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The preconditioner presented by Hadjidimos et al. (2003) can improve on the convergence rate of the classical iterative methods to
solve linear systems. In this paper, we extend this preconditioner to solve linear complementarity problemswhose coefficientmatrix
is M-matrix or H-matrix and present a multisplitting and Schwarz method. The convergence theorems are given. The numerical
experiments show that the methods are efficient.

1. Introduction

Many science and engineering problems are usually induced
as linear complementarity problems (LCP): find an 𝑥 ∈ 𝑅

𝑛

such that

𝑥 ≥ 0, 𝐴𝑥 − 𝑓 ≥ 0, 𝑥
⊤

(𝐴𝑥 − 𝑓) = 0, (1)

where 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 is a given matrix and 𝑓 ∈ 𝑅
𝑛

is a vector. It is necessary to establish an efficient algorithm
to solve the complementarity problem. Numerical methods
for complementarity problems fall in two major kinds, direct
and iterative methods. There have been lots of works on
the solution of the linear complementarity problem ([1–4],
etc.), which presented feasible and essential techniques for
LCP. Recently some parallel multisplitting iterative methods
for solving the large sparse linear complementarity problems
are presented ([5–11], etc.). These methods are based on
several splittings of the system matrix 𝐴 and are constructed
with a suitable weighting combination of the solution of the
sublinear complementarity problems.

For the large sparse linear complementarity problem,
some accelerated modulus-based matrix splitting iteration

methods and modulus-based synchronous two-stage multi-
splitting iteration methods are constructed [7, 11]. Numerical
results show that these methods are more efficient.

Many researchers have studied preconditioners applied to
linear system

𝐴𝑥 = 𝑏, (2)

so that the corresponding iterative methods, such as Jacobi or
GS, converge faster than the classical ones. Hadjidimos et al.
[12] considered the following preconditioner:

𝑃
1
(𝛼) ≡ 𝐼 + 𝑆

1
(𝛼)

=

(

(

(

(

1

−𝛼
2
𝑎
21

1

... d
−𝛼
𝑖
𝑎
𝑖1

1

... d
−𝛼
𝑛
𝑎
𝑛1

1

)

)

)

)

,

(3)

where 𝛼 = [0, 𝛼
2
, . . . , 𝛼

𝑖
, . . . , 𝛼

𝑛
] ∈ 𝑅
𝑛 with constants 𝛼

𝑖
≥ 0,

𝑖 = 2(1)𝑛.
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Consider

𝑆
1
(𝛼) =

(

(

(

(

0

−𝛼
2
𝑎
21

0

... d
−𝛼
𝑖
𝑎
𝑖1

0

... d
−𝛼
𝑛
𝑎
𝑛1

0

)

)

)

)

. (4)

In (3), let 𝛼
𝑖
= 1, 𝑖 = 2(1)𝑛; 𝑃

1
(𝛼) is a preconditioner

presented by Milaszewicz [13]. It eliminates the elements of
the first columnof𝐴 below the diagonal. Reference [12] shows
that the newmodifications and improvements of the original
preconditioners can improve on the convergence rates of the
classical iterative methods (Jacobi, GS, etc.).

In this paper, with multisplitting technique, we will
extend the preconditioner to solve the linear complemen-
tarity problem (1) and present a new multisplitting and
Schwarz method. The new method is parallel and has high
computational efficiency.

In Section 2, some preliminaries for the new method
are presented. A multisplitting and Schwarz method is given
in Section 3. Convergence analysis is given in Section 4.
Section 5 presents the numerical experiments results.

2. Preliminaries

At first we briefly describe the notations. In 𝑅𝑛 and 𝑅𝑛×𝑛, the
relation ≥ denotes the natural components partial ordering.
In addition, for 𝑥, 𝑦 ∈ 𝑅

𝑛, we write 𝑥 > 𝑦 if 𝑥
𝑖
> 𝑦
𝑖
, 𝑖 =

1, 2, . . . , 𝑛. A nonsingular matrix 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅

𝑛×𝑛 is termed
𝑀-matrix, if 𝑎

𝑖𝑗
≤ 0 for 𝑖 ̸= 𝑗 and𝐴−1 ≥ 0. Or the nonsingular

matrix 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅

𝑛×𝑛 is called 𝑀-matrix, if 𝐴 = 𝑠𝐼 − 𝐶,
𝐶 ≥ 0, and 𝜌(𝐶) < 𝑠. Its comparison matrix ⟨𝐴⟩ = (𝛼

𝑖𝑗
) is

defined by 𝛼
𝑖𝑖
= |𝑎
𝑖𝑖
| and 𝛼

𝑖𝑗
= −|𝑎
𝑖𝑖
| (𝑖 ̸= 𝑗). 𝐴 is said to be an

𝐻-matrix if ⟨𝐴⟩ is an𝑀-matrix. To simplify the notation, we
may assume that 𝑎

𝑖𝑖
= 1, 𝑖 = 1(1)𝑛.

