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The iterative method is presented for obtaining the centrally symmetric (centrally antisymmetric) matrix pair (X,Y) solutions of
the generalized coupled Sylvester-conjugate matrix equations A, X + B,Y = D,XE, + F,, A,Y + B,X = D,YE, + F,. On the
condition that the coupled matrix equations are consistent, we show that the solution pair (X*,Y™) can be obtained within finite
iterative steps in the absence of round-off error for any initial value given centrally symmetric (centrally antisymmetric) matrix.
Moreover, by choosing appropriate initial value, we can get the least Frobenius norm solution for the new generalized coupled
Sylvester-conjugate linear matrix equations. Finally, some numerical examples are given to illustrate that the proposed iterative

method is quite efficient.

1. Introduction

Many research papers are involved in the system of matrix
equation ([1-33]). The following matrix equation

AXB=C )

is a special case of coupled Sylvester linear matrix equations

YAX;B;=C, (i=1,2,...,m). )
j=1

In [34], an iterative algorithm was constructed to solve (1)
for skew-symmetric matrix X. Navarra et al. studied a rep-
resentation of the general solution for the matrix equations
A, XB, =C,, A,XB, = C, [35]. By Moore-Penrose general-
ized inverse, some necessary and sufficient conditions on the
existence of the solution and the expressions for the matrix
equation AX + XTC = B were obtained in ([36]). Deng et al.
give the consistent conditions and the general expressions of
the Hermitian solutions for (1) [37]. In addition, by extending

the well-known Jacobi and Gauss-Seidel iterations for Ax =
b, Ding et al. gained iterative solutions for matrix equation
(1) and the generalized Sylvester matrix equation AXB +
CXD = F [38]. The closed form solutions to a family of
generalized Sylvester matrix equations were given by utilizing
the so-called Kronecker matrix polynomials in ([39]). In
recent years, Dehghan and Hajarian considered the solution
for the generalized coupled Sylvester matrix equations [40]
AXB+CYD = M, EXF+GYH = N and presented a modified
conjugate gradient method to solve the matrix equations over
generalized bisymmetric matrix pair (X,Y). Liang and Liu
proposed a modified conjugate gradient method to solve the
following problem [41]:

A,XB,+C,X'D, = F,,
. ©)
A,XB, +C,X"D, = F,.

In the present paper, we conceive efficient algorithm to
solve the following generalized coupled Sylvester-conjugate
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linear matrix equations for centrally symmetric (centrally
antisymmetric) matrix pair (X, Y):

A,X +B,Y = D,XE, +F,
_ (4)
A,Y + B,X = D,YE, + F,,

where A;,B;,D; € CP", E; € C"™", F, € CP* (i = 1,2)
are given constant matrices, and X,Y € C™ are unknown
matrices to be solved. When A, = B, = D, = 0and F, = 0,
the problem (4) becomes the problem studied in [42]. When
A,=B,=D,=0,F, =0,and A, = I, this system becomes
the Yakubovich-conjugate matrix equation investigated in
[43]. When B, = A, =B, =D, =0,F, =0,and A, = I, the
problem (4) becomes the equation considered in [44]. When
A, =B, =D, =0andF, = F, = 0, the problem (4) becomes
the equation in [45]. When B, = A, =B, =D, =0,F, =0,
and D; = I, (4) becomes the equation in [46].

It is known that modified conjugate gradient (MCG)
method is the most popular iterative method for solving the
system of linear equation

Ax = b, (5)

where x € R" is an unknown vector, A € R™" is a given
matrix, and b € R™ is constant vector. By the definition of
the Kronecker product, matrix equations can be transformed
into the system (5). Then the MCG can be applied to various
linear matrix equations [44, 45]. Based on this idea, in this
paper, we propose a modified conjugate gradient method to
solve the system (4) and show that a solution pair (X*,Y™)
can be obtained within finite iterative steps in the absence of
round-off error for any initial value given centrally symmetric
(centrally antisymmetric) matrix. Furthermore, by choosing
appropriate initial value matrix pair, we can obtain the least
Frobenius norm solution for (4).

As a matter of convenience, some terminology used
throughout the paper follows.

C™" is the set of m x n complex matrices and R™"
is the set of m x n all real matrices. For A € C™", we
write Re(A), Im(A), A, AT, AH, A7, |A|p, and %(A) to
denote the real part, the imaginary part, the conjugation,
transpose, conjugate transpose, the inverse, the Frobenius
norm, and the column space of the matrix A, respectively.
Diag{A,A,,..., A} denotes the block diagonal matrix,
where A; € R™™ (i=1,2,...,n).Forany A = (a;)), B = (by),
A®B denotes the Kronecker product defined as A®B = (a;;B).

For the matrix X = (x, x,,...,x,) € C"™", vec(X) denotes
the vec operator defined as vec(X) = (xlT,x;F, . ,xZ)T. We

use I to denote the identity matrix of size implied by context.

Definition 1. Let S € R™™ and S = (e, €pis---»€1)s
wheree; (j = 1,2,...,m) denotes the column vector whose
jth element is 1 and the other elements are zeros. An m x
m complex matrix X is said to be a centrally symmetric
(centrally antisymmetric) matrix if SX§ = X(§XS =
—-X), denote the set of all centrally symmetric (centrally
antisymmetric) matrices by CSC™ " (CASC™™).

The rest of this paper is organized as follows. In Section 2,
we construct modified conjugate gradient (MCG) method for
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solving the system (4) and show that a solution pair (X*,Y™)
for (4) can be obtained by the MCG method within finite
iterative steps in the absence of round-oft error for any initial
value given centrally symmetric (centrally antisymmetric)
matrix. Furthermore, we demonstrate that the least Frobenius
norm solution can be obtained by choosing a special kind of
initial matrix. Also we give some numerical examples which
illustrate that the introduced iterative algorithm is efficient in
Section 3. Conclusions are arranged in Section 4.

2. The Iterative Method for Solving
the Matrix Equations (4)

In this section, we present the modified conjugate gradient
method (MCG) for solving the system (4). Firstly, we recall
that the definition of inner product came from [42].

The inner product in space C™" is defined as

(A, B) = Retr (A"B)]. (6)

By Theorem 1 in [42], we know that the inner product defined
by (6) satisfies the following three axioms:

(1) symmetry: (A, B) = (B, A);
(2) linearity in the first argument:
(6,A, +8,A,,B) =8,(A,B) +5,(A,,B), 7)
where 8, and 6, are real constants;
(3) positive definiteness: (A, A) > 0, for all A+0.
For all real constants 6;, 8,, by (1) and (2), we get
(A,8,B; +8,B,) = (8,B; +8,B,, A)
= 8,(By, A) + 0,(B,, A) (8)

=8, (A, B)) +6,(A,By);

namely, the inner product defined by (6) is linear in the
second argument.

By the relation between the matrix trace and the conjugate
operation, we get

(A,B) = Re [tr (A"B)] = Re [tr (A7'B)| = Re [tr (A7B)].
)

The norm of a matrix generated by this inner product
space is denoted by | - [|. Then for A € C™, we obtain

IAI® = (A, A) = Re[tr (A" A)]. (10)

What is the relationship between this norm and the Frob-
enius norm? It is well known that ||A||f; = tr(AfA) and A" A
is a Hermite matrix. Then by the knowledge of algebra, we
know that tr(A™ A) is real; hence, tr(A7 A) = Re[tr(ATA)].
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This shows that | Allz = [|All. Another interesting relationship
is that

JAI” = [Re(4) + i Im(A)[*
= Re {tr [(Re (A) +iIm (A))" (Re (A) +iIm (A))]}

=Re{tr[(Re(A)" —iIm (A)") (Re (A) +iIm (4))]}

Re [tr (Re (A)" Re (A) +iRe (A)" Im (4)
~iIm (A)" Re (A) + Im (A)" Im (A))]
= Re[tr (Re (A)" Re (4)) + tr (Im (A)" Im (A))
+itr(Re(A) Im(A)) —itr (Im (A)" Re (A))]
= tr (Re (A)" Re (4)) + tr (Im (A)" Im (A))

= [Re(A) I + [Tm(A)7.
(1)
That is, || A|l* = | Re(A)|[7 + [ Tm(A)|7.

In the following we present some algorithms. The ordi-
nary conjugate gradient (CG) method to solve (5) is as follows
[47].

