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Received 5 March 2014; Revised 16 May 2014; Accepted 10 June 2014; Published 16 July 2014

Academic Editor: Dumitru Baleanu

Copyright © 2014 Asma Ali Elbeleze et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We are concerned here with singular partial differential equations of fractional order (FSPDEs). The variational iteration method
(VIM) is applied to obtain approximate solutions of this type of equations. Convergence analysis of the VIM is discussed. This
analysis is used to estimate the maximum absolute truncated error of the series solution. A comparison between the results of VIM
solutions and exact solution is given. The fractional derivatives are described in Caputo sense.

1. Introduction

In recent years, considerable attention has been devoted to
the study of the fractional calculus and its numerous appli-
cations in many areas such as physics and engineering.
The applications of fractional calculus used in many fields
such as electrical networks, control theory of dynamical
systems, probability and statistics, electrochemistry of cor-
rosion, chemical physics, optics, and signal processing can
be successfully modeled by linear or nonlinear FDEs [1–7].
Further, fractional partial differential equations appeared in
many fields of engineering and science, including fractals the-
ory, statistics, fluid flow, control theory, biology, chemistry,
diffusion, probability, and potential theory [8, 9].

The singular partial differential equations of fractional
order (FSPDEs), as generalizations of classical singular partial
differential equations of integer order (SPDEs), are increas-
ingly used to model problems in physics and engineering.
Consequently, considerable attention has been given to the
solution of singular partial differential equations of fractional
order. Finding approximate or exact solutions of SPDEs is
an important task. Except for a limited number of these
equations, we have difficulty in finding their analytical solu-
tions. Therefore, there have been attempts to find methods

for obtaining approximate solutions. Several such techniques
have drawn special attention, such as variational iteration
method [10], homotopy analysis method [11], and homotopy
iteration method [12].

The variational iteration method (VIM) was proposed
by He [13–16] due to its flexibility and convergence and
efficiently works with different types of linear and nonlinear
partial differential equations of fractional order and gives
approximate analytical solution for all these types of equa-
tions without linearization or discretization; many author
have been studying it; for example, see [17–21]. In this paper,
we discuss the VIM for solving FSPDEs and obtain the
convergence results of this method. The contribution of this
work can be summarized in three points.

(1) Based on the sufficient condition that guarantees the
existence of a unique solution to our problem (see
Theorem 6) and using the series solution, conver-
gence of VIM is discussed (see Theorem 7).

(2) Using point one, the maximum absolute truncated
error of series solution of VIM is estimated (see
Theorem 8).

(3) Some numerical examples are given.
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Consider fractional singular partial differential equations
with variable coefficients
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𝜕
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𝑢

𝜕𝑥4
+ 𝜆 (𝑦)

𝜕
4

𝑢

𝜕𝑦4
+ ℎ (𝑧)

𝜕
4

𝑢

𝜕𝑧4
= 0,

𝑎 < 𝑥, 𝑦, 𝑧 < 𝑏, 𝑡 > 0,

(1)

where the variable coefficients subject to initial conditions

𝑢 (𝑥, 𝑦, 𝑧, 0) = 𝑓
0
(𝑥, 𝑦, 𝑧) ,

𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 𝑧, 0) = 𝑓

1
(𝑥, 𝑦, 𝑧)

(2)

and boundary conditions

𝑢 (𝑎, 𝑦, 𝑧, 𝑡) = 𝑔
0
(𝑦, 𝑧, 𝑡) , 𝑢 (𝑏, 𝑦, 𝑧, 𝑡) = 𝑔

1
(𝑦, 𝑧, 𝑡)

𝑢 (𝑥, 𝑎, 𝑧, 𝑡) = 𝑔
2
(𝑥, 𝑧, 𝑡) , 𝑢 (𝑥, 𝑏, 𝑧, 𝑡) = 𝑔

3
(𝑥, 𝑧, 𝑡)

𝑢 (𝑥, 𝑦, 𝑎, 𝑡) = 𝑔
4
(𝑥, 𝑧, 𝑡) , 𝑢 (𝑥, 𝑦, 𝑏, 𝑡) = 𝑔

5
(𝑥, 𝑧, 𝑡)

𝜕
2

𝑢

𝜕𝑥2
(𝑎, 𝑦, 𝑧, 𝑡) = 𝑘

0
(𝑦, 𝑧, 𝑡) ,

𝜕
2

𝑢

𝜕𝑥2
(𝑏, 𝑦, 𝑧, 𝑡) = 𝑘

0
(𝑦, 𝑧, 𝑡) ,

𝜕
2

𝑢

𝜕𝑦2
(𝑥, 𝑎, 𝑧, 𝑡) = 𝑘

2
(𝑥, 𝑧, 𝑡) ,

𝜕
2

𝑢

𝜕𝑦2
(𝑥, 𝑎, 𝑧, 𝑡) = 𝑘

3
(𝑥, 𝑧, 𝑡) ,

𝜕
2

𝑢

𝜕𝑧2
(𝑥, 𝑦, 𝑎, 𝑡) = 𝑘

4
(𝑥, 𝑦, 𝑡) ,

𝜕
2

𝑢

𝜕𝑧2
(𝑥, 𝑦, 𝑏, 𝑡) = 𝑘

5
(𝑦, 𝑧, 𝑡) ,

(3)

where 𝜕𝛼/𝜕𝑡𝛼 is the fractional derivative in the Caputo sense,
𝑎 < 𝑥, 𝑦, 𝑧 < 𝑏, and 𝑔

𝑖
and 𝑘
𝑖
, 𝑖 = 0, . . . , 5 are continuous.The

𝜕
4

𝑢/𝜕𝑥
4, 𝜕4𝑢/𝜕𝑦4, and 𝜕4𝑢/𝜕𝑧4 are linear bounded operator;

that is, it is possible to find numbers 𝑚
1
, 𝑚
2
, 𝑚
3
> 0 such

that ‖𝜕4𝑢/𝜕𝑥4‖ ≤ 𝑚
1
‖𝑢‖, ‖𝜕4𝑢/𝜕𝑦4‖ ≤ 𝑚

2
‖𝑢‖, ‖𝜕4𝑢/𝜕𝑧4‖ ≤

𝑚
3
‖𝑢‖. Equation (1) can be written as

𝑐

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑡)

= 𝑓 (𝑡, 𝑢 (𝑥, 𝑦, 𝑧, 𝑡) , 𝐷
𝑛
1

𝑥
𝑢 (𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
2

𝑦
𝑢 (𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
3

𝑧
𝑢 (𝑥, 𝑦, 𝑧, 𝑡)) ,

(4)

where 𝑛
1
= 𝑛
2
= 𝑛
3
= 4.

