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Decision making in engineering design problems is challenging because they have multiple and conflicting criteria and complex
correlation between design parameters.This study proposes a decision-making support methodology named designmode analysis,
which consists of data clustering and principal component analysis (PCA). A design mode is indicated by the eigenvector obtained
by PCA and reveals the dominant design parameters in a given dataset. The proposed method is a general framework to obtain the
design modes from high-dimensional and large datasets. The effectiveness of the proposed method is verified on the conceptual
design problem of the hybrid rocket engine.

1. Introduction

Multiple-criteria decision making (MCDM) [1] is used in a
class of problems where decisions are made among multiple
and conflicting criteria (objectives). Since a single best deci-
sion for MCDM problems does not exist, they are solved by
seeking a set of available alternative decisions. After the alter-
natives are obtained, a decision maker (DM) chooses among
their preferred solutions. In this procedure, the set of alterna-
tives are represented as a Pareto solution set. This procedure
is also known asmultiobjective optimization. Nondominated
solutions are those where no objective function value can
be improved without worsening another objective function
value. Multiobjective optimization algorithms derive good
approximations for the Pareto optimal solutions, which can-
not be further improved.

Once solutions have been properly converged, they can
be used to make decisions. However, choosing the best com-
promise with multiple and conflicting objectives without any
information about the target problems to aid decisionmaking
is difficult. To solve this problem, many researchers have
proposed effective use of optimization results to improve our
understanding of the target problems.

Obayashi et al. [2, 3] proposed the multiobjective design
exploration framework, which consists of the KrigingModel,
multiobjective genetic algorithm, analysis of variance, and a
self-organizing map. It can explore a broad part of the deci-
sion space and derive many Pareto solutions (alternatives)
in a reasonable time through Kriging metamodeling of the
objective functions. The information tradeoff between mul-
tiple objectives and decision space characteristics is broadly
outlined by visualizing the decision and objective spaces
using data mining methodologies, such as self-organizing
maps.

Oyama et al. [4, 5] used proper orthogonal decomposition
(POD) to formulate decision variables involved in designing
the airfoil shape and revealed that any design can be decom-
posed into the mean vector and the fluctuation vector, which
is expressed by the linear sum of normalized eigenvectors
and orthogonal base vectors. One of the advantages of their
approach is that we can understand the representative design
types as well as the parameters. After analyzing the fluctua-
tion vector, the parameters are constructed from a large and
high-dimensional dataset.

In this paper, inspired by the work of Oyama et al., we
extend the concept of the fluctuation vector and define a new
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concept—design mode. Based on this concept, we propose
“design mode analysis,” which is an analytical framework
for finding the design modes and using them effectively. It
consists of data clustering and principal component analysis
(PCA) and will extract the representative design types along
with their characteristics. These information aid the decision
making. Note that PCA is same algorithm as POD, but the
different name is used depending on the application field. In
this paper, we use the name of PCA.

This paper is organized as follows. Section 2 gives the
definition of the multiobjective optimization problem. Sec-
tion 3 introduces the concept and framework of the proposed
method, as well as its application to engineering design prob-
lems. In Section 4, the proposed method is applied to the
conceptual design problem of a hybrid rocket engine. The
paper concludes with Section 5.

2. Multiobjective Optimization Problem

In many engineering design problems, MCDM is often
treated as a multiobjective optimization problem. It can be
formulated as

minimize 𝐹 (x) = (𝑓
1
(x) , . . . , 𝑓

𝑚
(x))𝑇

subject to x ∈ 𝑆,
(1)

where 𝐹(x) is an objective vector, consisting of 𝑚-objective
functions 𝑓

𝑖
: R𝑛 → R for all 𝑖 ∈ {1, . . . , 𝑚}. 𝑆 ⊂ R𝑛 is

called the decision variable space and is defined as
𝑆 = {x ∈ R

𝑛
| 𝑔
𝑗
(x) ≤ 0 (𝑗 = 1, . . . , 𝑙) ,

ℎ
𝑘
(x) = 0 (𝑘 = 1, . . . , 𝑝)} .

(2)

Here, 𝑔
𝑗
(x) and ℎ

𝑘
(x) are inequality and equality constraints,

respectively. Multiobjective optimization problems consist of
two definitions that handle the tradeoff between the multiple
criteria (objectives). Notably, these definitions are prescribed
for minimization problems.

Definition 1 (Pareto dominance). For x
1
and x
2
(x
1

̸= x
2
), x
1

is said to dominate x
2
if for at least one 𝑖 = 1, . . . , 𝑚, 𝑓

𝑖
(x
1
) ≤

𝑓
𝑖
(x
2
) and 𝑓

𝑖
(x
1
) < 𝑓
𝑖
(x
2
).

Definition 2 (Pareto optimality). Let x
0
∈ 𝑆.Then, x

0
is Pareto

optimalwhen there are no other solutions in 𝑆 dominating x
0
.

Based on these definitions, the Pareto solution set or non-
dominated solution set is a subset of all the Pareto-optimal
solutions. Typically, multiobjective optimization algorithms
seek good approximations in the Pareto optimal solutions
by evolutionary multiobjective optimization (EMO). EMO is
a popular approach because it obtains many nondominated
solutions simultaneously in a single run. Recently, a number
of EMO algorithms have been developed and improved
to derive well-converged and well-spread nondominated
solutions sets. One of the most successful frameworks in
recent EMO algorithms is the multiobjective evolutionary
algorithm based on decomposition (MOEA/D) proposed by
Zhang and Li [6]. It has been widely used in many real-world
applications [7, 8].

Decision space Objective space

F2

F1

x∗ ∈ P

x1

x2
F(x∗)

Figure 1: Representation of the decision space and the objective
space.