Algorithm 2 (CG method). Consider the following steps.

Step 1. Input A, b. Choose the initial vectors x, and set k := 0;
calculate vy = b — Ax,, py = 1,-

Step 2.1fr,. = 0 orr # 0 and p, = 0, stop; otherwise, calculate

(> 1)
(P Pr)

DPr- (12)

Xiy1 = X

Step 3. Update the sequences

Tkt1 = b- AXpyr
<rk+1’ rk+l> (13)

=T
pk+1 k+1 <rk’ rk>

Step 4. Set k := k + 1; return to Step 2.

It is known that the size of the linear equation (5) will be
large, when (4) is transformed to a linear equation (5) by the
Kronecker product. Therefore, the iterative Algorithm 2 will
consume much more computer time and memory space once
increasing the dimensionality of coefficient matrix.

In view of these considerations, we construct the follow-
ing so-called modified conjugate gradient (MCG) method to
solve (4).

Algorithm 3 (MCG method for centrally symmetric matrix
version). Consider the following steps.

Step 1. Input appropriate dimension matrices A;, B;, D;, E;,
and F, (i = 1,2). Choose the initial matrices X; € CSC™"

and Y, € CSC™™, S = (e, e_1>---

Compute
RV o
Ry = @ )
0 Rj

RV =D XE +F -A X, -BY,

,ep) in Definition 1.

R? = D,Y,E, + F, - A,Y, - B,X,

p1)
R = (Rl 0 > (14)
Le 52 |’

0 R

RY = A¥RY + BYRY - D] RVE],
RP = AYR? + BR\" - D}RVE],

M,

(R +sRYS), N = (R +SROS);

setk :

Il
—

Step 2. If R, = 0 or R, #0, M} = N;. = 0, stop; otherwise, go
to Step 3.

Step 3. Update the sequences

Xir1 = X + og My, Yir =Y + o Ng,

1)
R L Rk+1 0
k+1 *— 0 R(Z) >

k+1
Rl(clJr)1 =D Xy Ey +F - AIXk+1 =B Y1
) _
R1(<+)1 =D,Yi By + F, =AY — By Xprs
RV o0
= k+1
Rk+1 = ( ! =) > (15)
0 Rk+1
p(l) _ AHp(l) H ,(2) T (1) T
Rk+1 - Al Rk+1 + Bz Rk+1 - Dl Rk+1E1 >
p2) _ AHp(2) H (1) T2 T
Ry, = ARG, + B R — DR E,,
L s | om®
My = 5 (R, + SR, S) + BeM,
Lis@ | 5@
Ny = E (Rk+1 + SRkHS) + BN
where
2 2
R R
e RE Rl
k 2 2 k 2
IV + NG| IRl

Step 4. Set k := k + 1; return to Step 2.

Algorithm 4 (MCG method for centrally antisymmetric
matrix version). Consider the following steps.



Step 1. Input matrices A;, B;, D;, E;, and F,, (i = 1,2). Choose
the initial matrix X; € CASC™ and Y; € CASC™™, S =
(€4 €p_1>- - - »€1) in Definition 1. Compute

R, = (Rgl) 0 )
""\o R?)

RV =D X|E, +F - A X, -BY,

R? = D,Y|E, + F, — A,Y - B,X,,

_ rRY o )
R, = L ) 17)
! ( 0 R?

R = ATRY + BYR? - DIR\E],

1 =a =(1
M, = 5(Rg’—:;R(1 's), N
setk := 1.

- (R - smPs);

Step 2. If R, = 0 or R #0, M = N;. = 0, stop; otherwise, go
to Step 3.

Step 3. Update the sequences

Xir1 = Xi + oMy, Yi =Y + Ny,

1)
Rk = Rk+1 0
+1 0 R(z)

k+1
RI(<1+)1 Dy XpnEy +Fy — A Xpy — By Y
5 _
Rl(ﬁ)l =D)Yi By + F, - AyYi — By Xy (18)
_ RW -9
Ryyy = < e RrR® )2
0 k+1
o)
k+1 A Rk+1 + B Rk+1 D Rk+1E
OB
Rk+1 A Rk+1 + B Rk+1 D Rk+1E
1 1
My, = (R1(<+)1 - SR1(<+)1 ) + ﬁkMk’
| (19)
2 2
Niy1 = (RI(<+)1 - SRI(<+)1 ) + BN
where
2 2
Ry Ry
oy = —"2 “ 5 B = —" HE . (20)
M| + N IR

Step 4. Set k := k + 1; return to Step 2.

Now, we will show that the sequence matrix pair {X,, Y;}
generated by Algorithm 3 converges to the solution (X*,Y™)
for (4) within finite iterative steps in the absence of round-off
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error for any initial value over centrally symmetric (centrally
antisymmetric) matrix.

Lemma 5. Let the sequences {R;}, {My}, {N.}, {ﬁ;l)}, {1~Q§2)},
and {oy } generated by Algorithm 3; then have

(Risis Rj) = (R, Ry = oy ((M R + (N, RP))

kj=1,2....
(21)
Proof. By Algorithm 3 and (20), we get
R;(cljl =D, Xy By + Fy = A Xy = B Y
=D, (X + oMy ) Ey + F — A, (X, + o4 M)
= By (Vi + o)
o (22)
=D, X E, +F - A X, - B,Y,
+ oy (D, ME, - A\ M, - B,N,)
(1) AL
=R + oy (D, ME, — A, M, - B,N,).
In a similar way, we can get
R? =R + oy (D,N(E, - A,N, - B,M,).  (23)

This together with the definition of inner product yields that
1 p@)
<Rk+1’ Rj >
M pM
= (R RS
EVE 1 1
+ oy ((D.ME, RY) — (A, M, R

(BN, R))

x {Re [tr (E]'M{ DI'R})]| - Re [tr (M7 ATR)]
—Re [tr (NB'R) ]}
= (R, RY) + o
x {Re [tr (W)] - (M, ATR)
- (N BI'R{") }
= (R, RV +

x {Re [ or (ETM{DIRD )| - (M, ATRD)

(v BRY) |
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M 0
= (R, R + o
x {Re [tr (M,{*DITRE.”EIT)] - (M, ATR
H (1
~(NoBIR) |

= (R, RY) + o

({0 DIREE) — (o, AT (N BR))

— 1) pM1
= (R, R + o
T T H (1 H (1
X <<Mk,D1R§.1)E1 - AYRS >> - (N BY'R§ ))>,

(R 7)

= <R;2),R§.2)> +ay

(DN ) = (AN, )~ (B, )

= <R;2),R§.2)> +ay
x {Re [tr (BN DJ'RY)| - Re [tr (N AYRY)]
—Re[tr (M'B}RY)]}
= (RY,RY) +
X {Re [tr (E?N[DfR?)] - (N, ASRY
- (M, BRY) |
= (R, RY) +
x {Re [tr (EZTN,?DZT@)] ~ (N ATRY
- (s, )|
= <R;2),R§2)> +ay
x {Re [tr (NEDZ@EZTH — (N, AJR?
(o) |

= (RY,RY) +

x<<Nk,DZ@E§> — (N, AFRD)) - <Mk,BfR§2)>>

= (R, R + o

TH2) T H Hp(2
X <<Nk,D2R§2>E2 - A2R§2)> - (My, BY'R ))>.