Lemma 1 (see [2]). Let 𝐴 be an 𝑀-matrix and let 𝑥 be a
solution of (1).

(1) If 𝑓
𝑖
> 0, then 𝑥

𝑖
> 0 and therefore∑𝑛

𝑗=1
𝑎
𝑖𝑗
𝑥
𝑗
− 𝑓
𝑖
= 0.

(2) If 𝑓 ≤ 0, then 𝑥 = 0 is the solution of (1).

If the problem (1) has a nonzero solution, there at least
exists an index 𝑘, 𝑓

𝑘
> 0. In this paper, let us assume that

𝑓
1
> 0. By Lemma 1, we have the following conclusion.

Lemma 2 (see [14]). Let𝐴 be an𝑀-matrix,𝐴(𝛼) = 𝑃
1
(𝛼)𝐴 ≡

[𝑎
𝑖𝑗
], and ̃

𝑓(𝛼) = 𝑃
1
(𝛼)𝑓 ≡

̃
𝑓. If 𝑓

1
> 0, then the following

linear complementarity problem

𝑥 ≥ 0, 𝐴 (𝛼) 𝑥 −
̃
𝑓 (𝛼) ≥ 0, 𝑥

⊤

(𝐴 (𝛼) 𝑥 −
̃
𝑓 (𝛼)) = 0

(5)

is equivalent to the problem (1).

Lemma 3 (see [15]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 and 𝑎

𝑖𝑗
≤ 0 for 𝑖 ̸= 𝑗.

𝐴 is an𝑀-matrix if and only if there exists a positive vector 𝑦
such that 𝐴𝑦 > 0.

Definition 4 (see [16]). (1) 𝐴 splitting 𝐴 = 𝑀−𝑁 is termed a
regular splitting of matrix 𝐴 if𝑀−1 ≥ 0 and𝑁 ≥ 0.

(2)𝐴 splitting𝐴 = 𝑀−𝑁 is termed𝑀-splitting of matrix
𝐴 if𝑀 is an𝑀-matrix and𝑁 ≥ 0.

(3) 𝐴 splitting 𝐴 = 𝑀 − 𝑁 is termed 𝐻-compatible
splitting of matrix 𝐴 if ⟨𝐴⟩ = ⟨𝑀⟩ − |𝑁|.

Lemma 5 (see [16]). Let 𝐴 = 𝑀
1
− 𝑁
1
= 𝑀
2
− 𝑁
2
be two

regular splittings of 𝐴, where 𝐴−1 ≥ 0.

(1) If𝑁
2
≥ 𝑁
1
≥ 0, then

0 ≤ 𝜌 (𝑀
−1

1
𝑁
1
) ≤ 𝜌 (𝑀

−1

2
𝑁
2
) < 1. (6)

(2) If𝑀−1
1

≥ 𝑀
−1

2
, then

0 ≤ 𝜌 (𝑀
−1

1
𝑁
1
) ≤ 𝜌 (𝑀

−1

2
𝑁
2
) < 1. (7)

By Lemma 5, we have the following lemma.

Lemma 6. Let 𝐴 = 𝑀−𝑁 = 𝐷 − 𝐵 be two𝑀-splittings of 𝐴,
and

𝐷 = diag {𝑎
11
, 𝑎
22
, . . . , 𝑎

𝑛𝑛
} . (8)

If𝑀 ≤ 𝐷, then 𝜌(𝑀−1𝑁) ≤ 𝜌(𝐷
−1

𝐵) < 1.

Lemma 7 (see [14]). If 𝐴 is an 𝑀-matrix, then 𝐴(𝛼) is a 𝑍-
matrix and 𝐴(𝛼) is also an𝑀-matrix.

Lemma 8 (see [15]). 𝐴 is a nonsingular𝑀-matrix if and only
if all the principal minors of 𝐴 are positive.