2. Preliminaries

In this section, we give some basic definitions and properties
of fractional calculus theory used in this paper.

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0 is said to be in space
𝐶𝜇, 𝜇 ∈ 𝑅 if there exists a real number 𝑝 > 𝜇, such that
𝑓(𝑥) = 𝑥

𝑝

𝑓
1
(𝑥), where 𝑓

1
(𝑥) ∈ 𝐶(0,∞), and it is said to

be in the space 𝐶𝑛
𝜇
if 𝑓𝑛 ∈ 𝑅

𝜇
, 𝑛 ∈ 𝑁.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0 of a function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1 is defined
as

𝐽
𝛼

𝑓 (𝑥) =
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡,

𝛼 > 0, 𝑡 > 0.

(5)

In particular 𝐽0𝑓(𝑥) = 𝑓(𝑥).

For 𝛽 ≥ 0 and 𝛾 ≥ −1, some properties of the operator 𝐽𝛼
are

(1) 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽
𝛼+𝛽

𝑓(𝑥),

(2) 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽
𝛽

𝐽
𝛼

𝑓(𝑥),
(3) 𝐽𝛼𝑥𝛾 = (Γ(𝛾 + 1)/Γ(𝛼 + 𝛾 + 1))𝑥

𝛼+𝛾.

Definition 3. The Caputo fractional derivative of 𝑓 ∈ 𝐶
𝑚

−1
,

𝑚 ∈ 𝑁 is defined as

𝐷
𝛼

𝑓 (𝑥) =
1

Γ (𝑚 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝑚−𝛼−1

𝑓
𝑚

(𝑡) 𝑑𝑡,

𝑚 − 1 < 𝛼 ≤ 𝑚.

(6)

Lemma 4. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁, 𝑓 ∈ 𝐶
𝑚

𝜇
, 𝜇 > −1, then

the following two properties hold:

(1) 𝐷𝛼[𝐽𝛼𝑓(𝑥)] = 𝑓(𝑥),
(2) 𝐽𝛼[𝐷𝛼𝑓(𝑥)] = 𝑓(𝑥) − ∑

𝑚−1

𝑘=1
𝑓
𝑘

(0)(𝑥
𝑘

/𝑘!).

Lemma 5. Suppose that 𝑢 and their partial derivatives are
continuous; then the fractional derivative, 𝑐𝐷𝛼

𝑡
𝑢(𝑥, 𝑦, 𝑧, 𝑡), is

bonded.

Proof. Weneed to prove that it is possible to findnumber𝑀 >

0 such that ‖ 𝑐𝐷𝛼
𝑡
𝑢(𝑥, 𝑦, 𝑧, 𝑡)‖ ≤ 𝑀‖𝑢‖. From the definition of

Caputo fractional derivative above we have
󵄩󵄩󵄩󵄩
𝑐

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑡)

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

Γ (𝑚 − 𝛼)
∫

𝑏

𝑎

(𝑥 − 𝑡)
𝑚−𝛼−1

𝑢
(𝑚)

(𝑡) 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
|𝑏 − 𝑎|

|(𝑚 − 𝛼) Γ (𝑚 − 𝛼)|
‖𝑢‖ = 𝑀‖𝑢‖ ,

(7)

where𝑀 = |𝑏 − 𝑎|/|(𝑚 − 𝛼)Γ(𝑚 − 𝛼)|.

3. Analysis of the Variational Iteration Method

To solve the fractional singular partial differential equations
(4) by using the variational iteration method, with initial and
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boundary conditions (2) and (3), where ‖ 𝑐𝐷𝛼
𝑡
𝑢(𝑡)‖ = 𝑀‖𝑢‖,

we construct the following correction functional:

𝑢
𝑛+1

(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡)

+ 𝐽
𝛼

𝑡
[
𝑐

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑡)

− 𝑓 ((𝑥, 𝑦, 𝑧, 𝑡) , 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
1

𝑥
𝑢 (𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
2

𝑦
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
3

𝑧
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡))]

(8)

or

𝑢
𝑛+1

(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜆 (𝑠)

× (
𝑐

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑠)

− 𝑓 (𝑠, 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) , 𝐷

𝑛
1

𝑥
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) ,

𝐷
𝑛
2

𝑦
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) , 𝐷

𝑛
3

𝑧
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠)) ) 𝑑𝑠.

(9)

𝐽
𝛼

𝑡
is the Riemann-Liouville fractional integral operator of

order 𝛼, with respect to variable 𝑡, and 𝜆 is a general Lagrange
multiplier which can be identified as optimally variational
theory [22], and 𝑢̃

𝑛
(𝑥, 𝑡) are considered as restricted variation;

that is, 𝛿𝑢̃
𝑛
(𝑥, 𝑡) = 0.