3. Design Mode Analysis

3.1. Definition of DesignMode. Decision variables are defined
as a set of parameters that determine the solutions to optimi-
zation problems. For example, in product design problems,
they frequently represent the size, weight, and shape of the
product. Objective functions indicate the goal of the product
design, such as the performance and cost of the target prod-
uct. The decision variables and objective functions form the
decision space and the objective space, respectively, as shown
in Figure 1. In general, the optimization process explores the
decision space with the aim ofminimizing ormaximizing the
objective functions. Many multiobjective evolutionary algo-
rithms aim to improve the diversity and convergence of the non-
dominated solutions, especially in the objective space [6, 9].

However, in product design problems, the design is also
characterized by the decision variables. For example, if the
product mass is successfully minimized and the character-
istics of the decision variables of the optimum solutions are
analyzed, a weight-saving design strategy may be found for
the product.

In this study, we incorporate the “design mode” concept
into decision space analysis as an essential perspective. The
concept is derived from PCA. These methods extract the
dominant characteristics of the target dataset by decompos-
ing high-dimensional data into low-dimensional descriptions
using a set of principal component vectors, whose directions
correspond to maximum variance among the variables.
Oyama et al. [4, 5] applied PCA in their analysis of airfoil
shape design and reported its effectiveness. They focused
on designing the shape of the product, that is, seeking the
principal airfoil shapes that made up the Pareto solution set.

In this study, we generalize and extend the concept to deal
with all types of decision parameters during product design.
Directions indicated by principal component vectors guide us
to change the decision variables for constructing the designs
in the given dataset. Furthermore, the contribution ratio of
each decision variable to the principal component vectors
shows its importance for creating the designs.We assume that
the principal component vector gives us important informa-
tion for the engineering design and define it as “designmode.”
An analytical framework based on this design mode is also
proposed.

Let 𝑋(𝑖) = (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑚
) ∈ R𝑚 be a decision variable

of the 𝑖th Pareto solution, and let 𝑋 = (𝑋
(1)
, . . . , 𝑋

(𝑁)
) be
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a Pareto solution set of size 𝑁. In PCA, the following opti-
mization problem is solved, and the vector w that maximizes
variation in the decision variables is selected:

max
‖w‖=1

Var [w𝑇𝑋] = max
‖w‖=1

w𝑇Var (𝑋)w, (3)

where the matrix Var(𝑋) = 𝐶 is the covariance matrix of the
dataset 𝑋. Let 𝜆

1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑚
be the eigenvalues for 𝐶,

and let V
𝑗
be their corresponding eigenvectors. Then, the 𝑘th

principal component of the data is represented by

𝑌
(𝑖,𝑘)

= k
𝑘
𝑋
(𝑖)
. (4)

The original dataset can be decomposed into a low-
dimensional representation by selecting a certain number of
the principal components. The most useful contribution of
PCA to the Pareto dataset is that the entire Pareto dataset
can be approximated by the mean vector of the dataset and
a linear combination of a specified number of eigenvectors:

𝑋
(𝑖)
≅ u +

𝑝

∑

𝑘=1

𝛼
𝑘
k
𝑘
. (5)

A useful criterion for choosing the number of compo-
nents is the cumulative proportion of the variance 𝑃, defined
below. This metric indicates the extent to which each princi-
pal component explains the original dataset. Consider

𝑃 =
∑
𝑝

𝑖=1
𝜆
𝑖

∑
𝑚

𝑖=1
𝜆
𝑖

. (6)

From the axes associated with each eigenvector, we
construct a meaningful new decision space. Here, we define
each eigenvector as “design mode.” Along the axes indicated
by the design modes, we examine the features of the obtained
solutions. To analyze the correlation between the axes of
the decision variables in the original decision space and the
new axis indicated by the 𝑘th design mode, we calculate the
component loading:

𝑟
𝑘𝑗
= √

𝜆
𝑘

𝑠
𝑗

V
𝑘𝑗
, (7)

where 𝑠
𝑗
is the variance of the 𝑥

𝑗
and V
𝑘𝑗
is the 𝑗th element

of eigenvector v
𝑘
. The component loading specifies the

importance of the decision variable 𝑥
𝑗
in constructing the

𝑘th principal component. Notably, if PCA is executed on a
standardized dataset, the covariance matrix 𝐶 is equivalent
to the correlation matrix of𝑋. In this case, u = 0 and 𝑠

𝑗
= 1.

This section has outlined some important aspects of
design mode analysis.

(i) Applying PCA to a Pareto set enables the extraction
of dominant designs and decision variables to be
extracted.

(ii) Pareto solutions can be approximated by the mean
vector of the dataset and the linear combination of a
certain number of eigenvectors.

(iii) Each eigenvector forms a meaningful new axis in the
decision space, and correlations between the original
and new axes are quantitatively evaluated by the
component loadings.

(3) Principal component analysis in decision space

(1) Generating the data set

(2) Clustering the data set in decision space
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Figure 2: Design mode analysis framework.

3.2. Framework of Design Mode Analysis. In the above sub-
sections, we explained the concept of the design mode. Here,
we explain the framework of design mode analysis.Themain
steps of the design mode analysis are as follows: generate the
dataset; cluster the dataset; perform PCA; and either perform
correlation analysis or construct a new design. The proposed
framework is illustrated in Figure 2.
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The differences of our proposed approach from the con-
ventional method are as follows:

(1) data clustering is incorporated into the analysis;
(2) design mode characterization is achieved by studying

the component loading of each design mode.

The following subsections provide detailed descriptions of
each step in the framework.

3.2.1. Generating the Dataset. The first step in our proposed
analysis is to choose how to generate the dataset (design
examples). One of the easiest ways to do this is to use statisti-
cal sampling methods such as Latin hypercube sampling. An
expert engineer can also supply representative designs. The
dataset generation is dependent on the objective of the design
mode analysis. For example, if the engineer desires a uniform,
equal study of the design space characteristics, statistical
sampling is preferred. Alternatively, if the aim is to elucidate
the design methodology of an expert, then many design
examples constructed by the expertsmust be collected. In this
study,we investigate the decision space characteristics around
the Pareto solution set and then obtain the solutions by EMO.
Notably, our proposed framework does not determine the
data generation method. Multiobjective optimization is only
one of the tools available to generate characteristic designs.