By (4), we have

𝑆
1
(𝛼)𝑈 = (

0 0 0 ⋅ ⋅ ⋅ 0

0 𝛼
2
𝑎
21
𝑎
12

𝛼
2
𝑎
21
𝑎
13

⋅ ⋅ ⋅ 𝛼
2
𝑎
21
𝑎
1𝑛

0 𝛼
3
𝑎
31
𝑎
12

𝛼
3
𝑎
31
𝑎
13

⋅ ⋅ ⋅ 𝛼
3
𝑎
31
𝑎
1𝑛

...
...

... d
...

0 𝛼
𝑛
𝑎
𝑛1
𝑎
12

𝛼
𝑛
𝑎
𝑛1
𝑎
13

⋅ ⋅ ⋅ 𝛼
𝑛
𝑎
𝑛1
𝑎
1𝑛

). (9)

Define the following matrices:

𝐷
𝛼
= diag (0, 𝛼

2
𝑎
21
𝑎
12
, 𝛼
3
𝑎
31
𝑎
13
, . . . , 𝛼

𝑛
𝑎
𝑛1
𝑎
1𝑛
) ,

𝐿
𝛼
= (

0 0 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 0 0

0 𝛼
3
𝑎
31
𝑎
12

⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 𝛼
𝑛
𝑎
𝑛1
𝑎
12

⋅ ⋅ ⋅ 𝛼
𝑛
𝑎
𝑛1
𝑎
1,𝑛−1

0

),

𝑈
𝛼
= (

0 0 0 ⋅ ⋅ ⋅ 0

0 0 𝛼
2
𝑎
21
𝑎
13

⋅ ⋅ ⋅ 𝛼
2
𝑎
21
𝑎
1𝑛

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝛼
𝑛−1

𝑎
𝑛−1,1

𝑎
1𝑛

0 0 0 ⋅ ⋅ ⋅ 0

).

(10)
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Consider the following splittings [12]:

𝐴 (𝛼) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑀
1
(𝛼) − 𝑁

1
(𝛼)

= (𝐼 + 𝑆
1
(𝛼)) − (𝐼 + 𝑆

1
(𝛼)) (𝐿 + 𝑈) ,

𝑀
2
(𝛼) − 𝑁

2
(𝛼)

= 𝐼 − (𝐿 + 𝐿
𝛼
− 𝑆
1
(𝛼) + 𝑈 + 𝑈

𝛼
+ 𝐷
𝛼
) ,

𝑀
3
(𝛼) − 𝑁

3
(𝛼)

= (𝐼 − 𝐷
𝛼
) − (𝐿 + 𝐿

𝛼
− 𝑆
1
(𝛼) + 𝑈 + 𝑈

𝛼
) ,

𝑀
4
(𝛼) − 𝑁

4
(𝛼)

= (𝐼 − (𝐿 − 𝑆
1
(𝛼))) − (𝐷

𝛼
+ 𝐿
𝛼
+ 𝑈 + 𝑈

𝛼
) ,

𝑀
5
(𝛼) − 𝑁

5
(𝛼)

= (𝐼 − (𝐿 − 𝑆
1
(𝛼)) − 𝐿

𝛼
) − (𝐷

𝛼
+ 𝑈 + 𝑈

𝛼
) ,

𝑀
6
(𝛼) − 𝑁

6
(𝛼)

= (𝐼 − (𝐿 − 𝑆
1
(𝛼)) − 𝐷

𝛼
− 𝐿
𝛼
) − (𝑈 + 𝑈

𝛼
) .

(11)

Define the following matrices with the above splittings:

(i) 𝐵 ≡ 𝑀
−1

1
(𝛼)𝑁
1
(𝛼) = 𝐿 + 𝑈;

(ii) 𝐵󸀠 ≡ 𝑀
−1

2
(𝛼)𝑁
2
(𝛼) = 𝐿 + 𝐿

𝛼
+ 𝑈 + 𝑈

𝛼
+ 𝐷
𝛼
− 𝑆
1
(𝛼);

(iii) 𝐵󸀠󸀠 ≡ 𝑀
−1

3
(𝛼)𝑁
3
(𝛼) = (𝐼 − 𝐷

𝛼
)
−1

(𝐿 + 𝐿
𝛼
+ 𝑈 + 𝑈

𝛼
−

𝑆
1
(𝛼));

(iv) 𝐻 ≡ (𝐼 − 𝐿)
−1

𝑈;

(v) 𝐻󸀠 ≡ 𝑀
−1

5
(𝛼)𝑁
5
(𝛼) = (𝐼 − (𝐿 − 𝑆

1
(𝛼)) − 𝐿

𝛼
)
−1

(𝐷
𝛼
+

𝑈 + 𝑈
𝛼
);

(vi) 𝐻󸀠󸀠 ≡𝑀
−1

6
(𝛼)𝑁
6
(𝛼) = (𝐼−(𝐿−𝑆

1
(𝛼))−𝐷

𝛼
−𝐿
𝛼
)
−1

(𝑈+

𝑈
𝛼
).