(24)

Then by the updated formulas of Ry, I~2§1), and ﬁ;z), we obtain

<Rk+1’Rj>

- (ROLR) + (R

(2)
k+1’Rj >
= (R, RV +
x (M DIRVE] - AR ) - (N, BIRY) )
+ <R,(<2),R§2)> + o
X <<Nk, D, RYE; - A’jR§2)> — (M, BfR;2)>>
= <Rk’ R]> + 0
T (T _ AHp(l) _ pHp(2)
X <<Mk,D1Rj Ej - ATR - BJRS >
+ <Nk, D, RYE; - AR - BI'RY >>
p() »@)
= (R R;) = o ((MpR}”) + (N ).
(25)
which completes the proof. O

Lemma 6. Let the sequences, {R.}, {My}, and {N,}, be
generated by Algorithm 3; one has

(R, R;) =0, (M, M;) +(N,,N;) =0,
(26)
=12, ki#].
Proof. Firstly, we prove

(RyR;) =0, (M,M;)+(N,N;)=0, 1<j<is<k
(27)
By mathematical induction, for k = 2, by Lemma 5, and

noticing M; € CSC™™, N; € CSC™™ (j = 1,2,...,k)
generated by Algorithm 3, we get

(Ry, Ry)

= (Ry, Ry) = oy (M, R)) + (N, RY))

RP + SRS
2
=R, - o <<Mp 4
RP +sRPs (28)
H(Np

||R1|| 5 (<M1’M1>+<N1’N1>)

= IR " - ———
M, ”2 + | Ny

= Ry - R, = 0,
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where the second equality is from the fact where the fourth equality holds by the induction assumption.
Combining (19) and (20) and by induction with the above
result, we obtain
(M, SRPs) = (M, R"),
o o (29) (Myy, My) + (Npyps Np)
(N, SRY's) = (N}, R?). o
1 1
Rl+1 + SRl+ls M. M
——— /M, M,

2
In addition, by (19), (20), and Lemma 5, we have

R? +SR?s
+ <u +ﬁlNl’Nl>
(M,, M) + (N,,N,) 2 (33)
p1) p1) = = 2 2
- <R2 s +ﬁ1M1,Ml> = (R M) + (R Np =+ By (] + Nl
2
1
R? 1 sR?s = @ ((Rp» Riy1) = (Rpy1s Ry )
+ - + BN, N,
2 2
. Y (30) + B (Il + N7 =
= (R, M) + (RP,Ny)
2 2 where the third equality is from Lemma 5.
+ B (“Ml ™+ V4| ) For j = 1, by Lemma 5 and the induction, we have
1
- (R R) = (R ) R R
2 2
+ B (||M1|| + [Ny ) =0, =(R,R)) — (<Ml, > <N1,R(2)>)
R“’ RV + SRS R“’ R + sRP's
where the second equality is from (6) and the fact = -
(M,,sR’s) = (M,,R"), . = —oq ((Mp, My) + (N}, Ny)) = "
(N, SRPS) = (N, RP). .
Analogously, for j = 2,3,...,1 - 1, then we obtain
Therefore, (27) holds for k = 2. (Ri1sR;)
Suppose that (27) holds, fork =1 (I = 2). Fork =1+ 1, it
follows from Lemma 5, (9) that _ (R,,Rj) —a (<Ml’ §§1)> n <Nl>§§'2)>)

RD 4 GRW
(Ry, 1, R) . <<Mz, W4 SRS
p
1)> + <NI’R1(2)>)

= (R, R)) — o ((M,, ]

p@ »@
IR - o . < N, w >> -
RW + sRMs R® + SR?s
X Ml’ —_— + Nl’ e
2 2 = oy ((Mp, M; = B M)

= R - o +<N1’Nj ‘ﬁj—lefl>)

x ((My, M; = B_yM,_, N, N = 1N,
(M, My = By M) + (N N = BNy )) =—“1(<M1an>+<Nl)Nj>_/3j—1

= R = g (I™])” + INi)1*) =
(32) x ((M M) +(NLN; . ))) =
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In addition, from Lemma 5 and the induction, for j = 1,2,
ool =1, we get

<Ml+1’Mj> + <Nl+1’ Nj>

p1) p1)
_ <Rl+1 + SRI+IS)M_>
2 ]

p(2) p(2)
+ Rl+1 + SRIHS)Nj
2 (36)

+ B (<M1’Mj> + <N1’Nj>)

= (RY)

1+1°

M;) + (R N;)
= = ((RpRis) = (Rpsio R ) =0.
%

So (27) holds, for k = I+ 1. By induction principle, (27) holds,
forall 1 < j <i < k. For j > i, we obtain

(R R;) = (R;,R;) =0, )
37
(M, M) + (N, Nj) = (M;, M;) + (N}, N;) =0,

which completes the proof. O

Lemma 7. Suppose that the system of matrix equations (4) is
consistent; let (X*,Y™) be an arbitrary solution pair of (4).
Then for any initial matrices X, € CMC™ ", Y, ¢ CMC™™,
the sequences {X;}, {Yi}, (R}, {M,}, and {N,} generated by
Algorithm 3 satisfy

(X" =X M) + (Y =Y N = |Re|’s k=1,2,...,n.
(38)

Proof. The conclusion is accomplished by mathematical
induction.

Firstly, we notice that the sequences pair (X, Y}), (k =
1,2,...) generated by Algorithm 3 are all central symmetric
matrices since initial matrix pair (X,,Y;) is centrally sym-
metric matrix. Then for k = 1, it follows from Algorithm 3
that

<X* _X1>M1>

RP + SRS _
= <X —Xl,% = (X" - X,,R)

- <X* - X,, AFRY + BYRD - DITR(ll)ElT>
= (X" - X, ATRP) + (X" - X, BY'R?)

* T (1) T
—<X - X,, D[R E1>

= Re [tr (X" - Xx;)"AYRDM)]
+Re [tr (X" - X,)"BYR?)]
~Re [tr <(X* - Xl)HDlT@ED]

= <A1 (X* _Xl)’R§1)> + <Bz (X* - Xl)’R§2)>

~Re [tr ((X* - XI)HDIT@EITH

= <A1 (X" - Xl)’R(11)> + <Bz (X - Xl)’R§2)>
~Re[tr (X" = X)) DYRVE )]

= (A (X" - X)), RY) + (B, (X" - X,),RY)
~Re[tr (Ef'(X" - X,)"DI'R)]

= <A1 (X* _Xl)’R(11)> + <Bz (X" - Xl)’R(12)>
—(D, (X*=X,) E,,R"")

= (A, (X" - X,)-D, (X*=X;) E,R{")

+(B, (X" - X;),RP).

In the same way, we can get

(Y' - Y, N,)
= (A, (Y -1,))-D, (Y =1,) E,R?P)  (40)

+(B, (Y* -Y,),R").
This shows that

(X" =X, M) +(Y" -Y;,N;)

= (A, (X" - X,)- D, (X*=X;) E,R{)
+(B, (X" - X,),RY)
+{A,(Y" -Y,) - D, (Y"=Y;) E,,R?)
+(B, (v* -Y,),R")

= (A, (X" -X,)+B,(Y" -Y,)

-D, (X*=X,) E,,RY)

+{A, (Y -Y,)+B, (X" - X))

-D, (Y*-Y,) E,,R?)



= (F, - A, X, - B)Y, + D, X,E,R{")
+ (F, = A,Y, - BX, + D,Y,E,, RY)
[T+ R -
(41)

That is, (38) holds, for k = 1.
Assume (38) holds, for k = I. For k = [ + 1, it follows from
the updated formulas of X, ;, Y;,, that

(X" = Xy Mp) = (X" = X — oy M), M)
= (X" = X;, My) - g My,
(V" =Y, N =(Y" =Y, - aN;, N))
= (V" =Y, Np) — ey |N, |
Then

<X* - Xl+1’Ml+1>
1) 1)
R." + SR " S
_ <X* _ X1+1; 1+1 : 1+1 B1M1>

= (0 X B B X0, 0)

= (X" = X, RD) + B (X = X M) — e M),

<Y* - Yl+1>Nl+l>

(2) p(2)
+ SRS
= <Y* _le+1’ % ﬁlNl>

= <Y* - Yl+1’ R(21> + /31 <Y Yl+1’Nl>

= (V" =Y, RO + B (Y - Y Np) - a|[N).