Making the above correction functional stationary, the
following condition can be obtained:

𝛿𝑢
𝑘+1

(𝑥, 𝑦, 𝑧, 𝑡)

= 𝛿𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) +

1

Γ (𝛼)
𝛿

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜆 (𝑠)

× (
𝑐

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑠)

− 𝑓 (𝑡, 𝑢̃
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) , 𝐷

𝑛
1

𝑥
𝑢̃
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) ,

𝐷
𝑛
2

𝑦
𝑢̃
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) , 𝐷

𝑛
3

𝑧
𝑢̃
𝑛
(𝑥, 𝑦, 𝑧, 𝑠))) 𝑑𝑠

(10)

and yields to Lagrange multiplier

𝜆 (𝑠) = 𝑠 − 𝑡. (11)

We obtain the following iteration formula by substitution of
(11) in (9)

𝑢
𝑛+1

(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) +

1

Γ (𝛼 − 1)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−2

(𝑡 − 𝑠)

× (
𝑐

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑠)

−𝑓 (𝑠, 𝑢
𝑘
(𝑥, 𝑦, 𝑧, 𝑠) , 𝐷

𝑛
1

𝑥
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) ,

𝐷
𝑛
2

𝑦
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) , 𝐷

𝑛
3

𝑧
𝑢
𝑛
(𝑡))) 𝑑𝑠.

(12)

That is,

𝑢
𝑛+1

(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) −

(𝛼 − 1)

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× (
𝑐

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑠)

− 𝑓 (𝑠, 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) ,

𝐷
𝑛
1

𝑥
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) ,

𝐷
𝑛
2

𝑦
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠) ,

𝐷
𝑛
3

𝑧
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑠))) 𝑑𝑠.

(13)

This yields the following iteration formula:

𝑢
𝑛+1

(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) − (𝛼 − 1)

× 𝐽
𝛼

𝑡
[
𝑐

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑡)

− 𝑓 (𝑡, 𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
1

𝑥
𝑢 (𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
2

𝑦
𝑢
𝑛
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
3

𝑧
𝑢
𝑛
(𝑡))] .

(14)

The initial approximation 𝑢
0
can be chosen by the follow-

ing manner which satisfies initial conditions:

𝑢
0
=

1

∑

𝑗=0

𝛾
𝑗

𝑡
𝑗

𝑗!
= 𝛾
0
+ 𝛾
1
𝑡, (15)

where 𝛾
0
= 𝑓
0
(𝑥, 𝑦, 𝑧) , 𝛾

1
= 𝑓
1
(𝑥, 𝑦, 𝑧) .
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We can obtain the following first-order approximation by
substitution of (15) into (14)

𝑢
1
(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑢
0
(𝑥, 𝑦, 𝑧, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× [
𝑐

𝐷
𝛼

𝑡
𝑢
0
(𝑥, 𝑦, 𝑧, 𝑡)

− 𝑓 (𝑡, 𝑢
0
(𝑡) ,

𝐷
𝑛
1

𝑥
𝑢 (𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
2

𝑦
𝑢
0
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
3
𝑚

𝑧
𝑢
0
(𝑥, 𝑦, 𝑧, 𝑡))] .

(16)

Finally, by substituting the constant values of 𝛾
0
and 𝛾

1

into (16), we have the results as the first approximate solutions
of (4) with (2) and (3).

3.1. Convergence Analysis

3.1.1. Existence and Uniqueness Theorem. Define 𝐹 : 𝑋 → 𝑋

contentious mapping, and the function 𝐹(𝑡, 𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛−1
)

exists with continuous and bounded derivatives, where 𝑋 is
the Banach space (𝐶(𝐽), ‖ ⋅ ‖), the space of all continuous
functions on 𝐽 with the norm

‖𝑢‖ = max
∀𝑡∈𝐽

|𝑢| , (17)

and satisfies Lipschitz condition with Lipschitz constant 𝐿,
such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢1 (𝑥, 𝑦, 𝑧, 𝑡) , 𝐷
𝑛
1𝑢
1
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
2𝑢
1
(𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
3𝑢
1
(𝑥, 𝑦, 𝑧, 𝑡))

− 𝑓 (𝑡, 𝑢
2
(𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
1𝑢
2
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
2𝑢
2
(𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
𝑚𝑢
2
(𝑥, 𝑦, 𝑧, 𝑡))

󵄨󵄨󵄨󵄨

≤ 𝐿
󵄨󵄨󵄨󵄨(𝑢1 (𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
1𝑢
1
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
2𝑢
1
𝑥, 𝑦, 𝑧, (𝑡) , 𝐷

𝑛
3𝑢
1
(𝑥, 𝑦, 𝑧, 𝑡))

− (𝑢
2
(𝑡) , 𝐷

𝑛
1𝑢
2
(𝑥, 𝑦, 𝑧, 𝑡) ,

𝐷
𝑛
2𝑢
2
(𝑥, 𝑦, 𝑧, 𝑡) , 𝐷

𝑛
3𝑢
2
(𝑥, 𝑦, 𝑧, 𝑡))

󵄨󵄨󵄨󵄨

0 < 𝐿 < 1, 𝑡 ≥ 0.

(18)

Theorem 6. Let 𝑓 satisfy the Lipschitz condition (18) then
the problem (4) with (2) and (3) has unique solution 𝑢(𝑥, 𝑡),
whenever 0 < 𝐿 < 1.

Proof. (1)The existence of the solution. From equation (4) we
have

𝑢 = 𝑓(𝑡,

𝑚−1

∑

𝑗=0

𝑐
𝑗

𝑡
𝑗

𝑗!
+ 𝐽
𝛼

𝑢, 𝐽
𝛼

𝐷
𝑛
1

𝑥
𝑢, 𝐽
𝛼

𝐷
𝑛
2

𝑦
𝑢, 𝐽
𝛼

𝐷
𝑛
3

𝑧
𝑢) . (19)

The mapping 𝐹 : 𝑋 → 𝑋 is defined as

𝐹 (𝑢) = 𝑓(𝑡,

𝑚−1

∑

𝑗=0

𝑐
𝑗

𝑡
𝑗

𝑗!
+ 𝐽
𝛼

𝑢, 𝐽
𝛼

𝐷
𝑛
1

𝑥
𝑢, 𝐽
𝛼

𝐷
𝑛
2

𝑦
𝑢, 𝐽
𝛼

𝐷
𝑛
3

𝑧
𝑢) .