Theorem 9 (see [12]). Under the notation so far, if 𝐴 is an𝑀-
matrix, then, for any 𝛼

𝑖
∈ [0, 1] (𝑖 = 1, 2, . . . , 𝑛), there exists

𝑦 ∈ 𝑅
𝑛, 𝑦 ≥ 0, such that

𝐵
󸀠

𝑦 ≤ 𝐵𝑦,

𝜌 (𝐵
󸀠󸀠

) ≤ 𝜌 (𝐵
󸀠

) < 1,

𝜌 (𝐻
󸀠󸀠

) ≤ 𝜌 (𝐻
󸀠

) ≤ 𝜌 (𝐻) < 1,

𝜌 (𝐻
󸀠󸀠

) ≤ 𝜌 (𝐵
󸀠󸀠

) , 𝜌 (𝐻
󸀠

) ≤ 𝜌 (𝐵
󸀠

) ,

𝜌 (𝐻) ≤ 𝜌 (𝐵) < 1.

(12)

3. Synchronous Multisplitting and
Schwarz Method

By Theorem 9, 𝜌(𝐻󸀠󸀠) ≤ 𝜌(𝐻) ≤ 𝜌(𝐵) < 1. It means that
the Gauss-Seidel iterative methods associated with the new
preconditional matrix 𝐴(𝛼) = 𝑃

1
(𝛼)𝐴 will be no worse

than the ones corresponding to 𝐴. Similar to [6], we present
a synchronous multisplitting and Schwarz algorithm corre-
sponding to 𝐴(𝛼).

Algorithm 10 (synchronous multisplitting and Schwarz
method). (1) Give an initial vector 𝑥0, 𝑘 = 0.

(2) Let

𝑥
𝑘+1

=

𝑚

∑

𝑖=1

𝐸
𝑖
𝑦
𝑘,𝑖

, (13)

where ∑𝑚
𝑖=1

𝐸
𝑖
= 𝐼, 𝐸

𝑖
is a nonnegative diagonal matrix, and

𝑦
𝑘,𝑖 is the solution of the following LCP:

𝑦
𝑘,𝑖

≥ 0,

𝑀
𝑖
𝑦
𝑘,𝑖

≥ 𝐹
𝑘

,

(𝑦
𝑘,𝑖

)

⊤

(𝑀
𝑖
𝑦
𝑘,𝑖

− 𝐹
𝑘

) = 0,

(14)

where 𝐹𝑘 = 𝑓 + 𝑁
𝑖
𝑥
𝑘, 𝐴(𝛼) = 𝑀

𝑖
− 𝑁
𝑖
.

(3) Consider 𝑘 := 𝑘+ 1; if the iteration solution is conver-
gent, stop; else, return to step (2).

Let 𝐷 = diag{𝑎
11
, 𝑎
22
, . . . , 𝑎

𝑛𝑛
}, 𝐼
𝑖
= {𝑗 : 𝑗 ∈ 𝑆

𝑖
}, and

𝐽
𝑖
= 𝑆 \ 𝐼

𝑖
. Define 𝑀̃

𝑖
as

𝑀̃
𝑖
=

{
{
{
{

{
{
{
{

{

(𝑀̃
𝑖
)
𝐼𝑖

= 𝐴
𝐼𝑖
,

(𝑀̃
𝑖
)
𝐽𝑖

= 𝐷
𝐽𝑖
,

(𝑀̃
𝑖
)
𝐼𝑖𝐽𝑖

= 0,

(𝑀̃
𝑖
)
𝐽𝑖𝐼𝑖

= 0,

(15)

where 𝐴
𝐼𝐽
denotes (𝑎

𝑘𝑗
)
𝑘∈𝐼,𝑗∈𝐽

and 𝐴
𝐼
denotes (𝑎

𝑘𝑗
)
𝑘,𝑗∈𝐼

.
Then the following lemma is obviously true.