(43)
On the other hand, we have
% ={¢! * 2)
<X - Xl+1’Rl(+)1> + <Y - Yl+1’R( 1>

(2) 1
<X ~ X1, APRY 4+ BYR® — DTRD ET >

+ <Y* Yy, AR 4 BHRY — IR ET >

1+1 1+1 27M+1

= (A, (X" = X0, R ) + (By (X7 = X10) R

1+1

~Re [tr<(x* ~ X,,,) " DTRD ET )]

I+1
+ <A2 (Y =Yi1), R(2 >

+ <Bl (Y* - Yl+1) > R(l)

1+1

- Re [tr((Y* -v,,)"'Df RlHE )]
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= (A, (X" = Xp,y) + B, (Y" - Y,,,),.RD)
~Re[tr (X" = X)) DR E)]
+ (A (Y = Y) + By (X" - Xp,,) . RD)
~Re[tr ((r* - v,) DR ES) |

= (A, (X" = Xp,y) + B, (Y" = Y,,,),.RD)
~Re [tr( H(X" - Xp,,)' D] Rm)]
+{A,(Y" = Y,,,) + B, (X" = X;,1),R?))
~Re [t (EY (v - ¥,,) DY'RE )|

= (A, (X" = X)) + B, (Y -Yy,,)

-D, (X" = Xp1) Eu R

+ (A, (Y = Yp) + B, (X" - X))
D, (F Vo) R
= <F1 - A X - B Y + D1Xl+1E Rzi)l

v (2)
+ <F2 —A)Y — By Xy + DY B, R1+1>

= [REAL + IR = IR
(44)
Therefore, by (20) we get
<X* - Xl+1’ Ml+1> + <Y* - Yl+1’ Nl+1>

RY + SRS
= <X*_Xl+l’% ﬁlMl

2)
+SR1S
+<Y*_Yl+l,%+ﬁl}\]l>

= (X" - Xm,iél(i)l) + B (X" = X M) — oy | M)
+ (Y =Y, . R2) + B ((Y" - Y N) - | N|)
= (X" - X;,, R + (Y - v,,,,RD,
+ B (X" = X, M)y + (Y* =Y, Ny)

- ("Mz"2 + ||Nl||2)]

= <X* - Xl+1’1~21(+1.)1> + <Y Yl+1’Rz+1
IR 2 )
IR~ s (I + IN)
Im ) + i)
= <X* - Xl+1’ﬁl(i)1> + <Y* - Yl+1’Rl(i)1 = "Rl+1“2'
(45)
Hence, the proof is completed. O
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Remark 8. Lemma 7 implies that if (4) is consistent, then
||Mk||2 + ||Nk||2 #0 when R, # 0. Conversely, if there exists a
positive integer k, such that R, #0 and [ M I+ ||Nk0||2 =0
in the iteration process of Algorithm 3, then (4) is inconsis-
tent; we will study this condition with other papers in the
future.

Remark 9. The above lemmas are achieved under the
assumption that initial value is centrally symmetric matrix.
Similarly, if the initial matrix is centrally antisymmetric
matrix, we can get the same conclusions easily (see Defi-
nition 1). Hence, we need not show these results in detail;
in the following content, we only discuss the version when
X,Y e CMC™™.

Theorem 10. Suppose the system (4) is consistent; then, for
any initial matrix X, € CMC™"™, Y, ¢ CMC™", an exact
solution of (4) can be derived at most 2pm + 1 iteration steps
by Algorithm 3.

Proof. Assume R, #0, for k = 1,2,...,2pm. It follows from
Lemma 7 that ||Mk||2 + ||Nk||2¢0 for k = 1,2,...,2pm.
Then R,,,,,; can be derived by Algorithm 3. According to
Lemma 6, we know (R;,R;) = 0, fori,j = 1,2,...,2pm +

1, i# j. Then the matrix sequence of R}, R,,..., Ry, is an
orthogonal basis of the linear space
H, 0
#=1{H|H= , (46)
0 H,

where H,, H, € RP™. Since R, ,,,.,; € # and (Ry 41, Re) =
0,fork = 1,2,...,2pm, hence R, ,,,,; = 0, which completes
the proof. O

Although the proof is trivial, the consequences of this
result are of major importance.

When (4) is consistent, the solution of (4) is not unique.
Then we need to find the unique least Frobenius norm
solution of (4). Next, we introduce the following lemma.

Lemma 11. Suppose A € R™", b € R™, and the linear matrix
equation Ax = b has a solution x* € R(ATDY; then x* is the
unique least Frobenius norm solution of Ax = b.

For a rigorous proof of this lemma above the reader is
referred to [46, 48].

Lemma 12. Suppose A € C™", b € C", and the linear
matrix equation Ax = b has a solution x* € R". If x* ¢
Z[(Re(A)T, Im(A)T)], then x* is the unique least Frobenius
norm solution of Ax = b.

<I®A1—E1T®D1 i(I® A, +E ®D))
W:

I®B, i(I®B,)

Proof. Let A = Re(A)+iIm(A) and b = Re(b) +i Im(b). Then
Ax = b can be written as
(Re(A)+iIm(A)x =Re(A)x+ilm(A) x

(47)
=Re(b) +ilm (b).

It shows that

Re (A) x = Re (b), Im (A)x =Im (b), (48)

or
Re(A)\ _ [Re(b)

(Im (A)) = <Im (b)> ' (49)

Since
x" e Z[(Re(A)",Im(A)")]

_ | (Re@)' G0

= Im(A)) |
this together with Lemma 11 completes the result. O

In order to get the least Frobenius norm solution of (4),
we need to transform the problem (4).

Let X = Re(X) +iIm(X),Y = Re(Y) +iIm(Y). Then the
problem (4) can be equivalently written as

A, (Re (X) +iIm (X)) + B, (Re (Y) +iIm (Y))

=D, (Re(X) —iIm (X)) E, + F,,

A, (Re (V) +iIm (Y)) + B, (Re (X) + i Im (X)) o
=D,(Re(Y)-ilm(Y))E, +F,,
or
A, Re(X) - D, Re(X) E, +iA, Im (X)
+iD, Im (X) E, + B, Re (Y) +iB, Im (Y) = F,,
(52)

A,Re(Y) —D,Re(Y)E, +iA,Im (Y)
+iD,Im (Y) E, + B, Re (X) +iB,Im (X) = F,.

This together with the definition of the Kronecker product
yields

vec [Re (X)]
vec [Im (X)] | _ (vec(F,)
w vec[Re(Y)] |~ (vec (F;)> ’ &)
vec [Im (Y)]
where
1®B,

i(I®B) ) 50

I®A,-E, @D, i(I®A,+E, 8D,)
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By some simple calculating, we have

W = Re (W) +ilm (W), (55)
where
oo - (N N N ) O
mo-( ) o
Ny, =I®Re(A,)-Re(E,)" ®Re(D,)
+Im (E,) ® Im (D),
Ny, =-IeIm(A,)-Im(E,)" @Re(D,)
~Re(E,) ®Im(D,),
N;; =I®Re(B,), Ny, =-I®Im(B,),
N, =I®Re(B,), N, =-I&Im(B,),
N,; =I®Re(A,) -Re(E,)" ®Re(D,)
+Im(E,)" @ Im (D,),
N,, =-I®Im(A,) - Im(E,)" ®Re(D,)
~Re(E,)" ® Im(D,),
L, =I®Im(A,)-Im(E)" ®Re(D))
~Re(E,) ®Im(D,),
L,=I®Re(A,)+Re(E,) ®Re(D,)
~Im(E,)" Im(D,),
L,=I®Im(B,), L, =I®Re(B),
Ly =I®Im(B,), Ly=I®Re(B,),
Ly, =I®Im(A,)-Im(E,)" ®Re(D,)
~Re(E,)" ®Im(D,),
L,, =I®Re(A,) +Re(E,)" @Re(D,)
—Im(E,)" @ Im (D,).
(58)

Particularly, when X € CSC™, X can be substituted with
(X + SXS)/2 in (51); then we obtain

vec [Re (X)]

— [ vec[Im(X)] | _[vec(F))

Wl vee [Re()] |~ <vec (F;)> ’ &9
vec [Im (Y)]

Journal of Applied Mathematics

where W = (1/2)[(I + K)(Re (W)", (I + K)(Im (W)")],
K := Diag(S,5,5,5, 5 = ST®S = S®S € R™ ™ (see
Definition 1).

Obviously, if x € Z(Z), then x € K((1/2)Z), where Z is
a matrix. So, from the above analysis, we can get the result.

Lemmal3. Let W € C4m2X4'"2, be C4m2, and the linear ma-
J— 2
trix equation Wx = b has a solution x* € R*, where x =
T
(vec [Re(X)]", vec [Re(Y)]", vec [Im(X)]”, vec [Im(Y)]") . If

x* € R+ K)Re W), (I + K) Im (W)")], then x* is the
unique least Frobenius norm solution of Wx = b in (59).

Theorem 14. Suppose the system (4) is consistent; if one
chooses the initial matrix pair

H H T =T H
X, = Al'u, + Bi'v, - DTUET + sA™U, S
(60)
+SB'V,S - SDIU,ETs,
Y, = AV, + BY'U, - DIV, E} + SAT'V,S
(61)
+SB"U,S - SDIVEZs,

where U, V, € CP*™ are two arbitrary matrices, especially,
taking X, = Y, = 0 € R™™, the solution (X*,Y") given by
Algorithm 3 is the unique least Frobenius norm solution of (4).