(20)

Let 𝑢, V ∈ 𝑋; then

|𝐹 (𝑢) − 𝐹 (V)|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓(𝑡,

𝑚−1

∑

𝑗=0

𝑐
𝑗

𝑡
𝑗

𝑗!
+ 𝐽
𝛼

𝑢, 𝐽
𝛼

𝐷
𝑛
1

𝑥
𝑢, 𝐽
𝛼

𝐷
𝑛
2

𝑦
𝑢, 𝐽
𝛼

𝐷
𝑛
3

𝑧
𝑢)

−𝑓(𝑡,

𝑚−1

∑

𝑗=0

𝑐
𝑗

𝑡
𝑗

𝑗!
+ 𝐽
𝛼V, 𝐽𝛼𝐷𝑛1

𝑥
V, 𝐽𝛼𝐷𝑛2

𝑦
V, 𝐽𝛼𝐷𝑛3

𝑧
V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐿

3

∑

𝑖=0

󵄨󵄨󵄨󵄨𝐽
𝛼−𝑛
𝑖𝑢 − 𝐽

𝛼−𝑛
𝑖V󵄨󵄨󵄨󵄨

≤ 𝐿

3

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼 − 𝑛
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝑛
𝑖
−1

[𝑢 − V] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

max |𝐹 (𝑢) − 𝐹 (V)|

≤ 𝐿

3

∑

𝑖=0

1

Γ (𝛼 − 𝑛
𝑖
)
max

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝑛
𝑖
−1

[𝑢 − V] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐿

3

∑

𝑖=0

‖𝑢 − V‖
Γ (𝛼 − 𝑛

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝑛
𝑖
−1

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

3

∑

𝑖=0

LMT
Γ (𝛼 − 𝑛

𝑖
)
‖𝑢 − V‖

≤ 𝛾 ‖𝑢 − V‖ ,
(21)

where 𝛾 = ∑
3

𝑖=0
(LMT/(Γ(𝛼 − 𝑛

𝑖
))) < 1, then we get

‖𝐹 (𝑢) − 𝐹 (V)‖ ≤ ‖𝑢 − V‖ , (22)

therefore the mapping 𝐹 is contraction, and there exists
unique solution 𝑢 ∈ 𝐶(𝐽) to problem (4).

(2) The uniqueness of the solution (see [23]).

3.1.2. Proof of Convergence

Theorem 7. Suppose that𝑋 is Banach space and 𝐹 : 𝑋 → 𝑋

satisfies condition (18). Then, the sequence (14) converges to the
solution of (4) with (2) and (3).

Proof. Defined (𝐶(𝐽), ‖ ⋅ ‖) is the Banach space, the space of
all continuous functions on 𝐽 with the norm

󵄩󵄩󵄩󵄩𝑢 (𝑥, 𝑦, 𝑧, 𝑡)
󵄩󵄩󵄩󵄩 = max
∀𝑡∈𝐽

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑦, 𝑧, 𝑡)
󵄨󵄨󵄨󵄨 . (23)
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We need to show that {𝑢
𝑛
} is a Cauchy sequence in this

Banach space:
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑚

󵄩󵄩󵄩󵄩

= max 󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢𝑚
󵄨󵄨󵄨󵄨

= max
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛−1

−
(𝛼 − 1)

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝐷
𝛼

𝑢
𝑛−1

(𝑥, 𝑦, 𝑧, 𝑠)

− 𝐹 (𝑠, 𝑢
𝑛−1

(𝑠) , 𝐷
𝑛
1

𝑥
𝑢
𝑛−1

(𝑠) ,

𝐷
𝑛
2

𝑦
𝑢
𝑛−1

(𝑠) , 𝐷
𝑛
3

𝑧
𝑢
𝑛−1

(𝑠))] 𝑑𝑠

− 𝑢
𝑚−1

+
(𝛼 − 1)

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝐷
𝛼

𝑢
𝑚−1

− 𝐹 (𝑠, 𝑢
𝑚−1

(𝑥, 𝑦, 𝑧, 𝑠)𝐷
𝑛
1

𝑥
𝑢
𝑚−1

,

𝐷
𝑛
2

𝑦
𝑢
𝑚−1

, 𝐷
𝑛
3

𝑧
𝑢
𝑚−1

)] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max [󵄨󵄨󵄨󵄨𝑢𝑛−1 − 𝑢𝑚−1
󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝛼 − 1)

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝐷
𝛼

𝑢
𝑛−1

− 𝐷
𝛼

𝑢
𝑚−1

]

− 𝐹 (𝑠, 𝑢
𝑛−1

, 𝐷
𝑛
1

𝑥
𝑢
𝑛−1

, 𝐷
𝑛
2

𝑦
𝑢
𝑛−1

, 𝐷
𝑛
3

𝑧
𝑢
𝑛−1

) 𝑑𝑠

− 𝐹 (𝑠, 𝑢
𝑚−1

, 𝐷
𝑛
1

𝑥
𝑢
𝑚−1

, 𝐷
𝑛
2

𝑦
𝑢
𝑚−1

, 𝐷
𝑛
3

𝑧
𝑢
𝑛−1

) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
]

≤ max [ 󵄨󵄨󵄨󵄨𝑢𝑛−1 − 𝑢𝑚−1
󵄨󵄨󵄨󵄨

−
(𝑀 + (𝑚

1
+ 𝑚
2
+ 𝑚
3
) 𝑅𝑇)

Γ (𝛼)

× ∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
(𝑡 − 𝑠)

𝛼−1
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢𝑛−1 − 𝑢𝑚−1
󵄨󵄨󵄨󵄨 𝑑𝑠]

≤ max 󵄨󵄨󵄨󵄨𝑢𝑛−1 − 𝑢𝑚−1
󵄨󵄨󵄨󵄨

× (1 −
(𝑀 + (𝑚

1
+ 𝑚
2
+ 𝑚
3
) 𝑅𝑇)

Γ (𝛼 − 1)

×∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
(𝑡 − 𝑠)