Lemma11. For each splitting𝐴(𝛼) = 𝑀̃
𝑖
−𝑁̃
𝑖
(𝑖 = 1, 2, . . . , 𝑚),

let 𝑀̃
𝑖
be defined by (15).Then the subproblem (14) is equivalent

to the following problem: find 𝑦𝑘,𝑖 ∈ 𝑅𝑛, such that

𝑦
𝑘,𝑖

≥ 0,

𝐴
𝐼𝑖
𝑦
𝑘,𝑖

𝐼𝑖

≥ 𝐹
𝑘

𝐼𝑖

,

𝐷
𝐽𝑖
𝑦
𝑘,𝑖

𝐽𝑖

≥ 𝐹
𝑘

𝐽𝑖

,

(𝑦
𝑘,𝑖

𝐼𝑖

)

⊤

(𝐴
𝐼𝑖
𝑦
𝑘,𝑖

𝐼𝑖

− 𝐹
𝑘

𝐼𝑖

) = 0,

(𝑦
𝑘,𝑖

𝐽𝑖

)

⊤

(𝐷
𝐽𝑖
𝑦
𝑘,𝑖

𝐽𝑖

− 𝐹
𝑘

𝐽𝑖

) = 0.

(16)

4. Convergence Analysis

In this section, we give the convergence analysis of the
algorithm.

Lemma 12 (see [6]). Let 𝑥∗ be the solution of (1), and 𝑦𝑘,𝑖 is
the solution of (14); then

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑘,𝑖

− 𝑥
∗
󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀
−1

𝑖
𝑁
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

− 𝑥
𝑘
󵄨
󵄨
󵄨
󵄨
󵄨
. (17)
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Theorem 13. Let 𝐴 be an 𝑀-matrix; the sequence {𝑥
𝑘

}

generated by Algorithm 10 converges to the solution of (1).

Proof. The conclusion easily resulted from Lemma 2,
Lemma 12, andTheorem 9.

In Lemma 7, if 𝑖 ̸= 1, 0 ≤ 𝛼
𝑖
≤ 1, then 𝐴(𝛼) is an 𝑀-

matrix. If 𝑖 ̸= 1, 𝛼
𝑖
≥ 1, then 𝑎

𝑖𝑗
= (1 − 𝛼

𝑖
)𝑎
𝑖1
≥ 0 and 𝐴(𝛼) is

not an𝑀-matrix. In the sequel we will examine that 𝐴(𝛼) is
an𝐻-matrix with positive diagonal elements, where 𝛼

𝑖
(𝑖 ̸= 1)

satisfies some conditions.

Lemma 14 (see [16]). Let 𝐴 be either a strictly diagonally
dominant or an irreducibly dominant matrix. Then𝐴 is an𝐻-
matrix.

Lemma 15. Let𝐴 be a diagonally dominant𝑀-matrix. If 𝑖 ̸= 1

and for 𝑎
𝑖1

̸= 0, 1 ≤ 𝛼
𝑖
≤ (∑
𝑛

𝑗=1
𝑎
𝑖𝑗
− 2𝑎
𝑖1
)/(−𝑎
𝑖1
(2 − ∑

𝑛

𝑗=1
𝑎
1𝑗
)),

then 𝐴(𝛼) is an𝐻-matrix with positive diagonal elements.

Proof. Note that 𝑎
𝑖𝑖
= 1, 0 ≤ −𝑎

𝑖𝑗
≤ 1, and ∑𝑛

𝑗=1
𝑎
𝑖𝑗
≥ 0. We

have

1

𝑎
𝑖1
𝑎
1𝑖

−

∑
𝑛

𝑗=1
𝑎
𝑖𝑗
− 2𝑎
𝑖1

−𝑎
𝑖1
(2 − ∑

𝑛

𝑗=1
𝑎
1𝑗
)

=

(2 − ∑
𝑛

𝑗=1
𝑎
1𝑗
) + 𝑎
1𝑖
(∑
𝑛

𝑗=1
𝑎
𝑖𝑗
− 2𝑎
𝑖1
)

𝑎
𝑖1
𝑎
1𝑖
(2 − ∑

𝑛

𝑗=1
𝑎
1𝑗
)