3.2.2. Clustering the Dataset. By incorporating data cluster-
ing into data preprocessing, we can obtain reliably distin-
guished designmodes. Data clustering for the Pareto solution
set can be applied to either the decision or the objective space.
However, since design mode analysis is conducted on the
decision space, clustering should ideally be performed on the
decision space. Data clustering was not considered as a part
of the conventional method proposed by Oyama et al. [4, 5].
However, since data clustering screens all the input designs
and divides them into representative designs and their similar
counterparts, its inclusion is advantageous. Meanwhile, any
of the data clustering methods are suitable. In this study, we
adopt 𝑘-means clustering, which divides the dataset into 𝑘
clusters. Each datum is then assigned to the cluster with the
nearest mean vector.

3.2.3. Principal Component Analysis on the Dataset. Once the
clustering process is complete, each cluster is subjected to
PCA. Different designmodes are expected to be derived from
each cluster. Moreover, the mean vector of each cluster is
the representative design of each cluster, and all solutions in
each cluster are approximated by a linear combination of the
designmodes (eigenvectors), in the coordinate system whose
origin is the mean vector.

3.2.4. Correlation Analysis. Having obtained the design modes
for each cluster, we study each design mode by referring to
the component loadings.This process identifies the dominant
decision variable in the design mode, thereby revealing the
important factors for creating the new designs in each cluster.
Decision variables that make low contributions to the design
mode can be eliminated from the variables and set as

constants instead. The component loadings characterize the
design modes and give us their features. This process was not
considered in the conventional method either. It will give us
useful information about the target problem.

3.2.5. Constructing a New Design. Our proposed method,
called design mode analysis, is employed as an analytical tool
and a design support tool. Since most designs in each cluster
can be approximated in the decision space formed by the design
modes, we can easily generate new designs with the same
features in this space, using (5). Note that random sampling
in the original decision space does not easily create design
sharing characteristics for a specific design, especially if that
decision space is high-dimensional. We summarize the pro-
posed framework in the pseudocode shown in Algorithm 1.

The following subsection demonstrates the effectiveness
of each step in our proposed method through a series of
experiments.

3.3. Case Study: Multiobjective 0/1 Knapsack Problem. In this
subsection, our proposed design mode analysis method is
applied to the multiobjective 0/1 knapsack problem (MOKP).
The effectiveness of the method is investigated in terms of the
following outcomes:

(i) how well each design mode characterizes the dataset,
(ii) whether the data clustering process effectively distin-

guishes the design modes,
(iii) whether any design in each cluster can be approxi-

mated by the mean design and a linear combination
of the design modes in the cluster,

(iv) whether our proposed method can be applied to
binary-valued problems.

3.3.1. Experimental Setup. The target design problem,MOKP,
is a multiobjective extension of the classic 0/1 knapsack prob-
lem (KP), a nondeterministic polynomial time complete com-
binatorial problem. When we try to pack the items, which
have their own values andweights, into a knapsackwith capac-
ity constraints, choosing the items tomaximize the total profit
of the items selected is important, as we cannot pick them all.
In combinatorial optimization, this is popularly known as the
classic KP and often appears in real-world decision-making
problems in various fields, such as production scheduling or
portfolio management. Figure 3 illustrates the classic KP. In
KP, a binary decision variable is used to indicate whether
each item is included in the knapsack or not, and the total
profit of the items packed into the knapsack is defined as the
objective function. The objective is to find a subset of the
itemswith a total weight not exceeding the knapsack capacity,
whilemaximizing the total profit.MOKP is an extended form
of KPwhere the number of the knapsacks is simply increased.

The 𝑘-objective MOKP with 𝑁 decision variables is for-
mulated as

maximize 𝑓
𝑖
(x) =

𝑁

∑

𝑗=1

𝑥
𝑗
𝑝
(𝑖,𝑗)

, 𝑥
𝑗
∈ {0, 1}

subject to 𝑔
𝑖
(x) =

𝑁

∑

𝑗=1

𝑥
𝑗
𝑤
(𝑖,𝑗)

≤ 𝑊
𝑖
, 1 ≤ 𝑖 ≤ 𝑘,

(8)
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(1) Generate a design dataset X = (𝑋(1), . . . , 𝑋(𝑁)) of size N.
(2) Divide the dataset into H clusters

by using data clustering.
(3) for i = 1 to H do
(4) Extract the design mode v

𝑘
= (V
𝑘1
, V
𝑘2
, . . . , V

𝑘𝑚
) by

applying the PCA (𝑘 = 1, . . . , 𝑁) on ith cluster.
(5) Calculate and study the component loading

r
𝑘
= (𝑟
𝑘1
, 𝑟
𝑘2
, . . . , 𝑟

𝑘𝑚
) for each v

𝑘
using

𝑟
𝑘𝑗
= √𝜆𝑘/𝑠𝑗V𝑘𝑗

(6) Choose a base design b from the ith cluster,
or calculate a mean vector instead of it.

(7) Choose a number of design modes p
used for generating new designs.

(8) Generate a new design X󸀠 based on

𝑋
󸀠
= b +

𝑝

∑

𝑘=1

𝛼
𝑘
v
𝑘
.

Coefficient 𝛼
𝑘
is an arbitrary constant.

(9) end for

Algorithm 1: Design mode analysis.
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Figure 3: Knapsack problem.

where 𝑝
(𝑖,𝑗)

indicates the profit of the 𝑗th item in calculating
the function value for the 𝑖th knapsack. In the constraint
function, 𝑤

(𝑖,𝑗)
is the weight, and 𝑊

𝑖
is the upper limit

value of 𝑤
(𝑖,𝑗)

. The test case is the 2KP50-11 dataset selected
from MCDMlib [10], a collection of datasets available for
testing various multiobjective optimization problems. The
study constitutes a biobjective (two-knapsack) problem with
50 decision variables (items). These items in each knapsack
are weighted the same, but their profits differ.

