℎ
𝑎
, ℎ

𝑏
] with

̇𝜏(𝑡) ≤ ℎ
𝑑
, is asymptotically stable and has a prescribed 𝐻

∞

performance level 𝛾 if there exist real symmetric matrices 𝑃 =
[
𝑃
1
𝑃
2

∗ 𝑃
3

] > 0, 𝑄
𝑙
> 0, 𝑅

𝑙
> 0, 𝑄

𝜏
≥ 0, 𝑅

𝜏
≥ 0, 𝑆 =

[
𝑆
1
𝑆
2

∗ 𝑆
3

] > 0, the nonsingular matrix 𝑈 = [ 𝑈1 0

𝑈
2
𝑈
3

] and matrices
𝑍
𝑚
= [

𝑍
𝑚1

𝑍
𝑚2

∗ 𝑍
𝑚3

] , (𝑚 = 1, 2), A
𝑓𝑗
,B

𝑓𝑗
,C

𝑓𝑗
,D

𝑓𝑗
, 𝑀

𝑙
, 𝑁

𝑙
,

(𝑙 = 1, 2, 3, 4)with appropriate dimensions, and positive scalars
𝜀
1𝑖𝑗
, (𝑖, 𝑗 = 1, 2, . . . , 𝑟), such that the inequalities in (33) hold:

[
Π
𝑚

𝑘𝑘
+ Θ̃

𝑘𝑘
Γ
1

𝑘𝑘

∗ −𝜀
1𝑘𝑘
𝐼

] < 0,

(𝑚 = 1, 2, 3, 4; 𝑘 = 1, 2, . . . , 𝑟) ,



Abstract and Applied Analysis 11

[

[

[

Π
𝑚

𝑖𝑗
+ Θ̃

𝑖𝑗
+ Π

𝑚

𝑗𝑖
+ Θ̃

𝑗𝑖
Γ
1

𝑖𝑗
Γ
1

𝑗𝑖

∗ −𝜀
1𝑖𝑗
𝐼 0

∗ ∗ −𝜀
1𝑗𝑖
𝐼

]

]

]

< 0,

(𝑚 = 1, 2, 3, 4; 0 < 𝑖 < 𝑗 ≤ 𝑟) ,

[

𝜏
3
𝑅
3
+ (1 − ℎ

𝑑
) 𝑅

𝜏
[𝑀

1
𝑁
1
]

∗ 𝑍
1

] ≥ 0,

[

𝜏
4
𝑅
4
+ (1 − ℎ

𝑑
) 𝑅

𝜏
[𝑀

4
𝑁
4
]

∗ 𝑍
2

] ≥ 0

(𝑖 = 1, 2, . . . , 𝑟) ,

(33)

where Π𝑚

𝑖𝑗
, Γ1

𝑖𝑗
are defined in (14), Θ̃

𝑖𝑗
= 𝜀

1𝑖𝑗
(Υ

1

𝑖𝑗
)
𝑇

Υ
1

𝑖𝑗
. The filter

parameters are given by (15).
Moreover, if the above LMIs are feasible with 𝑄

𝜏
= 0 and

𝑅
𝜏
= 0, then the fuzzy 𝐻

∞
filtering problem is solvable for all

fast-varying delays in [ℎ
𝑎
, ℎ

𝑏
]. Meanwhile a suitable fuzzy𝐻

∞

filter is designed as (15).

Similarly, without considering the system uncertainties,
that is, 𝐹

1𝑗
(𝑡) = 0, the following corollary gives a delay-

fractional-dependent condition of designing a nonfragile
fuzzy 𝐻

∞
filter for the nominal case of system (1) as [24], in

which time delay has not been considered.