= ((1 − 𝑎
𝑖1
𝑎
1𝑖
) + (1 −

𝑛

∑

𝑗=1

𝑎
1𝑗
)

+𝑎
1𝑖
(

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
− 𝑎
𝑖1
))

× (𝑎
𝑖1
𝑎
1𝑖
(2 −

𝑛

∑

𝑗=1

𝑎
1𝑗
))

−1

≥

(1 − 𝑎
𝑖1
𝑎
1𝑖
) + (−∑

𝑗 ̸= 1
𝑎
1𝑗
) + 𝑎
1𝑖

𝑎
𝑖1
𝑎
1𝑖
(2 − ∑

𝑛

𝑗=1
𝑎
1𝑗
)

=

(1 − 𝑎
𝑖1
𝑎
1𝑖
) + (−∑

𝑗 ̸= 1,𝑖
𝑎
1𝑗
)

𝑎
𝑖1
𝑎
1𝑖
(2 − ∑

𝑛

𝑗=1
𝑎
1𝑗
)

> 0,

∑
𝑛

𝑗=1
𝑎
𝑖𝑗
− 2𝑎
𝑖1

−𝑎
𝑖1
(2 − ∑

𝑛

𝑗=1
𝑎
1𝑗
)

≥

−2𝑎
𝑖1

−𝑎
𝑖1
(2 − ∑

𝑛

𝑗=1
𝑎
1𝑗
)

=

2

(2 − ∑
𝑛

𝑗=1
𝑎
1𝑗
)

> 1.

(18)

Table 1: Comparison of MMS and GSOR with unpreconditioned
and preconditioned method.

Methods Iterative steps

GSOR Unpreconditioned 311
Preconditioned 267

MMS Unpreconditioned 488
Preconditioned 397

𝛼
𝑖
is well defined. By the definition of 𝐴(𝛼), and for 𝑖 ̸= 1, 1 ≤

𝛼
𝑖
≤ (∑
𝑛

𝑗=1
𝑎
𝑖𝑗
− 2𝑎
𝑖1
)/(−𝑎
𝑖1
(2 − ∑

𝑛

𝑗=1
𝑎
1𝑗
)), we have that

(1) ∑𝑛
𝑗=1

𝑎
1𝑗
= ∑
𝑛

𝑗=1
𝑎
1𝑗
> 0;

(2) 𝑎
𝑖𝑖
= 1 − 𝛼

𝑖
𝑎
𝑖1
𝑎
1𝑖
> 0;

(3) if 𝑖 ̸= 1,

𝑎
𝑖𝑖
− ∑

𝑗 ̸= 𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

= 1 − 𝛼
𝑖
𝑎
𝑖1
𝑎
1𝑖
− (1 − 𝛼

𝑖
) 𝑎
𝑖1
+ ∑

𝑗 ̸= 𝑖,1

(𝑎
𝑖𝑗
− 𝛼
𝑖
𝑎
𝑖1
) 𝑎
1𝑗

= (

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
− 2𝑎
𝑖1
) − 𝛼

𝑖
(2 −

𝑛

∑

𝑗=1

𝑎
1𝑗
)𝑎
𝑖1

> 0.

(19)

It implies that 𝐴(𝛼) is a diagonally dominant matrix;
then it is an 𝐻-matrix with positive diagonal elements by
Lemma 14.

Since 𝐴(𝛼) is an𝐻-matrix, according to [8], we can solve
the problem (5) using Algorithm 10, where 𝐴(𝛼) = 𝑀

𝑖
− 𝑁
𝑖

maybe an𝐻-compatible splitting of matrix 𝐴(𝛼).

Lemma 16 (see [6]). Let 𝑥∗ be the solution of (1), and 𝑦𝑘,𝑖 is
the solution of (14); then

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑘,𝑖

− 𝑥
∗
󵄨
󵄨
󵄨
󵄨
󵄨
≤ ⟨𝑀

𝑖
⟩
−1 󵄨
󵄨
󵄨
󵄨
𝑁
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

− 𝑥
𝑘
󵄨
󵄨
󵄨
󵄨
󵄨
. (20)

Similar to the proof in Theorem 2.1 in [8], we have the
following convergence theorem.

Theorem 17. Let 𝐴 be an 𝑀-matrix; the sequence {𝑥
𝑘

}

generated by Algorithm 10 converges to the solution of the
problem (1).