The nondominated solution set of 2KP50-11 is obtained
by nondominated sorting genetic algorithm II (NSGA-II)
[9], one of the most efficient MOEAs: two-point crossover
(crossover rate = 1.0) and bit-flip mutation (mutation rate =
1/chromosome length) are used. Population size is set at 120.
A single run of NSGA-II is terminated after 1000 generations,
and 30 runs of NSGA-II are executed. The crossover and
mutation rate used here follow the practice in [6, 9]. Popula-
tion size and the number of generations are empirically cho-
sen (not optimized) here. Although the choice of the genetic
algorithm parameters (population size, number of genera-
tions, crossover, and mutation rates) may result in different
optimum solutions, it is not the focus of our study to adjust
and study the parameter setting. The multiobjective optimi-
zation is only the tool to generate the dataset to be analyzed.

Notably, MOKP comprises binary-valued decision vari-
ables. Since PCA executes real-valued variables, we must
assume that the binary variables are continuous [0, 1] when
applying PCA to the solution dataset of MOKP.

300
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300 400 500 600 700
f1

f
2

Figure 4: Nondominated solutions obtained by NSGA-II.

3.3.2. Results and Discussion. Figure 4 shows the nondomi-
nated solutions obtained byNSGA-II. After deleting the over-
lapped data obtained in the 30 runs, we obtained 53 solutions.

PCA was also carried out on the decision variables of
the nondominated solutions sets.The results of running PCA
on MOKP nondominated solution sets are summarized in
Table 1. The original dataset can be explained if the cumula-
tive proportion of explained variance is ≥0.8. In this case, the
first eight design modes are essential to explain the dataset.
To visualize the characteristics of the design modes, the
component loadings are calculated and plotted in Figure 5.
The component loadings of elements with zero variance are
plotted as zero, because when they are equal to zero, (7) is
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Table 1: Summary of running PCA on a MOKP nondominated solution set.

Design mode (i) 1 2 3 4 5 6 7 8 9 10
Standard deviation (√𝜆

𝑖
) 0.92 0.76 0.59 0.54 0.48 0.46 0.43 0.41 0.39 0.37

Proportion of variance 0.25 0.17 0.10 0.08 0.07 0.06 0.05 0.05 0.04 0.04
Cumulative proportion 0.25 0.41 0.51 0.60 0.66 0.72 0.78 0.83 0.87 0.91
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Figure 5: Distribution of the component loadings (Modes 1 to 8).
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Figure 6:Distribution of the component loadings for the first design
mode of each cluster.

incalculable. To interpret this distribution, we check each
element; if the absolute value of the 𝑖th element in 𝑘th design
mode is large, then packing or discarding the 𝑖th item strongly
affects the 𝑘th design mode. Each design mode has a unique
distribution of its component loadings, indicating that several
different strategies will successfully pack the items into two
knapsacks while maximizing the profits.

Next, to evaluate the effectiveness of the data clustering,
𝑘-means clustering was performed on the dataset, yielding
three clusters (𝑘 = 3). Figure 7 plots these clusters in the
objective space.

Here, the first design mode is the design mode corre-
sponding to the eigenvector with the maximum eigenvalue.
Following PCA, a different design mode (i.e., the first design
mode)was obtained for each cluster and for the entire dataset,
as shown in the component loading plots of Figure 6. Thus,
apparently, data clustering distinguishes the design modes
effectively.

If PCA successfully extracts the design modes of each
cluster, any design in any cluster can be approximated by the
mean design and a linear combination of the design modes
within the cluster. To verify this assumption, we approxi-
mated the nondominated solution set by its mean vector
and effective design mode vectors (sufficient to achieve a
cumulative proportion of the variance ≥0.80).The procedure
for approximating the solution set is shown below.
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300 400 500 600 700

Cluster 1
Cluster 2
Cluster 3

f1

f
2

Figure 7: Three clusters obtained by 𝑘-means clustering.

Design Approximation Method.

(1) Choose a target design 𝑋(𝑖) = (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑚
) from the

dataset𝑋 = (𝑋
(1)
, . . . , 𝑋

(𝑁)
).

(2) Choose 𝑝 eigenvectors so as to account for a cumula-
tive proportion of the variance 𝑃 ≥ 0.80.

(3) Find optimum coefficients 𝛼
𝑗
(𝑗 = 1, . . . , 𝑝) of the

approximated design calculated by (5) so as to mini-
mize the sum of the squared error (SSE) between the
target and approximated design in the decision space:

𝑚

∑

𝑖=1

(𝑥
󸀠

𝑖𝑘
− 𝑥
𝑖𝑘
)
2

, (9)

where 𝑥
𝑖𝑘
is the 𝑘th decision variable of the 𝑖th design

in the dataset and 𝑥󸀠
𝑖𝑘
is the approximated design of

𝑥
𝑖𝑘
. Notably, if there are the constraints in decision

variables in the original dataset, they should be added
to (9).

As an example, consider a target design in the solution
with amaximum𝑓

1
value of (𝑓

1
, 𝑓
2
) = (637, 362), and assume

that the design belongs in Cluster 1. To obtain the approx-
imation error in the objective space, we must evaluate the
objective function value of the approximated design. The
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Table 2: Summary of design approximation using design modes.

𝑓
1

𝑓
2

𝑔 SSE 𝐷
ℎ

𝐷
𝑓

𝑝

Target design 637 362 187 — — — —
Mean design (of all the solutions) 510 369 154 5.02𝐸 + 00 5 127.19 —
Mean design (of Cluster 1) 684 508 212 3.14𝐸 + 00 5 153.38 —
Approximated design (using design mode of all the solutions) 543 327 156 9.03𝐸 + 00 1 100.31 8
Approximated design (using design mode of Cluster 1) 637 362 187 3.40E − 01 0 0.00 7

solution obtained by this approximation method can be real
valued. To evaluate the objective function values of MOKP,
the approximated decision variables should be converted to
binary values. In this experiment, the approximated variable
is rounded to the nearest whole number. If the integer lies
outside of [0, 1], it is assumed to be 0 or 1; that is, if it is smaller
than 0, it is assumed to be 0, and if it is larger than 1, it is
assumed to be 1.