Corollary 9. For the nominal case of system (1), given scalars
0 < ℎ

𝑎
≤ ℎ

𝑏
, 0 < 𝛼 < 1, ℎ

𝑑
and 𝛾 > 0, the 𝐻

∞

filter error system (6), for all differentiable delay 𝜏(𝑡) ∈

[ℎ
𝑎
, ℎ

𝑏
] with ̇𝜏(𝑡) ≤ ℎ

𝑑
, is asymptotically stable and has a

prescribed𝐻
∞
performance level 𝛾 if there exist real symmetric

matrices 𝑃 = [
𝑃
1
𝑃
2

∗ 𝑃
3

] > 0, . . . , 𝑄
𝜏
≥ 0, 𝑅

𝜏
≥ 0, 𝑆 =

[
𝑆
1
𝑆
2

∗ 𝑆
3

] > 0, the nonsingular matrix 𝑈 = [ 𝑈1 0

𝑈
2
𝑈
3

] and matrices
𝑍
𝑚
= [

𝑍
𝑚1

𝑍
𝑚2

∗ 𝑍
𝑚3

] , (𝑚 = 1, 2), A
𝑓𝑗
,B

𝑓𝑗
,C

𝑓𝑗
,D

𝑓𝑗
,𝑀

𝑙
, 𝑁

𝑙
, (𝑙 =

1, 2, 3, 4) with appropriate dimensions, and positive scalars
𝜀
2𝑖𝑗
, 𝜀
4𝑖𝑗
, (𝑖, 𝑗 = 1, 2, . . . , 𝑟), such that the inequalities in (34)

hold:

Π
𝑚

𝑘𝑘
+ Θ̂

𝑘𝑘
< 0, (𝑚 = 1, 2, 3, 4; 𝑘 = 1, 2, . . . , 𝑟) ,

Π
𝑚

𝑖𝑗
+ Θ̂

𝑖𝑗
+ Π

𝑚

𝑗𝑖
+ Θ̂

𝑗𝑖
< 0, (𝑚 = 1, 2, 3, 4; 0 < 𝑖 < 𝑗 ≤ 𝑟) ,

[

𝜏
3
𝑅
3
+ (1 − ℎ

𝑑
) 𝑅

𝜏
[𝑀

1
𝑁
1
]

∗ 𝑍
1

] ≥ 0,

[

𝜏
4
𝑅
4
+ (1 − ℎ

𝑑
) 𝑅

𝜏
[𝑀

4
𝑁
4
]

∗ 𝑍
2

] ≥ 0,

(34)

where Π𝑚

𝑖𝑗
is defined in (14), Θ̂

𝑖𝑗
= 𝜀

−1

2𝑖𝑗
Γ
2

𝑖𝑗
(Γ

2

𝑖𝑗
)
𝑇

+ 𝜀
2𝑖𝑗
(Υ

2

𝑖𝑗
)
𝑇

Υ
2

𝑖𝑗
+

𝜀
−1

4𝑖𝑗
(Γ

4

𝑖𝑗
)
𝑇

Γ
4

𝑖𝑗
+ 𝜀

4𝑖𝑗
(Υ

4

𝑖𝑗
)
𝑇

Υ
4

𝑖𝑗
. The filter parameters are given by

(15).
Moreover, if the above LMIs are feasible with 𝑄

𝜏
= 0 and

𝑅
𝜏
= 0, then the fuzzy 𝐻

∞
filtering problem is solvable for all

fast-varying delays in [ℎ
𝑎
, ℎ

𝑏
]. Meanwhile a suitable fuzzy𝐻

∞

filter is designed as (15).

Remark 10. When considering both no system uncertainties
and no filter gain perturbations, Corollary 8 further reduces a
delay-fractional-dependent sufficient condition for designing
a standard fuzzy𝐻

∞
filter for the nominal case of system (1).

Remark 11. Given 0 ≤ ℎ
𝑎
≤ ℎ

𝑏
, Theorem 4 and Corollaries

8 and 9 provide delay-fractional-dependent stabilization
conditions for uncertain systems (1) in the form of LMIs.
They can be verified using recently developed standard
algorithms in MATLAB Toolbox. Meanwhile, it is worthy of
mentioning that the variable delay decomposition approach
proposed in this paper can be applied to the further stability
analysis along with a new model transformation [15], and
the corresponding stability criteria with less conservatism
and small computing burden may be derived. Moreover,
the proposed results can be extended to reduced-order 𝐻

∞

filtering for T-S fuzzy system based on the proposed method
in [16], finite frequency𝐻

∞
filtering [17], and even the above

analysis and filtering for 2-D systems [18], and neutral system
[42], and the corresponding results will appear in the near
future.

4. Numerical Examples

In this section, three numerical examples are given to show
the effectiveness and reduced conservatism of the proposed
method in this paper.