Proof. If X,,Y; has the form of (60), (61), respectively, by
step 2 of Algorithm 3, we have

1 ,~ ~
X, =X, +a,M, = X, +a (5 (R + SR§1’5)>
= A'l'u, + Bl'v, - DIUE] + sA"U,S
H T T
+SBYV,S - SDU,E| S
) -
+a [E <A?R§” + BYR® — DIRVET + SAYRVs
+SBRPs - SDITR?’EITS) ]
A (U 4 e D) 4 BH LINE)
=Ar (Uit yai )b, V1+5“1R1
DT I o BT 4 Al I
- D U1+§oc1R1 1 +SA] U1+5a1R1 S
1 1
+SBY (V1 + EoclR(f)) S-SD! (U1 + Ealel)) E'S

= AU, + B'v, - DULE] +sA''U,S

+SBY'V,S - SDIU,ET S,
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1,~ ~
Y, =Y, +aN, =Y, + o <5 (R? + szzﬁ”s))

= AV, + B'U, - DIVIE] + sAflv;s

Ty o1
+SB'U,S — SD, V,ES S
1
+a [- (A’jR?’ + BYR® — DIRPET + sA%R?)s
2
+SBRWs — SDZR?’EZTS) ]
H 1 Lo H L0
=A, |V + E“lRl +B, (U, + EoclR1
1 1
-Df <V1 + Ealez)) El +SAY <V1 + Ea1R§2)> S
1 1
+SB (U1 + zoclRﬁ“) S-SD} (v1 + EalR?)) ElS

= AYV, + Bl'U, - DIV, E} + sA%v,S

+ SBU,S - SDIV,EL S,

(62)
where U, := U, + (1/2)(x1R§1) andV, = V| + (1/2)041R(12).
Since

M, = % (R + STQS)S) + B M,
- % (AYRS + BIRY - DIRDE] + saTR"s
+SBYRPS - SDT@EITS)
B <A RY 4 BYR® - DTRVET 4 sAHR(Ms
+SBYR®s - SD'RVE s)
N, = % (RY + SRYS) + BN,
- % (A¥RY + BIRY - DI RVE] + saTR?s

+SBY RS — SDlTRgz)ElTS>
LB <A R + BYRY — DTRPET 1 sAHRPs

+SBRWS - SDTRPE s)
(63)

11
we have
X3 = X, + a,M,
= AU, + BY'V, - DIULE] + sA'U,S + SBE'V, S
~ SDIULE]S,
(64)
Y; =Y, +,N,

= AV, + Bl'U, - DIV,E} + SAYV,S + SBI'U,S

~ SDIV,ELS,
where U; := U, + ((xz/z)RgD + (ﬂlocz/z)Rgl) and V; =V, +

(ay/ 2)R;2) +(Biay/ 2)R§2). By parity of reasoning, we can prove
that

H H T T

Xir1 = Ay Uy + By Vi, = D U E}

+SAMU,,,S + SB'V,, S - SDTU,, ETS,

— (65)
- Dz Vk+1E2

H H
Yiy = Az Vi + Bl Ukt
+SAMV,, .S + SB'U,, .S - SDIV,, LS,

where Uy, Vi, € CP*™. This together with Theorem 10
yields that

Xy — X" = AYU + BY'V - DIUE] + SA"Us

+SBYVS - SDTUETS  (k — o),

66
Yi — Y* = AV + BP0 - DIVET + 54V o
+SB'US - SDIVETS  (k — o),
where U,V € RP”™ Since

X* = A0 + BV - DTUET + sAY0s
+ SBYVS - SDlTﬁElTs
= [Re(A,) +ilm(A,)]" [Re(T) +ilm (0)]
[Re( ) +ilm (V)]

- [Re(D) +1m(D))]" [Re (0) +i1m (D)]

+ [Re(B,) +ilm(B,)]

x [Re (E,) +iIm (E;)]" + S[Re (A,) +iIm (A,)]"

x [Re )+zIm( )]S+S[Re(32)+zlm(B2)]

X

Re

=9

X

[

[Re (T

[Re (V) +iIm(V)]S - S[Re(D,) +iIm(D,)]"
[Re(0)

itm )][Re(E1)+iIm(E1)]TS
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= [Re (A, ) —ilm (AI)T] [Re(T) +iIm (T)]
+[Re(B,)" —iIm(B,)"] [Re (V) +iIm (V)]

)] [Re (T) - i1m (0)]

x [Re(E;)" +iIm (E,)" ]+ S [Re (4,)

~[Re(D,)" +iIm (D
)" —ilm(4,)"]
x [Re () +ilm (U)] S +S[Re(B,)" ~ilm(B,)"]
x [Re(V) +iIm (V)] S~ S[Re(D,)" +ilm (D,)"]
x [Re(0) - ilm (U)] [Re (E;)" +ilm (E,)"] S
=Re(A;) Re(U) +iRe(4,) Im(0)
~iIm(A;)" Re(U) +Im(A;)" Im (D)
Re(V) +iRe(B,)" Im (V)

Re (\7) +Im(B,)" Im (V)

T

+Re(B,)"
~iIm(B,)"
~Re(D,)" Re () Re (E,)
~iRe(D,)" Re(U)Im (E,)"
+iRe(D,) Im (U)Re (E,)"
~Re(D,)" Im (0) Im (E,)"
~iIm(D,)" Re (U) Re (E,)"
+1m(D,)" Re(U) Im (E,)"
~Im(D,)" Im (U) Re (E,)"

~ilm(D,)" Im (0) Im (E,)"

+SRe(A;) Re(U)S+iSRe(4,) Im (T)S
~iSIm(4,)" Re(U)S +SIm(A,) Im(T)s
+SRe(B,)" Re (V) S +iSRe(B,)" Im(V)S
—i$Im (B,)" Re (V) S+ SIm (B,)" Im (V) S
—SRe(Dl)TRe(U)Re(E) S

) Im (

—iSRe (D;)" Re (U
+iSRe(D;)" Im (D) R

e(E)'S
~SRe(D,) Im(0)Im(E,)’S
—~iSIm (D;)" Re(U)Re (E;)'S

+SIm(D;)" Re (U) Im (E)S

Journal of Applied Mathematics
~SIm(D;)" Im (U)Re (E,)"s

~iSIm (D;)" 1m (U) Im (E,)'S,

we have

Re(X") = Re(4,)" Re(U) +Im(4,) Im (D)
+Re(B,) Re(V) +1m (B,)" Im (V)
~Re(D,)" Re (D) Re (E,)"
~Re(Dy)" Im (U) Im ()"
+1m (D,)" Re (U )Im<E>
i (D,)" on (O) Re ()

+SRe(A,)" Re(TU)S+SIm(A,) Im(T)s

+SRe(B,)" Re(V)S+SIm(B,) Im (V)s
~SRe(D;)" Re(U)Re(E,)"s

~SRe(D,) Im(T)Im(E,)'s

()
+SIm(D;)" Re(U) Im (E,)"s
(

~SIm(D,)" Im (U)Re (E,)"S,

Im(X") =Re(4,) Im (U) - Im (4,)" Re(0)
+Re(B,) Im (V) ~ Im (B,)" Re (V)
~Re(D,)" Re(TU) Im (E,
+Re(D;)" Im (U) Re (E,
~1m(D,)" Re(U) Re (E,
~Im(D,)" Im (D)

Im

+SRe(A,)" m(U)s SIm (A

) Re(D)s
+SRe(B,)" Im (V) S~ SIm(B,)" Re(V)s
~SRe(D;)" Re(U)Im(E,)"S
+SRe(D;) Im (U)Re(E,)'S
~SIm(D,)" Re(U)Re(E;)'S

(

~SIm(D,)" Im(U)Im (E,)’S.
(68)
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Let y = (vec[Re(D)]T, vec[Re(W)]T, vec[Im(D)]7,
vec[Im(M)]HT and K in (59); using Kronecker product,
we get
vec [Re (X™)]
=(I+K)
I®Re(A,) - Re(Ey)T ®Re(Dy) + Im(Ey)” ® Im(Dy) \
y I®Re(B,)
I18Im(A,) - Im(E))T @ Re(D;) - Re(E;)T ® Im(D,)
1®Im(B,)
vec [Re ((7)]
vec [Re (V
vec [[Im Eﬁi]] =I+K)- (NE’N;’LR’LZI) s
vec [Im (\7)]
vec [Im (X™)]
=(I+K)