𝛼−1
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠) ,

(24)

where

𝑅 = max 󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑠)
𝛼−1

󵄨󵄨󵄨󵄨󵄨
0≤𝑠≤𝑡,0≤𝑡≤𝑇

. (25)

Finally, we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑚

󵄩󵄩󵄩󵄩

≤ (1 −
(𝑀 + (𝑚

1
+ 𝑚
2
+ 𝑚
3
) 𝑅𝑇)

Γ (𝛼 − 1)
)

×
󵄩󵄩󵄩󵄩𝑢𝑛−1 − 𝑢𝑚−1

󵄩󵄩󵄩󵄩

≤ 𝛾
󵄩󵄩󵄩󵄩𝑢𝑛−1 − 𝑢𝑚−1

󵄩󵄩󵄩󵄩 ,

(26)

where𝑀,𝑅, 𝑇, Γ(𝛼) are constants and

𝛾 = (1 −
(𝑀 + (𝑚

1
+ 𝑚
2
+ 𝑚
3
) 𝑅𝑇)

Γ (𝛼 − 1)
) . (27)

Let 𝑛 = 𝑚 + 1. Then
󵄩󵄩󵄩󵄩𝑢𝑚+1 − 𝑢𝑚

󵄩󵄩󵄩󵄩

≤ 𝛾
󵄩󵄩󵄩󵄩𝑢𝑚 − 𝑢𝑚−1

󵄩󵄩󵄩󵄩 ≤ 𝛾
2 󵄩󵄩󵄩󵄩𝑢𝑚−1 − 𝑢𝑚−2

󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅ ≤ 𝛾
𝑚 󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩 .

(28)

From the triangle inequality, we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑚

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑚+1 − 𝑢𝑚

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑚+2 − 𝑢𝑚+1

󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅ ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛾
𝑚 󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩 + 𝛾
𝑚+1 󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ + 𝛾
𝑛−1 󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩

≤ [𝛾
𝑚

+ 𝛾
𝑚+1

+ 𝛾
𝑚+2

+ ⋅ ⋅ ⋅ + 𝛾
𝑛−1

]
󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩

≤ 𝛾
𝑚

[1 + 𝛾 + 𝛾
2

+ ⋅ ⋅ ⋅ + 𝛾
𝑛−𝑚−1

]
󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩

≤ 𝛾
𝑚

(
1 − 𝛾
𝑛−𝑚

1 − 𝛾
)
󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩 .

(29)

Since 0 < 𝛾 < 1, so 1 − 𝛾𝑛−𝑚 < 1, and then

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑚
󵄩󵄩󵄩󵄩 ≤

𝛾
𝑚

1 − 𝛾

󵄩󵄩󵄩󵄩𝑢1 − 𝑢0
󵄩󵄩󵄩󵄩 . (30)

But ‖𝑢
1
− 𝑢
0
‖ < ∞; then ‖𝑢

𝑛
− 𝑢
𝑚
‖ → 0 as𝑚 → ∞. We

conclude that 𝑢
𝑛
is a Cauchy sequence in 𝐶[𝐽], so the seq-

uence converges and the proof is complete.

3.1.3. Error Analysis

Theorem 8. The maximum absolute error of the approximate
solution 𝑢

𝑚
to problem (4)-(3) is estimated to be

max
𝑡∈𝐽

󵄨󵄨󵄨󵄨𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑛
󵄨󵄨󵄨󵄨 ≤ 𝑘, (31)
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where

𝑘 = (
𝛾
𝑚

(𝑀 + (𝑚
1
+ 𝑚
2
+ 𝑚
3
RT) 𝛽)

(1 − 𝛾)
)
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 ,

𝛽 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝛼 − 1

Γ (𝛼)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(32)

Proof. FromTheorem (9) and inequality (30) we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑚
󵄩󵄩󵄩󵄩 ≤ (

𝛾
𝑚

1 − 𝛾
)
󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩 (33)

as 𝑛 → ∞; then 𝑢
𝑛
→ 𝑢exact and

󵄩󵄩󵄩󵄩𝑢1 − 𝑢0
󵄩󵄩󵄩󵄩

= max
𝑡∈𝐽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
(𝛼 − 1)

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝐷
𝛼

𝑢
0

− 𝐹 (𝑠, 𝑢
0
, 𝐷
𝑛
1

𝑥
𝑢
0
, 𝐷
𝑛
2

𝑦
, 𝐷
𝑛
3

𝑧
𝑢
0
)] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= [(𝑀 + (𝑚
1
+ 𝑚
2
+ 𝑚
3
𝑅𝑇) 𝛽)]

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩 ,

(34)

where 𝛽 = |((𝛼 − 1)/Γ(𝛼))|, and thus, the maximum absolute
error in the interval 𝐽 is

󵄩󵄩󵄩󵄩𝑢exact − 𝑢𝑛
󵄩󵄩󵄩󵄩 ≤ max
𝑡∈𝐽

󵄨󵄨󵄨󵄨𝑢exact − 𝑢𝑛
󵄨󵄨󵄨󵄨 ≤ 𝑘. (35)

This completes the proof.

4. Numerical Examples

Example 1. Consider the following fourth-order fractional
singular partial differential equation:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
+ (

1

𝑥
+

𝑥
4

120
)
𝜕
4

𝑢

𝜕𝑥4
= 0,

1

2
< 𝑥 < 1, 𝑡 > 0, 1 < 𝛼 ≤ 2.

(36)

With initial conditions

𝑢 (𝑥, 0) = 0,
1

2
< 𝑥 < 1,

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 1 +

𝑥
5

120
, 0 < 𝑥 < 1

(37)

and boundary conditions

𝑢 (
1

2
, 𝑡) = (1 +

(1/2)
5

120
) sin 𝑡,

𝑢 (1, 𝑡) =
121

120
sin 𝑡, 𝑡 > 0,

𝜕
2

𝑢

𝜕𝑥2
(
1

2
, 𝑡) =

1

6
(
1

2
)

3

sin 𝑡,

𝜕
2

𝑢

𝜕𝑥2
(1, 𝑡) =

1

6
sin 𝑡, 𝑡 > 0,

(38)

the exact solution in special case 𝛼 = 2 is

𝑢 (𝑥, 𝑡) = (1 +
𝑥
5

120
) sin 𝑡 (39)

and we solve the problem (36) by variational iteration
method. According to variational iteration method, formula
(14) for (36) can be expressed in the following form:

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (

1

𝑥
+

𝑥
4

120
)
𝜕
4

𝑢

𝜕𝑥4
) .