Example 12 (example of [26]). Consider the uncertain system
(1), in which the parameters are given as

𝐴
1
= [

−2.63 0.13

1.25 −2.50
] , 𝐴

2
= [

−2.38 0

−0.25 −1.38
] ,

𝐴
𝜏1
= [

−1.1 0.1

−0.8 −0.9
] , 𝐴

𝜏2
= [

−0.9 0

−1.1 −1.2
] ,

𝐵
1
= 𝐵

2
= [

−0.5

1.0
] ,

𝐶
1
= [

−0.2 0.1

0 0.05
] , 𝐶

2
= [

0.3 1.0

0.1 −0.5
] ,

𝐶
𝜏1
= [

0.5 1.0

0.2 −0.3
] , 𝐶

𝜏2
= [

1.0 −0.2

0.2 −0.5
] ,

𝐷
1
= [

0.1

−0.1
] , 𝐷

2
= [

0.2

0.3
] ,

𝐿
1
= [

1.0 −0.5

0.2 −0.3
] , 𝐿

2
= [

−0.2 0.3

0.1 0
] ,

𝐿
𝜏1
= 𝐿

𝜏2
= [

0 0

0 0
] , 𝐺

1
= 𝐺

2
= 0

(35)

and the membership function are defined as ℎ
1
(𝑡) =

sin2(𝑥
1
(𝑡)), ℎ

2
(𝑡) = cos2(𝑥

1
(𝑡)).
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Meanwhile, the system uncertainty and filter gain variant
are assumed as

𝐷
11
= [

0

−0.5
] , 𝐷

12
= [

0.8

0.1
] , 𝐷

21
= [

0

0.3
] ,

𝐷
22
= [

−0.3

0.6
] , 𝐷

31
= 0, 𝐷

32
= 0,

𝐸
11
= [0 0.3] , 𝐸

12
= [0.2 0] , 𝐸

13
= 0.1,

𝐸
21
= [0.5 0] , 𝐸

22
= [0 −0.2] , 𝐸

23
= 0,

𝐷
41
= [

−0.5

0.1
] , 𝐷

51
= [

1.0

0.1
] , 𝐷

42
= [

0.5

1.0
] ,

𝐷
52
= [

−0.2

0.1
] , 𝐸

41
= [0 −0.4] , 𝐸

51
= 0,

𝐸
42
= [0 −0.4] , 𝐸

61
= [0.1 0] , 𝐸

71
= 0,

𝐸
62
= [0 −0.4] , 𝐸

72
= 0,

𝐹
𝑘𝑖
(𝑡) = sin (𝑡) , (𝑖 = 1, 2; 𝑘 = 1, 2, 3) .

(36)

We assume that the time delay is 𝜏(𝑡) = 0.3 + 0.2 sin(𝑡);
that is, ℎ

𝑎
= 0.1, ℎ

𝑏
= 0.5, ℎ

𝑑
= 0.2. In this case, we can

calculate the optimal performance level 𝛾min = 0.473, while
there is 𝛾 = 1.600 in [26]. When 𝛾 = 0.5, applyingTheorem 4
and using the MATLAB LMI Toolbox, a desired nonfragile
fuzzy𝐻

∞
filter can be constructed to solve the LMIs in (12).

The parameters can be chosen as follows (other matrices are
omitted for space saving):

𝐴
𝑓1
= [

−9.8761 2.2818

3.0212 −13.2159
] ,

𝐵
𝑓1
= [

0.1519 0.7476

−0.5081 −0.1281
] ,

𝐶
𝑓1
= [

−2.1237 2.5492

−0.6212 1.1097
] ,

𝐴
𝑓2
= [

−9.8772 5.8011

0.4140 −8.7436
] ,

𝐵
𝑓2
= [

0.7381 0.2902

−1.1894 0.1668
] ,

𝐶
𝑓2
= [

0.6040 −0.8878

−0.1693 0.0722
] ,

𝐷
𝑓1
= [

−0.0531 0.1305

−0.0539 0.0444
] ,

𝐷
𝑓2
= [

0.1493 −0.0561

−0.0109 −0.0027
] .

(37)

Next, we apply the fuzzy filter (5) to the given T-S
fuzzy system with interval time-varying delay and obtain the
simulation results as Figures 1–3, where the disturbance input
𝑤(𝑡) is given as 𝑤(𝑡) = 1/(2 + 5𝑡

2

+ 𝑡), 𝑡 ≥ 0. Figure 1

0 5 10 15

0

0.05

0.15

Time t

x1(t)

x2(t)

−0.1

−0.05

0.1

Figure 1: Response of the state 𝑥(𝑡).