~I®Im(B,)
I®Re(A;) + Re(E;)T ® Re(D;) — Im(E;)” ® Im(D;)

< —I®Im(A,) - Im(E;)" ®@ Re(D,) - Re(E;)! ® Im(D;) >T
I®Re(B,)

]
]] =(I+K)'(N£’N;2’L€2’L€2)V-
]

(69)
In the same way, we can prove that
vec [Re (Y")]
=(I+K)

T

I®Im(By)

I®Re(B))
<I ®Re(A,) - Re(Ez) ® Re(D,) + Im(Ez) ® Im(D,) >
I®Im(A,) - Im(E,)" ® Re(D,) - Re(E,)” ® Im(D,)

(9)]
EV))]] =(I+K)- (Nf3, N33, LT5, L3y,
(V)]

vec [Im (Y™)]
=(I+K)

T

I®Re(B,)

-I®Im(B,)
X<—1 ®Im(A,) — Im(E,)T ® Re(D,) — Re(E,)T ® Im(D,) >
I®Re(A,) + Re(E,)T ® Re(D,) — Im(E,)” ® Im(D,)

0)]
]] =(I+K)- (N14’N24’L14’L24)V
]

(70)
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This shows that

vec [Re (X*)]
vec [Im (X*)]
vec [Re (Y")]
vec [Im (Y™")]
Ny, Ny Ny N\ ' (71)
12721 Ny N,

11 L12 L13 L14
L21 L22 L23 L24

= (I +K)

=(I+K) (Re%D

Notice that X*,Y* € CMC™™ and K = K in (59). By (56)
and (57), we have

- (R

vec [Re (X

vec [Im (X~
vec [Re (Y~
vec [Im (Y~

)]
))]] e Z [+ K)Re(W)" -
72
)]
(I+K)Im(W)"].
It follows from Lemma 11, Lemma 12, and (59) that
[vec[Re(X*)]| + |vec[Im(X*)]|

2 o, )

+ vec[Re(¥ )| + [veclm(¥ )] < €],

where

Nayll
I

]
]] e R (74)
|

for all solutions (X, Y) of (4). Since
[vec[Re(X ]| + [vectm(X™)]|
= [Re (X" + 1m (x")]z =

| + [vecltm(y )]

IxI,
(75)
Hvec[Re
= [Re( )7 + [tm(¥ )z = Y|,
we obtain
[vec[Re(X ]| + [vecIm(X)]|
+ ||Vec[Re(Y*)]||2 + ||Ve‘:[Im(Y*)]||2 (76)
=[x+ P < 5]+ 5

for all solutions (X,Y) of (4). Hence (X*,Y*) is the unique
least Frobenius norm solution of (4). O
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3. Numerical Experiments

Journal of Applied Mathematics

MATLAB R2011b (7.13), Intel(R) Core(TM) i7-2670QM, CPU
2.20 GHZ, RAM 8.GB PC Environment.

In this section, we report some numerical results to support

our Algorithm 3. The iterations have been carried out by

Example 1. We consider (4) with the following matrices:

1-i 1+i 2-2i -3-i 4+1i 2—1 2+1i 3—-i 1+i 1+i
342 4-3i 2—-1i 2+i 1-2i 0—-2i 5—-i 4+i -2+i -2+1i
Al = O+i 441 7-1i 2-i 4+2i |, A2 = 241 3-1 4+i 1+i 1+i ,
—1+i -1—-1 -1+7i 2—-i 4+i 2—1 041 2-2i 0—-i 1+i
4+i 4-1i 3+i 2—-i 1+2i -3—i =341 1+i 2—-i 2+1i
4+i 3+i 4-1i 4—-1 1+i —2—-i —-i 2+4i3+i 2-i
—2—i 241 3+i 4-3i 4-i 6—1 5-i 4+i 4-1i 3-1i
Bl = 5+i 6-1i 5+4i 0+i 1-1 R B2 = 2—i 3+i 2-1 14i 1-1i )
5—-i 4-i 5+i 3—-i 3-3{ 1+3i 1-2i 2-i 4+i 1-3i
1-2i 2-2i 0+i 0—-1 1-1 0—i O0+i 2-1i 3—-i 2+1i
1-i 2+i 3-1 1-i 2-i 1+i 2-i 3+i —-1+4+i -1+
0+7 1+7 2—i 3+i 1-3i 3—i 0-i O0+i 3-i 3-i
D1 = 4—1i 4-7i2—-1i 1+i 3+i R D2 = 1-i 2+i 3-3i 0+2i -2-3i |,
1-10-7 0—-i -1—1 i -1+i -1—-4 2+2i 2-2i 3+1i
2—1 4+i 5+i 3+i 2-1i 5—-i 4—-1 5+i 4+i 4-4
(77)
1-i 2—-1 1-1i 2+i 1-i 2+1 4+i 341 2-1 1-i
3+i 3—-i 3+i 1-i 2+i 0+i -3+i -3+i -3—-i 2—1
El= 1-i 2—-i 3—-i —-4—-i —4+1i |, E2 = 1+i 1+¢i 1-i 0-i 0-1 |,
5—-i 5—-i 5+i 4+4+i 4-i 1—-i 1+4i 2+i 3—-i 4-i
2—1 —=2+1i =2+i -2+i 1-i 2—1 3+i 441 5-i 2+1
—1.2100 + 1.1500¢ —1.1100 + 0.8000i —1.5500 + 0.2300i —0.2800 + 0.2000i —0.4300 + 0.9500i
—0.9400 + 1.5300¢ —1.1200 + 0.60007 —1.5900 — 0.1400; —0.8200 + 0.4400; —0.3700 + 1.0300:
F1=10*-| -2.5200+ 1.5700i —2.1900 + 1.4200i —2.6600 — 0.1500i —0.4200 + 0.2800i —0.5900 + 1.3200i R

0.5100 + 0.1500:
—-2.5700 + 1.7800i

~0.0900 — 0.0500i
~0.6700 — 0.0200i
F2=10*-| -0.1700 + 0.7100i
—0.3000 — 0.2400i
~1.5800 + 0.2400i

0.6800 + 0.2500i
—-2.2700 + 1.1300i

—0.4400 - 0.2700:
-0.0300 - 0.1700:
—0.4400 + 0.2500i
0.3100 - 0.13001
—-1.4700 - 0.8400i

0.3100 + 0.3300i
—2.6400 - 0.5200i

—-0.6500 - 0.2700:
—-0.1200 - 0.2400:
—-0.6800 + 0.6800i
0.2300 — 0.5800:
—-2.0700 - 0.2300i

0.6700 — 0.1500i
—-1.0900 + 0.5600i

—-1.1700 + 0.1100:
0.2800 + 0.7800i
0.0100 + 1.3100i

—0.0600 — 0.2400i

—2.2000 + 2.6500i

0.4300 — 0.0500i
—-0.8500 + 1.6700i

—0.8100 — 0.3600:
-0.7800 + 0.9300i
—0.7000 + 1.0900i
-0.0700 - 0.3600:
-3.6200 + 0.9700i

We can show that the matrix equation (4) is consistent.
Choose the initial matrix pair X; = 0,Y; = 0; by Algorithm 3,
we obtain its exact solution:

2.0000 + 1.00007
—1.0000 + 2.00007 0.0000 + 1.0000:

X6= | 10000+ 1.0000i
1.0000 + 2.0000i
1.0000 — 1.0000i
2.0000 — 1.0000i
Yie= | 2.0000+ 1.0000i

2.0000 + 2.00001
1.0000 + 1.0000:

3.0000 - 1.0000i

3.0000 + 2.0000i
3.0000 + 1.0000:

1.0000 - 1.0000i
—1.0000 - 2.0000: 0.0000 + 1.0000:
1.0000 - 1.0000i 0.0000 — 1.0000i
3.0000 — 2.0000i 2.0000 + 1.00007 0.0000 + 1.0000i —1.0000 — 2.0000i
3.0000 - 1.0000i

1.0000 + 1.0000i
2.0000 — 1.00001
1.0000 - 1.0000i —0.0000 — 1.0000i 1.0000 — 1.0000i
2.0000 — 1.00001
1.0000 + 1.0000i

1.0000 — 1.0000i
2.0000 + 1.0000:

1.0000 - 1.0000i

3.0000 + 1.0000i
3.0000 + 2.0000i

0.0000 + 1.0000i
3.0000 - 1.0000:

3.0000 - 1.0000i
3.0000 — 2.00001
1.0000 - 1.0000i

1.0000 - 1.0000:

1.0000 — 1.0000i

1.0000 + 2.0000i

1.0000 + 1.0000i ,
—1.0000 + 2.0000:

2.0000 + 1.00007

(78)

1.0000 + 1.0000i
2.0000 + 2.0000i
2.0000 + 1.0000i

2.0000 - 1.0000i
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The corresponding residual and least Frobenius norm are

IRl = 46203 107" Pl =976,

Y16 = 7.5890.