(40)

Suppose that an initial approximation has the following
form which satisfies the initial conditions:

𝑢
0
(𝑥, 𝑡) = (1 +

𝑥
5

120
) 𝑡. (41)

Now by iteration formula (16), we obtain the following
approximations:

𝑢
1
(𝑥, 𝑡)

= 𝑢
0
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
0
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (

1

𝑥
+

𝑥
4

120
)
𝜕
4

𝑢
0

𝜕𝑥4
)

= ((1 +
𝑥
5

120
)) 𝑡 − (𝛼 − 1) (1 +

𝑥
5

120
)

𝑡
𝛼+1

Γ (𝛼 + 2)
.

(42)

The second approximation takes the following form:

𝑢
2
(𝑥, 𝑡)

= 𝑢
1
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
1
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (

1

𝑥
+

𝑥
4

120
)
𝜕
4

𝑢
1

𝜕𝑥4
)

= (1 +
𝑥
5

120
) 𝑡 − (𝛼 − 1) (1 +

𝑥
5

120
)

𝑡
𝛼+1

Γ (𝛼 + 2)

+ (𝛼 − 1)
2

(1 +
𝑥
5

120
)

𝑡
2𝛼+1

Γ (2𝛼 + 1)

= (1 +
𝑥
5

120
)

× (𝑡 − (𝛼 − 1)
2

𝑡
𝛼+1

Γ (𝛼 + 2)
+ (𝛼 − 1)

2
𝑡
2𝛼+1

Γ (2𝛼 + 2)
) ,
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𝑢
3
(𝑥, 𝑡)

= 𝑢
2
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
2
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (1 +

𝑥
4

120
)
𝜕
4

𝑢
1

𝜕𝑥4
)

= (1 +
𝑥
5

120
)

× (𝑡 − (𝛼 − 1)
3

𝑡
𝛼+1

Γ (𝛼 + 2)
+ (𝛼 − 1)

2

×
𝑡
2𝛼+1

Γ (2𝛼 + 2)
− (𝛼 − 1)

3
𝑡
3𝛼+1

Γ (3𝛼 + 2)
)

...
(43)

Table 1 shows the absolute error of VIM solution of exam-
ple (36) (when 𝛼 = 1.999, 𝑥 = 0.1, and 𝑛 = 2), while Table 2
shows the maximum absolute truncated error of VIM solu-
tion (usingTheorem 8) at different values of 𝑛 (when 𝑡 = 2).

Example 2. Consider the following fourth-order fractional
singular partial differential equation:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
+ (

𝑥

sin𝑥
− 1)

𝜕
4

𝑢

𝜕𝑥4
= 0,

0 < 𝑥 < 1, 𝑡 > 0, 1 < 𝛼 ≤ 2.

(44)

With initial conditions

𝑢 (𝑥, 0) = 𝑥 − sin𝑥, 0 < 𝑥 < 1

𝜕𝑢

𝜕𝑡
(𝑥, 0) = − (𝑥 − sin𝑥) , 0 < 𝑥 < 1

(45)

and boundary conditions

𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = 𝑒
−𝑡

(1 − sin 1) , 𝑡 > 0,

𝜕
2

𝑢

𝜕𝑥2
(0, 𝑡) = 0,

𝜕
2

𝑢

𝜕𝑥2
(1, 𝑡) = 𝑒

−𝑡 sin 1, 𝑡 > 1,

(46)

the exact solution in special case 𝛼 = 2 is

𝑢 (𝑥, 𝑡) = (𝑥 − sin𝑥) 𝑒−𝑡. (47)

According to variational iteration method, formula (14)
for (44) can be expressed in the following form:

𝑢
𝑘+1

(𝑥, 𝑡)

= 𝑢
𝑘
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
𝑘
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (

𝑥

sin𝑥
− 1)

𝜕
4

𝑢

𝜕𝑥4
) .

(48)

Table 1: Absolute error.

𝑡 Error of VIM (n = 2)
0.2 1.9635 × 10

−7

0.4 9.44308 × 10
−6

0.6 5.15266 × 10
−5

0.8 1.7613 × 10
−4

1 4.98115 × 10
−4

1.2 0.00127331

1.4 0.00301987

1.6 0.00669301

1.8 0.0139188

2 0.02729

Table 2: Maximum absolute error.

𝑛 Maximum error VIM
2 0.0272901

3 0.00186871

4 0.00328421

Suppose that an initial approximation has the following form
which satisfies the initial condition:

𝑢
0
(𝑥, 𝑡) = (𝑥 − sin𝑥) − (𝑥 − sin𝑥) 𝑡. (49)

Now by iteration formula (48), we obtain the first approxima-
tion

𝑢
1
(𝑥, 𝑡)

= 𝑢
0
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
0
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (

𝑥

sin𝑥
− 1)

𝜕
4

𝑢
0

𝜕𝑥4
)

= (𝑥 − sin𝑥) − (𝑥 − sin𝑥) 𝑡

+ (𝛼 − 1) (𝑥 − sin𝑥) 𝑡
𝛼

Γ (𝛼 + 1)
− (𝛼 − 1)

× (𝑥 − sin𝑥) 𝑡
𝛼+1

Γ (𝛼 + 2)

(50)

and second approximation

𝑢
2
(𝑥, 𝑡)

= 𝑢
1
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
1
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (

𝑥

sin𝑥
− 1)

𝜕
4

𝑢
1

𝜕𝑥4
)