Results of the design approximation are summarized in
Table 2, where 𝑔 is the constraint value in (8). SSE is the
approximated error in the decision space defined by (9). 𝐷

ℎ

is the Hamming distance between the target and the approx-
imated design in the decision space. 𝐷

𝑓
is the Euclidean

distance between the target and the approximated design in
the objective space, and 𝑝 is the number of design modes
used in the approximation. We tried two different methods
of design approximation. In the first, PCA was applied to all
solutions, and each design was approximated by the mean
vector and the design modes of all solutions. In the second,
PCA and design approximation were executed on the Cluster
1 dataset. The results of both trials are listed for comparison
in Table 2. The approximated designs in the objective space
are plotted in Figure 8.

Table 2 indicates that the target design was successfully
approximated from the data in Cluster 1 alone (SSE = 3.40𝐸−
01,𝐷
ℎ
= 0).When the approximation was built from all solu-

tions, the SSEwas an order ofmagnitude greater.These results
are also evident in the plots of Figure 8.

To ensure that data clustering effectively distinguishes
between the design modes, we analyzed the performance of
the approximated design. In this analysis, we adjusted the
size of each eigenvector before adding it to the mean vector.
The upper charts in Figure 9 show the distributions of the
elements of the mean and target design elements, while the
lower charts show the distributions of the elements of the
modal eigenvectors built into the approximation.

To approximate the target design, elements of the mean
design with values different from the target values are altered
on addition of the eigenvectors. Arrows on the charts indicate
the directions of the altered elements. For instance, observe
the 37th variable emphasized by the hatched pattern in Fig-
ures 9(a) and 9(b). In the design approximation without data
clustering (Figure 9(a)), the magnitude of the 37th variable is
very much smaller (±0.1) than that obtained after data clus-
tering (Figure 9(b)). In this case, a larger coefficient 𝛼

𝑗
(𝑗 =

1, . . . , 𝑝) is required to successfully approximate the 37th vari-
able. However, an appropriate coefficient for a single variable
is difficult to determine because the coefficient affects all
other elements. Conversely, in the design approximated from
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Figure 8: Plots of approximated designs in objective space.

the clustered data, the element lacked by the mean design
compared to the target design is compensated for the cor-
responding element of the eigenvectors. These results show
that data clustering is effective for extracting precise design
modes.

This case study also highlights the importance of granu-
larity in our proposed designmode analysis. In the absence of
clustering, we assume that some decision variables contribute
negligibly to the design.Thus, granularity exists in the design
mode extraction. Data clustering increases the granularity of
the design modes. Watanabe et al. [11] proposed an intera-
ctive granularity control method, which is applicable to our
proposed design mode analysis.

3.4. Granularity in Design Mode Analysis. In the above case
study, we introduced the concept of “granularity” in design
mode analysis.The granularity of the designmode extraction
required by DM depends on the situation. For example, if
a researcher is interested in the characteristics of specific
clusters, he may divide the dataset into several clusters and
characterize the clusters by PCA. At the beginning of the
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Figure 9: Distribution of eigenvectors in design approximation of max solution.
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Figure 10: Proposed framework of design mode analysis focusing on granularity.

analysis, the characteristics of the decision space can be
coarsely determined by imposing a low granularity. Once the
design mode has been refined, a high granularity is expected.
This subsection focuses on granularity and proposes a more
general framework for design mode analysis.

Following Watanabe et al. [11], we adopted a hierarchical
approach.The proposed framework iterates binary clustering
andPCAand approximates a design for each cluster.Different
from Watanabe et al., we controlled the granularity of the
design mode analysis by the accuracy of the approximated
design. Our proposed framework is illustrated in Figure 10.

The design approximation process is discussed in Sec-
tion 3.3.2. If the design modes are successfully derived, any
design can be approximated by a linear combination of the
design modes, as shown in (5). In this equation, the base
design is the mean vector of the cluster, but the base design
can be any design in the cluster, provided that it retains the
average or representative characteristics of its own cluster.
The easiest way to choose the representative design is to cal-
culate the mean vector and set it as the base.

Once the design approximation is complete, DM checks
whether the analysis has adequately converged or whether
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analysis should be continued. The convergence is evaluated
by the errors in the decision and objective spaces. DM may
specify a threshold for each approximation error. If high
quality design modes or design strategies are obtained, DM
can terminate the analysis.

Otherwise, the design modes are refined by dividing each
cluster into two new clusters and progressing to the next layer
of granularity.Notably, PCAand clustering are not performed
on clusters of a single datum. In this case, the next layer
inherits the cluster.

The above-mentioned procedures yield design modes at
any level of granularity.

4. Application to Conceptual Design of
Hybrid Rocket Engine

In this section, our proposed designmode analysis method is
applied and tested on the conceptual design of a hybrid rocket
engine. This problem, which is one of the most useful real-
world optimization problems for testing the performance of
optimization algorithms [12], was first proposed by Kosugi
et al. [13]. The executable software for objective function
evaluation is available from the website [14].

4.1. Problem Definition. A hybrid rocket engine stores pro-
pellant in two different kinds of phases. With the advantages
of low environmental impact, flexible thrust control by throt-
tling, and reduced chemical explosion hazard, it is becoming
increasingly popular. In the hybrid rocket engine, the thrust
and the engine design are strongly correlated because thrust
is obtained by combustion in the boundary layer diffusion
flame. Thus, designing the solid fuel geometry and the oxi-
dizer supply system is important and difficult.