5. Numerical Experiments

In this section, we give two numerical examples to show that
the new methods are efficient. In the numerical experiments,
the stop criterion is ‖𝑥𝑘+1 − 𝑥

𝑘

‖ < 10
−8. In the tables, MMS

denotes Algorithm 10 with preconditioner, and GSOR
denotes Algorithm 10, in which𝑚 = 1.

Example 1. We consider a linear complementarity problem,
whose coefficient matrix is
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Table 2: Comparison of MMS and GSOR with preconditioned methods (𝑀-matrix).

𝑁 ∗𝑁

MMS GSOR
Iterative steps Iterative steps

32 ∗ 32 18 30
64 ∗ 64 20 31
128 ∗ 128 21 33

Table 3: Comparison of MMS and GSOR with preconditioned methods (𝐻-matrix).

𝑁 ∗𝑁

MMS GSOR
Iterative steps Iterative steps

32 ∗ 32 21 30
64 ∗ 64 21 31
128 ∗ 128 22 33

Table 4: Comparison of MMS and AMAOR.

𝑁 ∗𝑁 MMS AMAOR

10 ∗ 10 cputime 0.51 0.42
iter 7 5

20 ∗ 20 cputime 5.49 8.53
iter 7 6

30 ∗ 30 cputime 24.88 52.76
iter 8 7

40 ∗ 40 cputime 79.34 192.68
iter 8 7

50 ∗ 50 cputime 205.94 589.48
iter 8 7

60 ∗ 60 cputime 447.80 1402.20
iter 8 7

𝐴 =

(

(

(

(

(

(

(

1.0000 −0.0301 −0.1632 −0.0280 −0.1875 −0.0189 −0.1504 −0.2652 −0.1088

−0.0926 1.0000 −0.0382 −0.1213 −0.1520 −0.1037 −0.1835 −0.1276 −0.1509

−0.1081 −0.0901 1.0000 −0.0965 −0.0948 −0.1823 −0.0263 −0.2096 −0.1733

−0.2045 −0.1359 −0.2263 1.0000 −0.2379 −0.0352 −0.0117 −0.0395 −0.0929

−0.2401 −0.0800 −0.0773 −0.1115 1.0000 −0.0511 −0.1132 −0.2230 −0.0753

−0.2245 −0.2053 −0.0534 −0.0652 −0.1381 1.0000 −0.1080 −0.0979 −0.0898

−0.1181 −0.0751 −0.0095 −0.1791 −0.1056 −0.1595 1.0000 −0.0879 −0.1874

−0.1773 −0.0097 −0.1900 −0.1973 −0.0891 −0.0420 −0.1320 1.0000 −0.1504

−0.1180 −0.1129 −0.1054 −0.1694 −0.0715 −0.1706 −0.0727 −0.1085 1.0000

)

)

)

)

)

)

)

,

𝑓 = (1, −1, 1, −1, 1, −1, 1, −1, 1)
⊤

.

(21)

The results are shown as Table 1.

Example 2. Let us consider the following problem:

𝑥 ≥ 0, 𝐴𝑥 − 𝑞 ≥ 0, 𝑥
⊤

(𝐴𝑥 − 𝑞) = 0, (22)

where 𝐴 = (

𝐵 −𝐼

−𝐼 𝐵 −𝐼

d d d
−𝐼 𝐵 −𝐼

−𝐼 𝐵

), 𝐵 = (

4 −1

−1 4 −1

d d d
−1 4 −1

−1 4

) , 𝐼 is a

unit matrix, 𝑞 = (𝑞
𝑖
)
𝑛

𝑖=1
, and 𝑞

𝑖
= (−1)

𝑖+1.

For 𝑎
𝑖1

̸= 0, let us choose 𝛼
𝑖
= 0.5; then 𝐴(𝛼) is an 𝐻-

matrix. In Algorithm 10𝐴(𝛼) = 𝑀
𝑖
− 𝑁
𝑖
maybe an 𝐻-com-

patible splitting for each splitting. The corresponding results
are shown in Tables 2 and 3.

An accelerated modulus-based accelerated overrelax-
ation (AMAOR) iteration method is presented by Zheng and
Yin [11]. Same as in [11], we choose 𝛼 = 1.2, 𝜇 = 4, and 𝛾 = 2.
In Example 2, 𝐴 = 𝐴 + 𝜇𝐼. In Table 4, iter denotes iterative
step and cputime denotes time (seconds). Table 4 shows that
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our preconditioned method MMS spends less time than the
AMAOR.
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