5+6i 3+i 3-5i
=(3-6i 2-6i 7+3i |,
0+ 6i

1+7i 3+6i

3+21  2i
5-3i 3+i
3+6i 2-6i

<0+6i 1+7i

4+ 21
2+ 5i
6+3i |’
3+ 6i

5+ 6i
2+ 3i
3-2i
0+ 6i

2+ 3i
3+ 11
2—6i
1+1i

6+ 2i
3+5i
5-3i |’
3+ 6i

5+6i 2+3i 6+1i
5-3i 3—-1i 2-5i |,
24+6i 2—-5i 8-3i

0.4500 - 5.6000i
0.9100 - 3.3300i

F1=10°-
~3.6300 + 0.4600i
2.8300 — 2.5900i
—4.8800 — 3.5100i
, [ —2.5500 + 2.3800i
F2=

—-3.0200 - 2.8300i
—3.4400 - 3.8200:

We can show that the matrix equation (4) is also consistent.
Choose the initial matrix pair X, = 0, Y, = 0; from
Algorithm 3, we obtain its exact solution only the 29th
iterative step:

3.0000 + 1.0000:
2.0000 — 1.0000:

2.0000 + 2.0000i  3.0000 + 1.0000:

1.0000 + 1.0000i
X29 - . .
—0.0000 - 2.0000: 1.0000 + 1.0000:

—0.0000 - 2.0000i 2.0000 — l.OOOOi)

1.0000 - 1.00007
5.0000 - 1.0000:

3.0000 — 1.0000i 1.0000 — 1.0000i
2.0000 - 1.0000:; 2.0000 + 1.0000:

(81)

2.0000 + 1.0000i 2.0000 - 1.0000i 5.0000 — 1.00007
Y29 -

The corresponding residual and least Frobenius norm are

| Ryl = 9.9651 x 107" [ X5 = 5.9876,
(82)

[ Yool = 8.2249.

A2

8 —6i
E2=(5-3i
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The results above are presented in Figure 1, where r;, = ||R¢||,
8 = (IXpe = XTI+ 1Y = YEID/AXN + 1Y)

Example 2. Consider (4) with the following matrices:

5-6%1 2-3i
6+2x*i 3—1
3-6%1 2+3i
0+3%1 3—-4i

3+2i
3+5i
5+4i |’
3+2i

3+2i
3-3i
3421
0-—6i

2430 4+42i
3-1i 4+5i
2-6i 7+3i |’
1+7i 3+6i

B2 =

5+ 3i
5+ 3i
3+4i
0-—6i

2+ 3i
3-1i
2-3i
1+ 61

6+ 2i
3-5f
4+3i |’
3 +6i

1+3i 4+1i
4-1i 2+2i |,

1+3i 9-2i

D2 =

(80)

2+ 8i

—-1.0300 — 1.6100i —4.4300 — 2.9100i
—0.3400 — 0.3800i —2.2400 — 1.8000i
0.5000 + 0.8100i
0.4400 — 0.6200i

—0.6500 + 4.2400i
-1.2100 - 2.8100:

—0.3100 — 4.0900; —4.4000 — 3.8400i
—-1.6500 — 1.8100i —4.2900 — 0.3900i
0.5300 — 2.9700i
0.0100 - 1.30001

—3.5600 — 3.7000i
—-0.2200 + 0.2600:

The above results are presented in Figure 2, where 7. = ||R;||,
O = (IXy = X1 + 1Y, = Y ID/UAXTN + 1Y ™).

4. Conclusion

Iterative method is proposed to solve the generalized coupled
Sylvester-conjugate linear matrix equations A, X + B,Y =
D,XE, + F,, A,Y + B,X = D,YE, + F, for center-
symmetry (center-antisymmetry) matrix pair (X,Y). When
(4) is consistent, utilizing the Kronecker product, it has
been revealed that an exact solution can be obtained by
the proposed algorithm within finite iterative steps in the
absence of round-oft error for any initial value chosen center-
symmetry (center-antisymmetry) matrix. Furthermore, we
show that the least Frobenius norm solution is obtained
by choosing a special kind of initial matrix. Finally, some
numerical examples were given to show the efficiency for the
proposed method.
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FIGURE 1: The relative error of solution and the residual for
Example 1.

10* , , . . .
10 |
10° &
1072}

1074}

Residual

10°°}
108

10—10 |

10—12

5 10 15 20 25 30
Iteration number
—o— Absolute error

—s— 'The relative residual

FIGURE 2: The relative error of solution and the residual for
Example 2.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The project was supported by National Natural Science
Foundation of China (Grant no. 11071041), Fujian Natural Sci-
ence Foundation (Grant no. 2013]J01006), and the university
special fund project of Fujian (Grant no. JK2013060).

Journal of Applied Mathematics

References

[1] A. Andrew, “Eigenvectors of certain matrices,” Linear Algebra
and Its Applications, vol. 7, pp. 151-162, 1973.

[2] Z. Bai, “The inverse eigenproblem of centrosymmetric matrices
with a submatrix constraint and its approximation,” STAM Jour-
nal on Matrix Analysis and Applications, vol. 26, no. 4, pp. 1100-
1114, 2005.

[3] J. K. Baksalary and R. Kala, “The matrix equation AXB+CYD =
EJ Linear Algebra and Its Applications, vol. 30, pp. 141-147, 1980.

[4] W. Chen, X. Wang, and T. Zhong, “The structure of weighting
coeflicient matrices of harmonic differential quadrature and its
applications,” Communications in Numerical Methods in Engi-
neering, vol. 12, no. 8, pp. 455-459, 1996.

[5] P.G. Ciarlet, Introduction to Numerical Linear Algebra and Opti-
misation, Cambridge University Press, Cambridge, Mass, USA,
1989.

[6] L. Datta and S. Morgera, “Some results on matrix symmetries
and a pattern recognition application,” IEEE Transactions on
Signal Processing, vol. 34, pp. 992-994, 1986.

[7] L. Datta and S. D. Morgera, “On the reducibility of cen-
trosymmetric matrices—applications in engineering problems,”
Circuits, Systems, and Signal Processing, vol. 8, no. 1, pp. 71-96,
1989.

[8] J. Delmas, “On adaptive EVD asymptotic distribution of centre-
symmetric covariance matrices,” IEEE Transactions on Signal
Processing, vol. 47, no. 5, pp- 1402-1406, 1999.

[9] Y. Deng, Z. Bai, and Y. Gao, “Iterative orthogonal direction
methods for Hermitian minimum norm solutions of two con-
sistent matrix equations,” Numerical Linear Algebra with Appli-
cations, vol. 13, no. 10, pp. 801-823, 2006.

[10] G. Konghua, X. Y. Hu, and L. Zhang, “A new iteration method
for the matrix equation AX = B Applied Mathematics and
Computation, vol. 187, no. 2, pp. 1434-1441, 2007.

[11] H.Dai, “On the symmetric solutions of linear matrix equations,”
Linear Algebra and its Applications, vol. 131, pp. 1-7,1990.

[12] S. Karimi and F. Toutounian, “The block least squares method
for solving nonsymmetric linear systems with multiple right-
hand sides,” Applied Mathematics and Computation, vol. 177, no.
2, pp. 852-862, 2006.

(13] J. E Li, Z. Y. Peng, and J. J. Peng, “The bisymmetric solution of
matrix equation AX = B over a matrix inequality constraint,”
Mathematica Numerica Sinica, vol. 35, no. 2, pp. 137-150, 2013
(Chinese).

[14] J.R.LiandJ. White, “Low rank solution of Lyapunov equations,”
SIAM Journal on Matrix Analysis and Applications, vol. 24, no.
1, pp. 260-280, 2002.