0 5 10 15

0

0.01

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

Time t

xf1(t)
xf2(t)

Figure 2: Response of the filter state 𝑥
𝑓
(𝑡).

shows the state response 𝑥(𝑡) under the initial condition
𝜙(𝑡) = [0, 0]

𝑇, 𝑡 ∈ [−0.5, 0]. Figure 2 shows the filter state
response 𝑥

𝑓
(𝑡). Figure 3 shows the error response 𝑒(𝑡) :=

𝑧(𝑡) − 𝑧
𝑓
(𝑡). From these simulation results, it can be seen that

the designed nonfragile robust fuzzy 𝐻
∞

filter satisfies the
specified performance requirement. Moreover, when there is
no external disturbance (i.e., 𝑤(𝑡) = 0), the state response
𝑥(𝑡) is shown in Figure 4 under initial condition 𝜙(𝑡) =

[−0.5, 0.5]
𝑇

, 𝑡 ∈ [−0.5, 0]. It is also clear that the system (6)
with 𝑤(𝑡) = 0 is stable.

In order to further show the advantage of ourmethod, the
following example is considered.
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Figure 3: Error response 𝑒(𝑡).
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Figure 4: Response of the state 𝑥(𝑡) when 𝑤(𝑡) = 0.

Example 13 (example of [13, 14]). Consider the following
fuzzy systemwithout systemuncertainties, whose parameters
are

𝐴
1
=
[

[

−1 0 0

0 −0.9 0

0 −0.5 −1

]

]

,

𝐴
2
=
[

[

−0.9 0.2 0

−0.2 −0.5 0

0 −0.1 −0.8

]

]

,

𝐴
𝜏1
=
[

[

−0.8 0.2 −0.1

0.1 −0.8 0

−0.4 0.25 −1

]

]

,

𝐴
𝜏2
=
[

[

−1 0.5 0.1

0.5 −1 0

−0.8 0.9 −0.25

]

]

,

𝐶
1
= [0.5 0.4 0] , 𝐶

2
= [0.5 −1 0] ,

𝐶
𝜏1
= [1 −0.5 0.5] , 𝐶

𝜏2
= [1 0.1 −0.5] ,

𝐿
1
= [0.5 0 0] , 𝐿

2
= [1 −0.5 0] ,

𝐿
𝜏1
= [0.1 0.5 0.5] , 𝐿

𝜏2
= [0.1 0 0.5] ,

𝐵 = [0 0 0.5]

𝑇

, 𝐷 = 0.25, 𝐺 = 0,

ℎ
1
= (1 −

1

1 + 𝑒
(−6𝑥
2
+1.5𝜋)

)(

1

1 + 𝑒
(−6𝑥
2
−1.5𝜋)

) ,

ℎ
2
= 1 − ℎ

1
.

(38)

In the implementation of the nonfragile fuzzy filter, we
consider that the filter gain perturbations have

𝐷
41
= [−0.5 0.1 0]

𝑇

, 𝐷
51
= 0.1,

𝐷
42
= [0.5 1.0 0]

𝑇

, 𝐷
52
= −0.1,

𝐸
41
= [0 −0.4 0] , 𝐸

51
= 0,

𝐸
42
= [0 −0.4 0] , 𝐸

52
= 0,

𝐸
61
= [0 −0.4 0] , 𝐸

71
= 0,

𝐸
62
= [0 −0.4 0] , 𝐸

72
= 0.

(39)

We assume that the time delay is 𝜏(𝑡) = 0.3 + 0.25 cos(𝑡);
that is, ℎ

𝑎
= 0.05, ℎ

𝑏
= 0.55, ℎ

𝑑
= 0.25. From this fuzzy

system, by using the Matlab LMI control Toolbox to solve
LMIs in (34) of Corollary 9, we can calculate the optimal
performance level 𝛾min = 0.31. And the filter matrices can
be obtained as follows:

𝐴
𝑓1
=
[

[

−2.0606 0.8132 −4.7777

−7.0837 −15.6430 13.9274

0.3648 1.4454 −11.4656

]

]

,

𝐵
𝑓1
=
[

[

0.0766

−0.3242

−0.3563

]

]

, 𝐶
𝑓1
=
[

[

−1.3364

−1.9659

−1.8168

]

]

𝑇

,

𝐷
𝑓1
= −0.0093;
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Figure 5: Error response 𝑒(𝑡).

