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A series of smelting reduction experiments has been carried out with high-phosphorus iron ore of the different bases and heating
rates by thermogravimetric analyzer. The derivative thermo gravimetric (DTG) data have been obtained from the experiments.
After analyzing its phase space reconstruction, it is found that DTG phase portrait contains with a clear double “∞” attractor
characteristic by one-order delay. The statistical properties of the attractor inside and outside the double “∞” structures are
characterized with interface chemical reaction control and diffusion control stage in dynamic smelting process, respectively; the
results are deserved to be a reference value on understanding of the mechanism and optimization and control of the process in
smelting reduction of high-phosphorus iron ore.

1. Introduction

Chaos theory suggests that the randomness within deter-
ministic system is often caused by the nonlinear dynamic
factors instead of random factors from the outside. There are
complex nonlinear dynamical systems in practical problems,
because of the limit of measuring means; and the unknown
information of complex systems and absence of physical
quantities contained make it difficult to establish the directly
analytical form of the mathematical model. Therefore, the
reconstruction of nonlinear dynamical systems uses the time
series of a physical quantity which was got by experiments
to obtain the internal and inherent characteristics. Such
research is an important part of nonlinear analysis [1]. At
present, the chaotic time series reconstruction technique
has been more widely used in many practical such as the
fluid, geology, economic, but few study in the field of steel
metallurgy [2, 3], especially on smelting reduction of high-
phosphorus iron ore. There are more than 100 kinds of
complex chemical reactions in the smelting reduction process
of high-phosphorus iron ore, and it is very difficult to make
mechanism research for each reaction. A large number of

domestic and foreign literatures mainly focus on idealized
mathematical model (such as the reaction core model and
the microparticle model) or numerical simulation, but a lot
of revised forms still failed to reflect accurately the details
of the smelting reduction process [4–11]. In addition, most
studies on thermal analysis kinetics made the mathematical
model of the response fraction by the weight loss rate
or pure substance. After the first derivative the error of
mathematical model increases significantly, which results in
that the differential type of response fraction equation cannot
express the apparent reaction rate (DTG). The evolutionary
behavior of the physical quantity (the apparent reaction rate),
influenced by complexity from input and dissipation of the
energy in the entire process of smelting reduction system, can
reflect the details of the smelting to some extent. In view of
the limitations of the subject development, however, under-
standing of the apparent reaction rate is very limited; thus,
its change mechanism is not yet fully understood [12]. This
article intends to reconstruct phase space dynamic system
of the high-phosphorus iron ore smelting reduction system
using the apparent reaction rate time series obtained from
TGA experiments on Huimin ore smelting reduction with
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different alkalinity ratios and different heating rates. It aims at
improving the understanding and mastery of the mechanism
of smelting reduction process by extracting and analysis of
the implicit information and dynamic characteristics of the
phase space. The highlights of this article are as follows: (1)
The nonlinear analysis is employed to the DTG time series
firstly; (2) the result shows that the reduction system belongs
to randomanddiscrete dynamical system; (3)TheDTGphase
portrait of one-order delay and two-dimension embed has
clear graphical structural feature of double “∞” attractor; (4)
the statistical properties with inside and outside “∞” of the
attractor have verified two kinetic cases.

The rest of the paper is organized as follows. The phase
space reconstruction method and its analysis and discussion
of the experimental data are shown in Section 2. Mathemat-
ical model and analysis of dynamic system for analyzing
experimental data will be presented in Section 3; in the
meanwhile, some comparison between the two methods
is also provided. Finally, a brief summary is discussed in
Section 4.

2. Phase Space Reconstruction and
Dynamic Characteristic

2.1. Phase Space Reconstruction Theory. Phase space recon-
struction of the dynamic system is a new technology of time
series quantitative analysis [13]. The evolution of a physical
quantity in system is associated with other physical quanti-
ties; so the amount of information hides in the evolutionary
process of the physical by time series. The original law could
be extracted and restored from time series data of physical
quantity.