The hybrid rocket investigated comprises four parts: a
payload, an oxidizer tank, a thrust chamber, and a nozzle.
The thrust is provided to the hybrid rocket by combustion
in a turbulent boundary layer in the thrust chamber. The
oxidizer andmass/fuel ratio also affect the thrust.The latter is
determined by the fuel parameters, namely, the oxidizer, fuel
length, and initial port radius. Hybrid rocket design problems
constitute two-objective optimization problems, in which the
fuel parameters must be optimized to maximize the altitude
gained, while minimizing the gross weight. A schematic of
the hybrid rocket is shown in Figure 11.

Here, the six-dimensional decision space comprises the
initialmass flowof the oxidizer 𝑚̇oxi(0) [kg/s], fuel length𝐿 fuel
[m], initial port radius 𝑟port(0) [m], combustion time 𝑡burn
[s], initial pressure in the combustion chamber 𝑃cc(0) [MPa],
and aperture ratio of nozzle 𝜀. The two-objective functions
aim to maximize the altitude𝐻max [km] and simultaneously
minimize the gross vehicle weight𝑀tot(0) [kg].The following
motion equation is assumed during the flight analysis:

𝑎 (𝑡) =
𝑇 (𝑡) − 𝐷 (𝑡)

𝑀tot (𝑡)
− 𝑔, (10)

where 𝑎(𝑡) is acceleration at time 𝑡,𝑇(𝑡) is the thrust [N],𝐷(𝑡)
is the total drag [N], and𝑔 [m/s2] is gravitational acceleration.
The following equation relates the thrust 𝑇(𝑡) to the aperture

Payload Oxidizer tank Thrust chamber Nozzle

x2: L fuel
x1: oxi (0)

x3: rport

x4: tburn
x5: Pcc(0)

x6: 𝜀

Figure 11: Schematic of the hybrid rocket.

ratio of the nozzle 𝜀 and the pressure in the combustion
chamber 𝑃cc(0) [MPa]:

𝑇 (𝑡) = 𝜂
𝑇
[𝜆𝑚̇prop (𝑡) 𝑢𝑒 + (𝑃𝑒 − 𝑃𝑎) 𝐴𝑒] , (11)

where 𝜂
𝑇
is the total thrust loss coefficient and 𝜆 is the

momentum loss coefficient, embodying the effect of friction
(<1) at the nozzle exit. 𝑚̇prop(𝑡) is the mass flow of propellant,
and 𝑢

𝑒
and 𝑃

𝑒
denote the velocity and pressure at the nozzle

exit, respectively. 𝑃
𝑎
denotes the atmospheric pressure at

flight altitude, and 𝐴
𝑒
is the area of the nozzle exit.

The drag𝐷(𝑡) is decomposed into the pressure drag𝐷
𝑝
(𝑡)

and the friction drag 𝐷
𝑓
(𝑡). The parameters 𝑚̇prop(𝑡), 𝐷𝑝(𝑡),

and𝐷
𝑓
(𝑡) are not described because of space limitations. For

details on these parameters, the reader is referred to [13, 14].
The gross weight𝑀tot(𝑡) is estimated by

𝑀tot (𝑡) = 𝑀en (𝑡) + 𝑀pay (𝑡) + 𝑀ex (𝑡) ,

𝑀en (𝑡) = 𝑀oxi (𝑡) + 𝑀fuel (𝑡) + 𝑀res (𝑡) + 𝑀ch (𝑡) ,

𝑀ex (𝑡) =
3

2
𝑀en (𝑡) ,

𝑀oxi (𝑡) = ∫
𝑡burn

0

𝑚̇oxi (𝑡) 𝑑𝑡,

𝑀fuel (𝑡) = ∫
𝑡burn

0

𝑚̇fuel (𝑡) 𝑑𝑡,

𝑀res = 𝜌𝑉res,

𝑀ch = 𝜌𝑉ch,

(12)

where𝑀pay and𝑀en are payload and engine weights, respec-
tively. 𝑀oxi is the total mass of the oxidizer, and 𝑀fuel is the
total fuel mass. The mass of the oxidizer tank, combustion
chamber, and other equipment is denoted by𝑀res, 𝑀ch, and
𝑀ex, respectively.𝑉res and𝑉ch are the integrated volumes of a
material for the oxidizer tank and the combustion chamber,
respectively.



10 Journal of Applied Mathematics

Given (12), we define the multiobjective optimization
problem of the hybrid rocket engine design as

maximize 𝑓1 = 𝐻max,

minimize 𝑓2 = 𝑀tot (0) ,

subject to: 1.0 ≤ 𝑚̇oxi (0) ≤ 30.0,

1.0 ≤ 𝐿 fuel ≤ 10.0,

10.0 ≤ 𝑟port (0) ≤ 200.0,

15.0 ≤ 𝑡burn ≤ 35.0,

3.0 ≤ 𝑃cc (0) ≤ 4.0,

5.0 ≤ 𝜀 ≤ 7.0.

(13)

Here, 𝜂
𝑇
and 𝑀pay are set to 1.0 and 50 [kg], respectively.

𝑚̇oxi(0), 𝐿 fuel, 𝑃ch, and 𝑃res are assumed as constants. That is,
this design problem seeks the most lightweight rocket that
does not compromise the flight altitude.

4.2. Multiobjective Optimization. In this subsection, the data-
set is the nondominated solution set of the hybrid rocket
engine design problem. The solutions are derived by NSGA-
II. The population size is set to 120. The analysis assumes a
simulated binary crossover (SBX) with a crossover rate of 1.0
and a polynomial mutation with a mutation rate of 1/(chro-
mosome length). The decision variable vector of a single
solution is represented as X = [𝑚̇oxi(0), 𝐿 fuel, 𝑟port(0), 𝑡burn,
𝑃cc(0), 𝜀] in NSGA-II. Each decision variable is binary coded
with a length of 20 bits, giving a chromosome length of 120.
A single run of NSGA-II is terminated after 188 generations.
The objective function was calculated 22680 times, yielding
120 solutions. The crossover and mutation rate used here fol-
lows the practice in [6, 9]. Population size, the number of
generations, and other genetic parameters are empirically
chosen.The parameter study to obtain appropriate parameter
setting is dismissed because it is not the focus of our study to
improve optimization accuracy.The obtained nondominated
solutions are plotted in Figure 12.