= (𝑥 − sin𝑥) − (𝑥 − sin𝑥) 𝑡

− (𝛼 − 3) (𝛼 − 1) (𝑥 − sin𝑥) 𝑡
𝛼

Γ (𝛼 + 1)
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+ (𝛼 − 3) (𝛼 − 1) (𝑥 − sin𝑥) 𝑡
𝛼+1

Γ (𝛼 + 2)

+ (𝛼 − 1)
2

(𝑥 − sin𝑥) 𝑡
2𝛼

Γ (2𝛼 + 1)

− (𝛼 − 1)
2

(𝑥 − sin𝑥) 𝑡
2𝛼+1

Γ (2𝛼 + 2)

𝑢
3
= (𝑥 − sin𝑥)

× ( (2 − 𝛼) − 𝛼𝑡

+ (𝛼 − 1) (𝛼
2

− 5𝛼 + 7)
𝑡
𝛼

Γ (𝛼 + 1)

+ (𝛼 − 1) (𝛼
2

− 5𝛼 + 5)
𝑡
𝛼+1

Γ (𝛼 + 1)

+ (𝛼 − 1)
2

(2 − 𝛼)
𝑡
2𝛼

Γ (2𝛼 + 1)

− (𝛼 − 1)
2

(5 − 2𝛼)
𝑡
2𝛼+1

Γ (2𝛼 + 2)

+(𝛼 − 1)
3

𝑡
3𝛼

Γ (3𝛼 + 1)
− (𝛼 − 1)

3
𝑡
3𝛼

Γ (3𝛼 + 2)
)

𝑢
0
(𝑥, 𝑡) = (𝑥 − sin𝑥) − (𝑥 − sin𝑥) 𝑡

𝑢
1
(𝑥, 𝑡)

= 𝑢
0
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
0
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (

𝑥

sin𝑥
− 1)

𝜕
4

𝑢
0

𝜕𝑥4
)

= (𝑥 − sin𝑥) − (𝑥 − sin𝑥) 𝑡

+ (𝛼 − 1) (𝑥 − sin𝑥) 𝑡
𝛼

Γ (𝛼 + 1)

− (𝛼 − 1) (𝑥 − sin𝑥) 𝑡
𝛼+1

Γ (𝛼 + 2)

𝑢
2
(𝑥, 𝑡)

= 𝑢
1
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
1
(𝑥, 𝑡)

𝜕𝑡𝛼
+ (

𝑥

sin𝑥
− 1)

𝜕
4

𝑢
1

𝜕𝑥4
)

= (𝑥 − sin𝑥) − (𝑥 − sin𝑥) 𝑡

− (𝛼 − 3) (𝛼 − 1) (𝑥 − sin𝑥) 𝑡
𝛼

Γ (𝛼 + 1)

+ (𝛼 − 3) (𝛼 − 1) (𝑥 − sin𝑥) 𝑡
𝛼+1

Γ (𝛼 + 2)

+ (𝛼 − 1)
2

(𝑥 − sin𝑥) 𝑡
2𝛼

Γ (2𝛼 + 1)

− (𝛼 − 1)
2

(𝑥 − sin𝑥) 𝑡
2𝛼+1

Γ (2𝛼 + 2)

𝑢
3
(𝑥, 𝑡)

= (𝑥 − sin𝑥)

× ((2 − 𝛼) − (𝛼 − 2) 𝑡

+ (𝛼 − 1) (𝛼
2

− 5𝛼 + 7)
𝑡
𝛼

Γ (𝛼 + 1)

− (𝛼 − 1) (𝛼
2

− 5𝛼 + 7)
𝑡
𝛼+1

Γ (𝛼 + 2)

− (𝛼 − 1)
2

(2𝛼 − 5)
𝑡
2𝛼

Γ (2𝛼 + 1)

+ (𝛼 − 1)
2

(2𝛼 − 5)
𝑡
2𝛼+1

Γ (2𝛼 + 2)

+ (𝛼 − 1)
3

𝑡
3𝛼

Γ (3𝛼 + 1)
− (𝛼 − 1)

3
𝑡
3𝛼+1

Γ (3𝛼 + 2)
)

...
(51)

Table 3 shows the absolute error of VIM solution of exam-
ple (37) (when 𝛼 = 1.5, 𝑥 = 0.1, and 𝑛 = 2), while Table 4
shows the maximum absolute truncated error of VIM solu-
tion (usingTheorem 8) at different values of 𝑛 (when 𝑡 = 2).

Example 3. Consider the following singular two-dimensional
partial differential equation of fractional order:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
+ 2(

1

𝑥2
+
𝑥
4

6!
)
𝜕
4

𝑢

𝜕𝑥4
+ 2(

1

𝑦2
+
𝑦
4

6!
)
𝜕
4

𝑢

𝜕𝑦4
= 0,

0 < 𝑥, 𝑦 < 1, 𝑡 > 0, 1 < 𝛼 ≤ 2.

(52)

With initial conditions

𝑢 (𝑥, 𝑦, 0) = 0, 0 < 𝑥 < 1

𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 0) = 2 +

𝑥
6

6!
+
𝑦
6

6!
, 0 < 𝑥 < 1

(53)

and boundary conditions

𝑢 (0.5, 𝑦, 𝑡) = (2 +
(0.5)
6

6!
+
𝑦
6

6!
) sin 𝑡,

𝑢 (1, 𝑦, 𝑡) = (2 +
1

6!
+
𝑦
6

6!
) sin 𝑡, 𝑡 > 0,
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Table 3: Absolute error.

𝑡 Error of VIM (n = 2)
0.2 2.9199 × 10

−6

0.4 6.85596 × 10
−6

0.6 7.79651 × 10
−6

0.8 5.12596 × 10
−6

1 1.42135 × 10
−6

1.2 1.19864 × 10
−5

1.4 2.66612 × 10
−5

1.6 4.5519 × 10
−5

1.8 6.86269 × 10
−5

2 9.60514 × 10
−5

Table 4: Maximum absolute error.