Let {𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑁
} be time series of a physical quan-

tity. The interactional information with the variable in the
system is obtained from its evolution process. Therefore the
time series is extended to a three-dimensional or higher
dimensional phase space so that the information is fully
revealed, and this method is so-called phase space recon-
struction by time series.

Phase space reconstruction theory proposed by Takens
proves that there is a suitable embedding dimension bywhich
a regular trajectory (attractor) would be restored. In other
words, it is a diffeomorphism from its trajectory to the
original dynamic system in the reconstructed 𝑅

𝑚 space. All
of that has established a solid foundation for reconstruction
of complex systems [14].

In addition to this, if time series is long enough with-
out the noise, the delay time 𝑡 could be arbitrarily cho-
sen. However, the actual attractor dimension 𝐷 of the
system in research is unknown [15]; the delay length of
time series is limited with noise; so it is the key to
choose the appropriate time delay and embedding dimension
[16].

The average mutual information method is employed
to obtain a delay time. It is a modification of the classical
autocorrelation function method from the perspective of
information theory and could distinguish effectively folded
and unfolded orbit.

Table 1: Mineral composition of Huimin ore (%).

TFe FeO SiO2 Al2O3 MgO CaO S P TiO2

41.02 1.36 17.98 5.60 0.21 0.35 0.06 0.9 0.28

The calculated results of the autocorrelation function are
tended to lag, and the emphasis is a linear correlation part.
The average mutual information function includes nonlinear
components; the information theory is employed to select
𝑡 with an iterative fashion. Select the value 𝑡 corresponding
to the first minimum as the best time delay; the track
reconstructed using the minimum point afterward will fold.
Autocorrelation function has similar defect.

The vector sequence was reconstructed by time delay for
time series 𝑥

1
, 𝑥
2
. . . 𝑥
𝑁
as follows (1) [14]:

𝜒
𝑖
(𝑑) = (𝑥

𝑖
, 𝑥
𝑖+𝑡
, . . . , 𝑥

𝑖+(𝑑−1)𝑡
) , 𝑖 = 1, 2 . . . 𝑁 − 𝑑𝑡, (1)

where 𝑑 is the embedding dimension, 𝑡 is time delay, and 𝜒
𝑖

is 𝑖th reconstructed vector. The 𝑎(𝑖, 𝑑) is defined as (2)
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(2)

The ‖ ⋅ ‖maximum norm in the Euclidean space is defined as
(3)
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. (3)

The𝜒
𝑖
(𝑑+1) expresses 𝑖th reconstructed vector by the embed-

ding dimension 𝑑 + 1, 𝑛(𝑖, 𝑑) expresses that 𝜒
𝑛(𝑖,𝑑)

(𝑑) is false
neighbor point of 𝜒

𝑖
(𝑑) in the 𝑑-dimensional reconstructed

phase space, and 1 ≤ 𝑛(𝑖, 𝑑) ≤ 𝑁 − 𝑑𝑡.
Here false neighbor is based on the above definition ‖ ⋅ ‖.
The mean of all 𝑎(𝑖, 𝑑) is expressed as (4)

𝐸 (𝑑) =

1

𝑁 − 𝑑𝑡

𝑁−𝑑𝑡

∑

𝑖=1

𝑎 (𝑖, 𝑑) . (4)

It can be seen from embedding theory that if the embed-
ding dimension is 𝑑, the near two points in 𝑑-dimensional
reconstructed phase space should still be closed in the 𝑑 +

1-dimensional reconstructed phase space. The two points
which met this condition are called true neighbor points, or
the fake close neighbors. Therefore, if 𝑑 ≥ 𝐷, 𝐸(𝑑 + 1)/𝐸(𝑑)

should no longer be changed, and its value is one, where𝐷 is
the minimum embedding dimension.

2.2. Experimental. The TGA experiment equipment is pro-
duced by Netzsch, modeling as STA 449 F3. It is protected
with nitrogen gas flowing at 50mL/min and argon, acting as
purge gas, flowing at a rate of 10mL/min.