[15] E Li, L. Gong, X. Hu, and L. Zhang, “Successive projection
iterative method for solving matrix equation AX = B, Journal
of Computational and Applied Mathematics, vol. 234, no. 8, pp.
2405-2410, 2010.

[16] P. G. Martinsson, V. Rokhlin, and M. Tygert, “A fast algorithm
for the inversion of general Toeplitz matrices,” Computers &
Mathematics with Applications, vol. 50, no. 5-6, pp. 741-752,
2005.

(17] J. J. Moreau, “Decomposition orthogonale d’'un espace hilber-
tien selon deux cones mutuellement polaires,” Comptes Rendus
de I'Académie des Sciences de Paris A, vol. 225, pp. 238-240,1962.

[18] T. Penzl, “A cyclic low-rank Smith method for large sparse
Lyapunov equations,” SIAM Journal on Scientific Computing,
vol. 21, no. 4, pp. 1401-1418, 2000.



Journal of Applied Mathematics

[19] Z.Peng, L. Wang, and J. Peng, “The solutions of matrix equation
AX = B over a matrix inequality constraint,” SIAM Journal on
Matrix Analysis and Applications, vol. 33, no. 2, pp. 554-568,
2012.

[20] N. Shinozaki and M. Sibuya, “Consistency of a pair of matrix
equations with an application,” Keio Science and Technology
Reports, vol. 27, no. 10, pp. 141-146, 1974.

[21] W. E. Trench, “Inverse eigenproblems and associated approx-
imation problems for matrices with generalized symmetry or
skew symmetry;, Linear Algebra and Its Applications, vol. 380,
pp- 199-211, 2004.

[22] F. Toutounian and S. Karimi, “Global least squares method (Gl-
LSQR) for solving general linear systems with several right-
hand sides,” Applied Mathematics and Computation, vol. 178, no.
2, pp. 452-460, 2006.

[23] W. E. Trench, “Minimization problems for (R, S)-symmetric
and (R, S)-skew symmetric matrices,” Linear Algebra and its
Applications, vol. 389, pp. 23-31, 2004.

[24] Q.-W. Wang, “Bisymmetric and centrosymmetric solutions to
systems of real quaternion matrix equations,” Computers &
Mathematics with Applications, vol. 49, no. 5-6, pp. 641-650,
2005.

[25] Q. Wang, J. Sun, and S. Li, “Consistency for bi(skew)symmetric
solutions to systems of generalized Sylvester equations over a
finite central algebra,” Linear Algebra and Its Applications, vol.
353, pp. 169-182, 2002.

[26] Q. W.Wang and F. Zhang, “The reflexive re-nonnegative definite
solution to a quaternion matrix equation,” Electronic Journal of
Linear Algebra, vol. 17, pp. 88-101, 2008.

[27] Q. W. Wang, H. X. Chang, and Q. Ning, “The common solution
to six quaternion matrix equations with applications,” Applied
Mathematics and Computation, vol. 198, no. 1, pp. 209-226,
2008.

[28] Q. Wang and C. Li, “Ranks and the least-norm of the general
solution to a system of quaternion matrix equations,” Linear
Algebra and its Applications, vol. 430, no. 5-6, pp. 1626-1640,
20009.

[29] Q-W. Wang, J.-H. Sun, and S.-Z. Li, “Consistency for
bi(skew)symmetric solutions to systems of generalized Sylvester
equations over a finite central algebra,” Linear Algebra and Its
Applications, vol. 353, pp. 169-182, 2002.

[30] Q. W. Wang, H. S. Zhang, and S. W. Yu, “On solutions to the
quaternion matrix equation AXB+CYD = E,” Electronic Journal
of Linear Algebra, vol. 17, pp. 343-358, 2008.

[31] J. R. Weaver, “Centrosymmetric (cross-symmetric) matrices,
their basic properties, eigenvalues, and eigenvectors,” The Amer-
ican Mathematical Monthly, vol. 92, no. 10, pp. 711-717, 1985.

[32] L.J. Zhao, X. Y. Hu, and L. Zhang, “Least squares solutions to

AX = B for bisymmetric matrices under a central principal

submatrix constraint and the optimal approximation,” Linear

Algebra and Its Applications, vol. 428, no. 4, pp. 871-880, 2008.

B. Zhou, G. Duan, and Z. Li, “Gradient based iterative algorithm

for solving coupled matrix equations,” Systems ¢ Control

Letters, vol. 58, no. 5, pp. 327-333, 2009.

[34] G.Huang, F. Yin, and K. Guo, “An iterative method for the skew-
symmetric solution and the optimal approximate solution of
the matrix equation AXB = C,” Journal of Computational and
Applied Mathematics, vol. 212, no. 2, pp. 231-244, 2008.

[35] A. Navarra, P. L. Odell, and D. M. Young, “A representation
of the general common solution to the matrix equations
A, XB, = C, and A,XB, = C, with applications;,” Computers

(33

17

& Mathematics with Applications, vol. 41, no. 7-8, pp. 929-935,
2001.

[36] E Piao, Q. Zhang, and Z. Wang, “The solution to matrix
equation AX + XTC = B) Journal of the Franklin Institute.
Engineering and Applied Mathematics, vol. 344, no. 8, pp. 1056
1062, 2007.

[37] Y. B. Deng, Z. Z. Bai, and Y. H. Gao, “Iterative orthogonal
direction methods for Hermitian minimum norm solutions of
two consistent matrix equations,” Numerical Linear Algebra with
Applications, vol. 13, no. 10, pp. 801-823, 2006.

[38] E. Ding, P. X. Liu, and J. Ding, “Iterative solutions of the
generalized Sylvester matrix equations by using the hierarchical
identification principle,” Applied Mathematics and Computa-
tion, vol. 197, no. 1, pp. 41-50, 2008.

[39] B.Zhou, Z. Li, G. Duan, and Y. Wang, “Solutions to a family of
matrix equations by using the Kronecker matrix polynomials,”
Applied Mathematics and Computation, vol. 212, no. 2, pp. 327-
336, 2009.

[40] M. Dehghan and M. Hajarian, “An iterative method for solving

the generalized coupled Sylvester matrix equations over gener-

alized bisymmetric matrices;,” Applied Mathematical Modelling.

Simulation and Computation for Engineering and Environmental

Systems, vol. 34, no. 3, pp. 639-654, 2010.

K. Liang and J. Liu, “Iterative algorithms for the minimum-

norm solution and the least-squares solution of the linear

matrix equations A, XB, + C,X" D, = M, A,XB, + C,X"D,

= M, Applied Mathematics and Computation, vol. 218, no. 7,

pp. 3166-3175, 2011.

[42] A. G. Wu, G. R. Duan, Y. M. Fu, and W. J. Wu, “Finite itera-
tive algorithms for the generalized Sylvester-conjugate matrix
equation AX + BY = EXF +S,” Computing, vol. 89, no. 3-4, pp.
147-170, 2010.

[43] A. Wu, G. Feng, J. Hu, and G. Duan, “Closed-form solutions to
the nonhomogeneous Yakubovich-conjugate matrix equation,”
Applied Mathematics and Computation, vol. 214, no. 2, pp. 442-
450, 2009.

[44] T. Jiang and M. Wei, “On solutions of the matrix equations
X - AXB = Cand X - AXB = C? Linear Algebra and Its
Applications, vol. 367, pp. 225-233, 2003.

[45] A. Wu, Y. Fu, and G. Duan, “On solutions of matrix equations
V — AVF = BW and V - AVF = BW, Mathematical and
Computer Modelling, vol. 47, no. 11-12, pp. 1181-1197, 2008.

[46] J.-H. Bevis, E-J. Hall, and R.-E. Hartwing, “Consimilarity and
the matrix equation AX — XB = C,” in Current Trends in Matrix
Theory, pp. 51-64, North-Holland, New York, NY, USA, 1986.

[47] K.Y Zhang and Z. Xu, Numerical Algebra, Science Press, 2006,
(Chinese).

[48] Y. X. Peng, X. Y. Hu, and L. Zhang, “An iterative method for
symmetric solutions and optimal approximation solution of the
system of matrix equations A, XB, = C,; A,XB, = C,,” Applied
Mathematics and Computation, vol. 183, no. 2, pp. 1127-1137,
2006.

[41