𝐴
𝑓2
=
[

[

−4.8970 −0.5771 4.6164

0.9201 −2.8290 0.8770

0.9644 1.8330 −5.8828

]

]

,

𝐵
𝑓2
=
[

[

0.3196

−0.2579

−0.2458

]

]

, 𝐶
𝑓2
=
[

[

0.0127

0.9834

−4.9001

]

]

𝑇

,

𝐷
𝑓2
= −0.1073.

(40)

In order to illustrate the importance of the proposed
nonfragile fuzzy filter design method, we give a contrastive
analysis based on the example. Take Corollary 9 for example,
the fuzzy filter consisting of (40) is nonfragile; that is, when
the filter has gain perturbations, the optimal performance
level 𝛾min = 0.31 is always guaranteed for any filter gain
variant as (39). Based on this filter, we can obtain the
simulation results of signal error 𝑒(𝑡) := 𝑧(𝑡) − 𝑧

𝑓
(𝑡) as

Figure 5 where the disturbance input 𝑤(𝑡) is given as 𝑤(𝑡) =
1/(1 + 2𝑡

2

+ 3𝑡), 𝑡 ≥ 0 and filter gain variant is assumed as
𝐹
2𝑗
(𝑡) = sin(𝑡), 𝐹

3𝑗
(𝑡) = cos(𝑡), (𝑗 = 1, 2). From Figure 5

under initial condition 𝜙(𝑡) = [0.2, −0.2, 0.1]𝑇, 𝑡 ∈ [−0.55, 0],
it can be seen that the designed nonfragile fuzzy 𝐻

∞
filter

with filter perturbations in (39) can stabilize the system (38).
Moreover, when there is no external disturbance (i.e., 𝑤(𝑡) =
0), the state response 𝑥(𝑡) is shown in Figure 6 under initial
condition𝜙(𝑡) = [0.5, −0.2, 0.2]𝑇, 𝑡 ∈ [−0.55, 0]. It is also clear
that the system (38) with 𝑤(𝑡) = 0 is asymptotically stable.

Correspondingly, for the system (38), by Remark 10 with
the 𝐻

∞
performance level 𝛾 = 0.30, we can obtain the

following standard fuzzy filter matrices as follows:

𝐴
𝑓1
=
[

[

−2.9808 0.5070 −1.7769

0.3429 −3.6529 0.4105

−0.8253 0.1616 −6.1823

]

]

,

0 0.5 1.5 2.5 3.5 4.51 2 3 4 5
−0.2

−0.1
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0.2

0.3

0.4
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Time t

x1(t)
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Figure 6: Response of the state 𝑥(𝑡) when 𝑤(𝑡) = 0.

Table 1: Comparison with minimum performance level 𝛾 for
various ℎ

𝑏
(ℎ

𝑑
= 0.2).

Method ℎ
𝑏
= 0.5 ℎ

𝑏
= 0.6 ℎ

𝑏
= 0.8

Lin et al. [9] 0.35–0.38 0.38–0.44 0.44–0.63
Su et al. [13] 0.24–0.26 0.27–0.31 0.31–0.45
Huang et al. [14] 0.24–0.26 0.27-0.28 0.31–0.33
An et al. [12] 0.218 0.241 0.301
Remark 10 (𝛼 = 0.7 and ℎ

𝑎
= 0) 0.203 0.229 0.287

Corollary 9 (𝛼 = 0.7 and ℎ
𝑎
= 0) 0.257 0.291 0.330

Table 2: Comparison with maximum values on ℎ
𝑏
for various 𝛾

(ℎ
𝑑
= 0.2).