Rawmaterials employed in the experiment are taken from
the Huimin high-phosphorus iron ore in Yunnan province.
The composition of Huimin ore and auxiliary raw materials
such as coal andCaO is shown inTables 1, 2, and 3.They are in
the uniform state after crushing and grinding. As a reducing
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Figure 1: XRD collection of illustrative plates of Huimin iron ore.
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Figure 2: The time series of DTG.
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Figure 3: Evolution diagram of correlation dimension.
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Figure 4: Calculated process of optimal embedding dimension.

Time lag (units)
0 1 2 3 4 5 6

3.5

3

2.5

2

1.5

1

0.5Av
er

ag
e m

ut
ua

l i
nf

or
m

at
io

n 
(b

its
)

Figure 5: Calculated process of optimal time delay.

Table 2: The ingredients of solvent (%).

CaO Alkali-metal and
MgO Fe Ammonia

precipitate Sulfate Loss On
ignition

96.3 0.5 0.015 0.2 0.1 2

agent, the coal in the reaction vessel can maintain a strong
reduction atmosphere to make sure that the iron in smelting
slag is fully reduced. In addition, the added CaO can increase
the basicity in the slag of reduction process to improve their
liquidity and to make iron oxide fully reduced.

As shown in Figure 1, themain phases of Huimin iron ore
are Fe

2
O
3
⋅ H
2
O and SiO

2
. Huimin limonite ore is a kind of

water goethite.
The particle size ranged from 0.001 to 0.1mm. There are

two genetic types for the limonite ore, one is the sedimentary
limonite, which was implicit and crystalline aggregate; the
other is the limonite aggregate formed by exogenous effect
of oxidation and hydrolysis.

2.3. Analysis of Phase Space Reconstruction. Derivative ther-
mogravimetric data of Huimin ore reflect the change of the
apparent reaction rate in the smelting reduction process. It is
shown in Figure 2. Experiment extent is confirmedwith bases
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(a) (b)

(c)

Figure 6: (a) The phase diagram for 𝑡 = 1, (b) the phase diagram for 𝑡 = 2, and (c) the phase diagram for 𝑡 = 3. (The horizontal axis and
vertical axis are, respectively, 𝑥(𝑡)-DTG and 𝑥(𝑡 + 1)-DTG, the colour indicated the dimension).

Table 3: The composition of anthracite (%).

C CaO SiO2 S P Ash Volatile
76.43 1.59 7.80 0.35 0.05 15.29 7.78

Table 4: Compositions of each type of materials required.

Bases (𝑅)
0.8 1.1 1.4 1.7 2.0

Mineral content (mg) 7.48 6.85 6.82 6.53 6.37
Coal content (mg) 1.40 1.17 1.16 1.11 1.09
Calcium oxide content (mg) 1.12 1.98 2.02 2.36 2.54

0.8, 1.1, 1.4, 1.7, and 2.0, respectively, and 5, 10, 15, and 20K/min
in 1.4; the compositions of each type of materials required are
shown in Table 4.

Firstly, the features of DTG are analyzed, and then
correlation dimension, an important evidence to establish the
existence of chaotic continuous systems, is calculatedwith the
reconstruction map of the fractal dimension. For the truly

random signals, the correlation dimension graph will look
like a 45-degree straight line. It indicates that no matter how
the degree of the embedded noise is, it will evenly fill that
space. Chaotic (or periodic) signals have a distinct spatial
structure, and their correlation dimension will saturate at
some point while embedding dimension is increasing.

By calculating the correlation dimension of DTG data to
ensure that the correlation dimension will reach saturation
status as shown in Figure 3, It is indicated that the nonlinear
chaotic characteristics exist in system.