𝑛 Maximum error VIM
2 9.60514 × 10

−5

3 1.82927 × 10
−6

4 5.93438 × 10
−9

𝜕
2

𝑢

𝜕𝑥2
(0.5, 𝑦, 𝑡) =

(0.5)
4

6!
sin 𝑡,

𝜕
2

𝑢

𝜕𝑥2
(1, 𝑦, 𝑡) =

1

6!
sin 𝑡, 𝑡 > 1,

𝜕
2

𝑢

𝜕𝑦2
(𝑥, 0.5, 𝑡) =

(0.5)
4

6!
sin 𝑡,

𝜕
2

𝑢

𝜕𝑦2
(𝑥, 1, 𝑡) =

1

6!
sin 𝑡, 𝑡 > 1,

(54)

the exact solution in special case 𝛼 = 2 is

𝑢 (𝑥, 𝑦, 𝑡) = (2 +
𝑥
6

6!
+
𝑦
6

6!
) sin 𝑡. (55)

According to variational iteration method, formula (14)
for (52) can be expressed in the following form:

𝑢
𝑘+1

(𝑥, 𝑡)

= 𝑢
𝑘
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
𝑘
(𝑥, 𝑡)

𝜕𝑡𝛼
+ 2(

1

𝑥2
+
𝑥
4

6!
)
𝜕
4

𝑢

𝜕𝑥4

+2(
1

𝑦2
+
𝑦
4

6!
)
𝜕
4

𝑢

𝜕𝑦4
) .

(56)

Suppose that an initial approximation has the following form
which satisfies the initial conditions:

𝑢
0
(𝑥, 𝑡) = (2 +

𝑥
6

6!
+
𝑦
6

6!
) 𝑡. (57)

Now by iteration formula (56), we obtain the following
approximations:

𝑢
1
(𝑥, 𝑡)

= 𝑢
0
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
0
(𝑥, 𝑡)

𝜕𝑡𝛼
+ 2(

1

𝑥2
+
𝑥
4

6!
)
𝜕
4

𝑢
0

𝜕𝑥4

+2(
1

𝑦2
+
𝑦
4

6!
)
𝜕
4

𝑢
0

𝜕𝑦4
)

= (2 +
𝑥
6

6!
+
𝑦
6

6!
) 𝑡 − 2 (𝛼 − 1) (2 +

𝑥
6

6!
+
𝑦
6

6!
)

𝑡
𝛼+1

Γ (𝛼 + 2)
.

(58)

The second approximation takes the following form:

𝑢
2
(𝑥, 𝑡)

= 𝑢
1
(𝑥, 𝑡) − (𝛼 − 1) 𝐽

𝛼

𝑡

× (
𝜕
𝛼

𝑢
1
(𝑥, 𝑡)

𝜕𝑡𝛼
+ 2(

1

𝑥2
+
𝑥
4

6!
)
𝜕
4

𝑢
1

𝜕𝑥4

+2(
1

𝑦2
+
𝑦
4

6!
)
𝜕
4

𝑢
1

𝜕𝑦4
)

= (2 +
𝑥
6

6!
+
𝑦
6

6!
) 𝑡 − 2 (𝛼 − 1)

× (2 +
𝑥
6

6!
+
𝑦
6

6!
)

𝑡
𝛼+1

Γ (𝛼 + 2)

+ (𝛼 − 1)
2

(2 +
𝑥
6

6!
+
𝑦
6

6!
)

𝑡
2𝛼+1

Γ (2𝛼 + 1)

= (2 +
𝑥
6

6!
+
𝑦
6

6!
)

× (𝑡 − 2 (𝛼 − 1)
𝑡
𝛼+1

Γ (𝛼 + 2)
+ (𝛼 − 1)

2
𝑡
2𝛼+1

Γ (2𝛼 + 2)
)

𝑢
3
= (2 +

𝑥
2

6!
+
𝑦
2

6!
)

× ((2 − 𝛼) 𝑡 − 𝛼 (2𝛼 − 1)
𝑡
𝛼+1

Γ (𝛼 + 2)

−2 (𝛼 − 1)
𝑡
2𝛼+1

Γ (2𝛼 + 2)
− (𝛼 − 1)

3
𝑡
3𝛼+1

Γ (3𝛼 + 2)
)

...
(59)

Table 5 shows the absolute error of VIM solution of exam-
ple (38) (when 𝛼 = 1.999, 𝑥 = 𝑦 = 0.1, and 𝑛 = 2), while
Table 6 shows themaximum absolute truncated error of VIM
solution (using Theorem 8, resp.) at different values of 𝑛
(when 𝑡 = 2).
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Table 5: Absolute error.

𝑡 Error of VIM (n = 2)
0.2 4.94792 × 10

−6

0.4 2.38092 × 10
−5

0.6 4.09852 × 10
−5

0.8 1.0933 × 10
−5

1 3.29725 × 10
−4

1.2 0.0013951

1.4 0.00421146

1.6 0.0106573

1.8 0.0239528

2 0.0492518

Table 6: Maximum absolute error.

𝑛 Maximum error VIM
2 0.0492518

3 0.00159092

4 0.00124009

5. Conclusion

Thevariational iterationmethod has been known as powerful
tools for solving many equations in fractional calculus such
as ordinary equations, partial differential equations, inte-
grodifferential equations, and so many other equations. In
this paper, this method has been analyzed with an aim to
investigate the conditions which result in the convergence of
generated series solutions of the singular partial differential
equations of fractional order. The theorems outlined in the
paper have proved that the approximate solutions successfully
converge to the exact solution. We consider three examples
to verify convergence hypothesis simplicity of the method.
From the results we see that the exact error coincides with
the approximate error obtained from using the theorems;
for example, see Tables 1, 2, 3, and 4. Further, the high
agreement of the numerical results so obtained between the
variational iteration method and the exact solution in all
examples reinforces the conclusion that the efficiency of this
method and related phenomena give themethodmuch wider
applicability. Furthermore, the results obtained by proposed
method confirm the robustness and efficiency of it. And we
hope that the work in this paper is a step in this direction.
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