Method 𝛾 = 0.3 𝛾 = 0.4 𝛾 = 0.5

Lin et al. [9] 0.12–0.33 0.52–0.70 0.67–0.97
Su et al. [13] 0.59–0.78 0.70–1.08 0.70–1.13
Huang et al. [14] 0.72–0.78 1.00–1.09 1.06–1.17
An et al. [12] 0.80 1.16 1.19
Remark 10 (𝛼 = 0.65 and ℎ

𝑎
= 0) 0.82 1.19 1.23

Corollary 9 (𝛼 = 0.65 and ℎ
𝑎
= 0) 0.67 0.93 1.07

𝐵
𝑓1
=
[

[

2.8762

−0.3514

−1.2524

]

]

, 𝐶
𝑓1
=
[

[

−0.0429

0.0231

−1.4800

]

]

𝑇

,

𝐷
𝑓1
= −0.2639;

𝐴
𝑓2
=
[

[

−3.0616 0.1748 −5.0208

0.4286 −2.6990 1.9728

−0.1665 0.1401 −1.3033

]

]

,
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Table 3: Comparisonwithmaximum values on ℎ
𝑏
for various ℎ

𝑎
(ℎ

𝑑

unknown).

Method\ℎ
𝑎

0.4 0.8 1.0 1.2
Peng et al. [35] 1.0183 1.1817 1.2776 1.3816
Peng and Han [36] 1.1800 1.3100 1.3700 1.4300
Tian et al. [37] 1.2647 1.3032 1.3528 1.4214
An and Wen [38] 1.2770 1.3110 1.3580 1.4190
Peng and Fei [39] 1.3200 1.3200 1.3800 1.4200
Souza et al. [40] 1.2836 1.3394 1.4009 1.4815
Theorem 4 (𝛼 = 0.7) 1.5274 1.5361 1.5762 1.6340
Theorem 4 (𝛼 = 0.8, ℎ

𝑑
= 0.3) 1.8791 1.8583 1.8290 1.7864

𝐵
𝑓2
=
[

[

2.4661

−0.2198

−0.8735

]

]

, 𝐶
𝑓2
=
[

[

−0.4849

0.1575

−2.1071

]

]

𝑇

,

𝐷
𝑓2
= −0.1058.

(41)

Now, we assume that the filter (41) has gain perturbations
using (39) and 𝐹

2𝑗
(𝑡) = 𝐹

3𝑗
(𝑡) = 0.8. In this case, by

Theorem 4, the minimum 𝐻
∞

performance 𝛾min = 0.56 is
obtained, which implies that the 𝐻

∞
performance 𝛾 = 0.30

cannot guarantee that the corresponding matrix inequalities
in (12) are feasible. Meanwhile, in the case of no filter gain
perturbations, by Remark 10, we can calculate the optimal
performance level 𝛾min = 0.251.

What is more, based on this example, to compare with the
existing ones in [9, 12–14], we assumed that ℎ

𝑎
= 0 and ℎ

𝑑
=

0.2. According to Remark 10 andCorollary 9, we compare the
minimum𝐻

∞
performance level 𝛾 for the given different ℎ

𝑏

and 𝑘
1
, 𝑘

2
, 𝛿 in [9, 13, 14] with any 𝑘

1
, 𝑘

2
, 𝛿 in this paper, which

is shown by Tables 1 and 2. From these simulation results, our
approach yields less conservative than the existing results.

Furthermore, we will give another example to show the
effectiveness and merit of nonlinear system via T-S fuzzy
models.

Example 14 (Example 1 of [39]). Consider the following time-
delayed nonlinear system:

�̇�
1
(𝑡) = 0.5 (1 − sin2 (𝜃 (𝑡))) 𝑥

2
(𝑡) − 𝑥

1
(𝑡 − 𝜏 (𝑡))

− (1 + sin2 (𝜃 (𝑡))) 𝑥
1
(𝑡) ,

�̇�
2
(𝑡) = sgn(|𝜃 (𝑡)| − 𝜋

2

) (0.9cos2 (𝜃 (𝑡)) − 1) 𝑥
1
(𝑡 − 𝜏 (𝑡))

− 𝑥
2
(𝑡 − 𝜏 (𝑡)) − (0.9 + 0.1cos2 (𝜃 (𝑡))) 𝑥

2
(𝑡)

(42)

which can be exactly expressed as a nominal T-S delayed
system (5) with the following rules [35, 36, 39, 40]:

𝑅
1: if 𝜃 (𝑡) is ± 𝜋

2

, then �̇� (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐴

𝜏1
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑅
2: if 𝜃 (𝑡) is 0, then �̇� (𝑡) = 𝐴

2
𝑥 (𝑡) + 𝐴

𝜏2
𝑥 (𝑡 − 𝜏 (𝑡)) .