Intuitively, more fuel will achieve higher altitude; how-
ever, fuel increases the weight of the rocket. The weight-
altitude tradeoff is evident in Figure 12 but is difficult to visu-
alize in the six-dimensional decision space. For this reason,
our design mode analysis is effective for analyzing the char-
acteristics of high-dimensional decision spaces.

4.3. Design Mode Analysis. In this subsection, we extract the
decision space characteristics of the nondominated solutions
for the hybrid rocket engine design and derive an appropriate
design strategy using our proposed design mode analysis
(described in Section 3.4). Prior to running the PCA, we first
preprocess the decision variables of the hybrid rocket design
to normalize the mean and variance of them. Thus, PCA is
performed based on the correlations matrix. When the range
and scale of variables are different from each other, the dataset
should be normalized. Otherwise, as in the case of MOKP,
the covariance matrix is used for PCA to preserve variance
without normalization of the dataset.
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Figure 12: Nondominated solution set of hybrid rocket engine
design problem.

The base of the approximated design is set to the mean
vector of each cluster, where binary clustering is performedby
the 𝑘-means method with cluster size 2. The distance metric
in 𝑘-means clustering is the Euclidean distance. The error in
the design approximated in the decision space is the sum of
squares of the relative error (SSRE):

𝑚

∑

𝑘=1

(𝑥
󸀠

𝑘
− 𝑥
𝑖𝑘
)
2

𝑥
𝑖𝑘

2
, (14)

where 𝑥
𝑖𝑘
is the 𝑘th decision variable of the 𝑖th design in the

dataset and 𝑥󸀠
𝑘
is the approximated design of 𝑥

𝑖𝑘
. Moreover,

the PCA is also performed on the correlation matrix. The
SSRE is minimized by the optimization algorithm (i.e.,
sequential least squares programming) [15].

If some decision variables are integer values, we regard
them as real-valued variables through the design mode anal-
ysis. When the designs based on the design modes are eval-
uated in the objective space, their variables, which are origi-
nally the integer values, should be rounded off to the closest
whole number.

The pseudocode of the extended framework of design
mode analysis is shown in Algorithm 2.

4.4. Results and Discussion. Figure 13 plots the history of the
error in the decision space at each layer of the design approx-
imation. Although, relative to the first layer, the accuracy
worsens in the second and third layers, it gradually improves,
as the layers are refined. This indicates that data clustering
contributes to design mode classification and improves the
accuracy of the approximated design. This trend is empha-
sized in the objective space.
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(1) Generate a design dataset 𝐶
1

(1) = (𝑋(1), . . . , 𝑋(𝑁)) of size N.
(2) Scale the dataset such that all decision variables have

zero mean and unit variance.
(3) Initialize total approximation error E =∞.
(4) Set a threshold 𝜂 for E.
(5) Initialize layer counter i = 1.
(6) while E > 𝜂 do
(7) Initialize the number of clusters in current layer

𝐻 = 2
𝑖
− 1.

(8) Initialize the counter of the clusters in new layer k = 1.
(9) Initialize E = 0.
(10) for j = 1 to H do
(11) Extract the design mode by applying PCA to 𝐶

𝑗

(𝑖).
(12) Calculate the component loading for each

design mode.
(13) Choose a base design 𝐶

𝑗

(𝑖), or calculate
a mean vector of 𝐶

𝑗

(𝑖).
(14) Choose p design modes so as to satisfy cumulative

proportion of the variance P ≥ 0.80.
(15) Perform Design Approximation (mentioned above)

for all the designs in 𝐶
𝑗

(𝑖).
(16) Add 𝐸

𝑗

(𝑖) (approximation error for 𝐶
𝑗

(𝑖)) to
the total error: E = E + 𝐸

𝑗

(𝑖).
(17) Divide the cluster 𝐶

𝑗

(𝑖) into two clusters 𝐶
𝑘

(𝑖+1) and
𝐶
𝑘+1

(𝑖+1) by using data clustering.
(18) k = k + 2
(19) end for
(20) i = i + 1.
(21) end while

Algorithm 2: Design mode analysis focusing on granularity.
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Figure 13: History of the accuracy of the approximated decision
variables.

Figure 14 plots the history of the error in the objective
space at each layer, evaluated as the average Euclidean
distance between each real and approximated design.

Figure 15 plots the histories of the average number of
clusters (circle-plotted curve) and the average cluster size
(average number of designs within each cluster, indicated
by the triangle-plotted curve). While the analysis can be
continued until the number of clusters equals the dataset
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Figure 14: History of the accuracy of the approximated objective
function values.

size, such refinement is nonsensical because PCA cannot be
performed on a single datum. Instead, we stipulate that our
proposed analysis be continuedwhile the dataset size is larger
than the dimension of the decision variables. In this case,
since the decision space is six-dimensional, the analysis is
meaningful up to the 5th layer.

Figure 16 indicates the original and approximated designs
of each cluster at each layer. In these plots, “C𝑥-𝑦” denotes
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Figure 15: History of the number of clusters in each layer.

the𝑦th cluster at the𝑥th layer.Notably, possibly because these
designs have distinguishable characteristics, around C2-2 in
the 2nd layer are almost exactly retained in passing via the 3rd
to the 4th layer.

For a detailed characterization of each cluster, we con-
sider the component loadings of each cluster. For illustrative
purposes, we investigate the mode 1 component loadings
only, although each cluster yielded multiple design modes.
The mode 1 component loadings of each cluster at each layer
are plotted in Figure 17. The component loading, denoted by
𝑟
𝑖
, represents the correlation between the design mode and

decision variable. If 𝑟
𝑖
is large, the design mode is highly

correlated with decision variable 𝑥
𝑖
.