As can be seen from the calculated results in Figures 4
and 5, the proportion of false is closed to the minimum value
when 𝑚 = 2 with the embedded dimension increase; then,
the proportion begins to increase along with the increasing
embedded dimension. Therefore, it is concluded that the
embedded dimension 𝑚 = 2 is the real nearby point and
the optimal embedded dimension should be set as 2. It can
be seen from Figure 6 that the phase diagrams for time delay
𝑡 = 1 can reflect the ordered characteristic in the entire
reducing process, on the contrary, the cases for 𝑡 = 2 or 3
cannot. In addition, it is shown in Figure 5 that the average
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(a) (b)

(c) (d)

(e)

Figure 7: (a) Heating rate of 10 K/min, 𝑅 = 0.8, (b) heating rate of 10 K/min, 𝑅 = 1.1, (c) heating rate of 10 K/min, 𝑅 = 1.4, (d) heating
rate of 10 K/min, 𝑅 = 1.7, and (e) heating rate of 10 K/min, 𝑅 = 2.0. (The horizontal axis and vertical axis are, respectively, 𝑥(𝑡)-DTG and
𝑥(𝑡 + 1)-DTG, the colour indicated the dimension).
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(a) (b)

(c) (d)

Figure 8: (a) 𝑅 = 1.4, heating rate of 5 K/min, (b) 𝑅 = 1.4, heating rate of 10 K/min, (c) 𝑅 = 1.4, heating rate of 15 K/min, and (d) 𝑅 = 1.4,
heating rate of 20K/min. (The horizontal axis and vertical axis is, respectively, 𝑥(𝑡)-DTG and 𝑥(𝑡 + 1)-DTG, the colour as dimension).

mutual information has decreased about 75% from 0 to 1 and
about 25% from 1 to 5. Comparing the results of Figures 6(a)
and 6(b), it shows that the case for 𝑡 = 1 has speeded out
the important internal structure; on the contrary, the result
of Figure 6(c) shows that a lot of information hidden up for
𝑡 = 3. Therefore, the most appropriate for time delay is 𝑡 = 1.

2.4. Results and Discussion of Phase Space Reconstruction.
The DTG phase space reconstruction of Huimin ore with
alkalinity ratio of five (heating rate of 10K/min)was obtained;
the calculated results in VRA (Visual Recurrence analysis)
software [17] were shown in Figure 7.

It can be seen from Figure 7 that the DTG phase portraits
have showed structure with pairs of “∞” in the smelting
reduction process and distributed symmetrically in a square
area; alkalinity has little influence on graphics feature.

The condition with better smelting reduction (alkalinity
𝑅 = 1.4) was selected to experiment under four different
heating rates, 5, 10, 15, and 20K/min, respectively; the results
of its DTG phase portrait were shown in Figure 8.

As can be seen from Figure 8, with different heating rates
of the same alkalinity, the phase portraits have showed the
attractor structural features with the same shape, double
“∞” structure. Its good reproducibility gave expression to
the regularity of the DTG phase portrait characteristic. In
addition, the internal “∞” has expressed weak self-similar
structure.

As can be seen from Figure 9, the length of the double
“∞” graph has increased with the increase of heating rate, it
was provided almost with linear relationship. The maximum
width is maintained at about 0.2 × 2

3/2 that indicated the
graphics are stretched with the heating rate to speed up and
also has verified the intensity of phase transition [10].

2.5. Recurrence Plot Analysis. The recurrence plot proposed
by Belaire-Franch and Contreras [18] is mainly used to
describe predictability of the time series and to describe its
periodic characteristics with visual image. In general, the
future state in periodicity system is completely predictable;
chaotic dynamical system is of short-term predictability;
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Figure 10: The recurrence plot of the DTG.

the stochastic system is completely unpredictable. Thus, the
recurrence plot can distinguish the periodic system, chaotic
dynamical system, and stochastic system.

The recurrence plot was depicted with reconstructed
phase space by the delay time 𝑡 = 1 and embedding
dimension 𝑚 = 2. Horizontal and vertical coordinates
in the figure expressed the phase point, when the distance
between two points corresponding to horizontal, the vertical
axis is less than a relatively small number 𝜀

𝑖
given, marked

with the 𝑖th color corresponding to the location. Theory
and experiments had showed that the recurrence plot of the
random time series is irregularly. Therefore, it can be seen
from Figure 10 that the DTG time series showed randomness
or complexity in the smelting reduction process, the sequence
tended to be chaotic time series, that is, DTG time series
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Figure 11: Comparison between themeasured andmodel calculated
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had the nonlinear dynamic random and chaotic, complex
characteristics.