(43)

The membership functions for above rules 1 and 2 are

ℎ
1
(𝑥

1
(𝑡)) = sin2 (𝑥

1
(𝑡)) , ℎ

2
(𝑥

1
(𝑡)) = cos2 (𝑥

1
(𝑡))

(44)

with the following system parameters:

𝐴
1
= [

−2 0

0 −0.9
] , 𝐴

𝜏1
= [

−1 0

−1 −1
] ,

𝐴
2
= [

−1 0.5

0 −1
] , 𝐴

𝜏2
= [

−1 0

0.1 −1
] .

(45)

To compare with the existing results, we assume that ℎ
𝑑
is

unknown.The improvement of this paper is shown inTable 3.
If the delay is fast time-varying case, the LMIs in Theorem 4
are feasible with 1.2 ≤ 𝜏(𝑡) ≤ 1.6340. If the additional
information ℎ

𝑑
= 0.3 is given, larger upper bounds of the

delay can be computed by Theorem 4, which is shown at the
last row of Table 3. From Table 3, it also can be seen that the
proposed method yields less conservative than the existing
ones.

5. Conclusion

This paper deals with the robust nonfragile fuzzy 𝐻
∞

filter
design problem for uncertain T-S fuzzy systems with interval
time-varying delays. AnLMI approachhas been developed by
introducing a new delay decompositionmethod and then the
sufficient condition for the existence of the nonfragile fuzzy
𝐻
∞
filter has been given in terms of LMIs. It has been shown

that the designed filter guarantees not only the robust stability
but also a prescribed𝐻

∞
performance level of the fuzzy𝐻

∞

filtering error system for all admissible uncertainties. Three
numerical examples are utilized to illustrate the effectiveness
and reduced conservatism of the proposed method.

Appendix

Proof of Proposition 3. Motivated by [30, 43], we can rewrite
the second inequality of Proposition 3 as

[

Σ
3

Σ
1

]

𝑇

[

Σ
0
Σ
2

Σ
𝑇

2
0

] [

Σ
3

Σ
1

] < 0, (A.1)

where
Σ
1
= [−𝐼 𝐴 𝐴

𝜏
0 0 0 0 𝐵 0] ,

Σ
𝑇

2
= [𝑈

𝑇

0 0 0 0 0 0 0 0] ,

Σ
3
= diag {𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼} ,

Σ
0
=

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
1
𝑃
2

0 0 0 0 0 0 0

∗ 𝐷
1
0 𝐷

2
0 0 0 0 𝑋

1

∗ ∗ 𝐷
3
0 𝐷

4
𝐷
5
𝐷
6

0 𝑋
2

∗ ∗ ∗ 𝐷
7
𝐷
8

0 0 0 𝑋
3

∗ ∗ ∗ ∗ 𝐷
8
𝐷
9

0 0 𝑋
4

∗ ∗ ∗ ∗ ∗ 𝐷
10
𝐷
12

0 𝑋
5

∗ ∗ ∗ ∗ ∗ ∗ 𝐷
13

0 𝑋
6

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝐷
14
𝑋
7

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑋
8

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(A.2)
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Then, we choose the orthogonal complement of Σ
1
as

Σ
1⊥
=

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐴 𝐴
𝜏
0 0 0 0 𝐵 0

𝐼 0 0 0 0 0 0 0

0 𝐼 0 0 0 0 0 0

0 0 𝐼 0 0 0 0 0

0 0 0 𝐼 0 0 0 0

0 0 0 0 𝐼 0 0 0

0 0 0 0 0 𝐼 0 0

0 0 0 0 0 0 𝐼 0

0 0 0 0 0 0 0 𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

, (A.3)

which satisfies Σ
1
Σ
1⊥
= 0. Moreover, [Σ𝑇

1
Σ
1⊥
] is of column

full rank. Then, it follows that (A.1) is equivalent to the
following matrix inequality:

Σ
𝑇

1⊥
[

Σ
3

Σ
1

]

𝑇

[

Σ
0
Σ
2

Σ
𝑇

2
0

] [

Σ
3

Σ
1

]Σ
1⊥
< 0 (A.4)

which can be further reduced to

Σ
𝑇

1⊥
Σ
0
Σ
1⊥
< 0. (A.5)

Thus, we have shown that the second inequality of
Proposition 3 is equivalent to (A.5).

It is also easily seen that the first matrix inequality of
Proposition 3 can be rewritten as (A.5).

This completes the proof.
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