𝑟
1
and 𝑟
2
are excessively high in the first layer. Since 𝑥

1

and 𝑥
2
denote the initial mass flow of the oxidizer 𝑚̇prop(𝑡)

and the fuel length 𝐿 fuel, respectively, these two parameters
are expected to dominate in this problem. To obtain variable
designs on nondominated solution sets, we can alter both
parameters along the first design mode. Here, the first design
mode is the design mode corresponding to the eigenvector
with the maximum eigenvalue. Notably, both parameters
should be aligned in the same direction because their com-
ponent loadings have the same sign. This yields the design
mode obtained in the first layer.Whenwe create a newdesign,
we first choose the base design and then modify its decision
variables along the direction indicated by each design mode
(the eigenvector obtained by PCA). The component loadings
represent the correlations between the decision variables
and each design mode. The sign of the component loading
indicates the direction of each decision variable on the axis of
the design mode. In the case of the first layer, 𝑟

1
, 𝑟
2
, 𝑟
5
, and

𝑟
6
are positive values, but 𝑟

3
and 𝑟
4
are negative values. This

indicates that if the decision variables 𝑥
1
, 𝑥
2
, 𝑥
5
, and 𝑥

6
are

changed to the positive direction, 𝑥
3
and 𝑥

4
should be moved

into the negative direction in the first design mode.
In the second layer, each cluster appears to yield different

design modes. However, the distribution from 𝑟
3
to 𝑟
6
is

almost identical between the two clusters, and since the
component loadings of 𝑟

1
and 𝑟
2
in the clusters are merely

opposite in sign, we can regard the design modes in the clus-
ters as unchanged from the first layer. Thus, when the
dataset is divided by 𝑥

1
and 𝑥

2
, the characteristics of the

resulting clusters are almost identical, suggesting that binary
clustering is uninformative at the second layer. This explains
the deterioration of the accuracy for design approximation in
the second layer.

In the third layer, C3-2 and C3-4 are negatively correlated
with 𝑥

1
and 𝑥

2
but differ in their correlations with 𝑥

3
and 𝑥

4
.

For example, C3-4 yields a new design mode that reverses
the sign of 𝑥

1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
from positive to negative.

While the first and second layers only revealed that 𝑥
1
and

𝑥
2
are dominant, different design modes for each cluster are

revealed in the third layer.Moreover, the component loadings
of C3-3 and C2-2 appear to be very similar, although the
characteristics of C3-3 are expected to dominate over those
of C2-2.

In layers 1–3, the component loadings of the higher
modes (relative to 𝑟

1
and 𝑟
2
) are comparatively low. However,

different design modes can be extracted by increasing the
granularity. In cluster C4-4 (layer 4), the component loading
of 𝑟
3
becomes relatively high, while 𝑟

1
and 𝑟

2
change in

sign (𝑥
3
is an initial port radius 𝑟port(0)). Thus, C4-4 may

provide a design strategy that the decision parameter 𝑥
1
can

be explored in the negative direction and at the same time
𝑥
2
and 𝑥

3
should be changed to the positive direction. We

conclude that unique design modes are obtained at the 4th
layer.

From the experiments in this section, we infer the fol-
lowing:

(i) the deeper the layer, the better the approximation
accuracy (observed in Figures 13 and 14);

(ii) the design mode is characterized by the component
loading distributions of each mode;

(iii) in the hybrid rocket design problem, the initial mass
flow of oxidizer and the fuel length dominate the
Pareto set;

(iv) different design modes are revealed as the granularity
is increased; in cluster C4-4, the initial port radius
of port exhibits a higher component loading than in
other clusters.

A remarkable outcome of this study is that new designs
with the same characteristics as a specified design mode are
obtained. The design mode provides its own design strategy.
The characteristics of each designmode are easily understood
by investigating their component loadings. The proposed
framework is especially useful when the design problem has
a huge number of decision variables because it isolates the
important parameters and specifies how their values should
be altered.

A priority for our future study is to improve the data clus-
tering process. The current framework adopts binary cluster-
ing, which does not always perform to the required standard.
To realize more effective clustering, we require a scheme that
automatically determines an appropriate number of clusters.
Ineffective clustering generates many clusters with identical
characteristics. The distance metric of the data clustering
should also be reviewed. For example, the Mahalanobis
distance, which is based on correlations in the dataset, may
improve the data classification.
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Figure 16: Approximated solutions of each cluster in each layer.



14 Journal of Applied Mathematics

C1-1

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 lo

ad
in

gs

Corresponding variables
oxi(0) L fuel rport tburn Pcc(0) 𝜀

(a) Layer 1

−1.0

−0.8

−0.6

−0.4

−0.2

C2-1
C2-2

0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 lo

ad
in

gs

Corresponding variables
oxi(0) L fuel rport tburn Pcc(0) 𝜀

(b) Layer 2

C3-1
C3-2

C3-3
C3-4

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 lo

ad
in

gs

Corresponding variables
oxi(0) L fuel rport tburn Pcc(0) 𝜀

(c) Layer 3

C4-1
C4-2

C4-3
C4-4

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 lo

ad
in

gs

Corresponding variables
oxi(0) L fuel rport tburn Pcc(0) 𝜀

(d) Layer 4 (from C4-1 to C4-4)

C4-5
C4-6

C4-7
C4-8

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 lo

ad
in

gs

Corresponding variables
oxi(0) L fuel rport tburn Pcc(0) 𝜀

(e) Layer 4 (from C4-5 to C4-8)

Figure 17: Mode 1 component loadings of each cluster at each layer.
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5. Conclusions

We have proposed a design mode analysis of Pareto solution
sets that supports human decision making. The design mode
of the Pareto solution set was extracted by PCA. We demon-
strated that any design in the Pareto set can be represented
by a linear combination of the eigenvectors of the base
design. From this finding, we developed a hierarchical frame-
work for design mode analysis, in which the granularity
of the extracted design modes determines the accuracy of
the approximated design. The effectiveness of the proposed
method was tested on the conceptual design problem of the
hybrid rocket engine. We found that the extracted design
modes depended on the granularity of the analysis. The
proposed method will support human decision making in
engineering design problems.
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