3. Mathematical Model and Analysis of
Dynamic System

The phase portrait of the smelting reduction process recon-
structed by the experimental data DTG has the statistical
characteristics of the attractor that is double “∞” structured
and nested inside and outside. To reveal better the underlying
law of smelting reduction process and its physical and
chemical significance, the authors would attempt to build a
mathematical equation of the attractor.

3.1. Mathematical Model. Considering that higher degree
agreement of the most probable mechanism functions with
the experimental data [19], which was from thermal analysis
in the various stages of reaction, its function models were
employed to establish the structural equation of the attractor,
so that to explore the equations of mathematical physics of
the graphic structure. The measured and calculated results of
various stages were shown in Figure 11.

It can be seen from the Figure 11 that themodel calculated
andmeasured values hadmatched well and the kinetic model
equation could express the reaction process of the smelting
reduction process.Therefore, the DTG expressions were used
to explore the mathematic equation of the attractor with the
above-mentioned model.

Taken prereduction stage as an example, the reaction
mechanism function 𝑔(𝛼) = [− ln(1 − 𝛼)]

4 was obtained.The
relationship of the reaction fraction changed with tempera-
ture was shown in (5) [19]. Consider

𝑥 = 1 − 𝑒
−[(𝐴𝑅/𝛽𝐸)(1−(2𝑅𝑇/𝐸))𝑇

2
𝑒
−𝐸/𝑅𝑇
]
1/4

.
(5)

After substituting (5) with 𝐴 = 𝑎
1
𝛽/(𝑎
2
− 𝑇) [19] and

𝑎 = 𝑅/𝐸, where 𝑔(𝛼) is the integral mechanism function; 𝐴
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(a) (b)

(c) (d)

Figure 12: (a) The initial low temperature segment, (b) the first intermediate process, (c) the second intermediate process, and (d) the third
intermediate process. (Thehorizontal axis and vertical axis are, respectively,𝑥(𝑡)-DTG and𝑥(𝑡+1)-DTG, the colour indicated the dimension).

implies the preexponential factor;𝐸 is the apparent activation
energy, 𝑅 represents the gas constant 8.314; 𝑇 is the heating
temperature; and 𝛽 is the heating rate. So (6) is got by
finishing. Consider

𝑥 = 1 − 𝑒
−[(𝑎
1
𝑎/(𝑎
2
−𝑇))(1−2𝑎𝑇)𝑇

2
𝑒
−1/𝑎𝑇
]
1/4

.
(6)

The derivative of (6) to 𝑇 is expressed as (7)

𝑓 (𝑇) =

𝑑𝑥

𝑑𝑇

= 𝑒
−[(𝑎
1
𝑎/(𝑎
2
−𝑇))(𝑇

2
−2𝑎𝑇
3
)𝑒
−1/𝑎𝑇
]
1/4

×

1

4

[

𝑎
1
𝑎

𝑎
2
− 𝑇

(𝑇
2
− 2𝑎𝑇

3
)𝑒
−1/𝑎𝑇

]

−3/4

× [

𝑎
1
𝑎 (2𝑎
2
𝑇 − 𝑇

2
+ 6𝑎
2
𝑎𝑇
2
+ 4𝑎𝑇

3
)

(𝑎
2
− 𝑇)
2

+

𝑎
1
(1 − 2𝑎𝑇)

𝑎
2
− 𝑇

] 𝑒
−1/𝑎𝑇

.

(7)

Thus, 𝑓(𝑇) would express the apparent reaction rate model.

Therefore, the above-mentioned method though reason-
able could not correctly express DTG data. The main reason
is the complexity and dynamic randomness of the reaction
in the smelting reduction process of high-phosphorus iron
ore. Thus, dynamic system method by time series has an
advantage of characterizing dynamic behavior.

3.2. Characterization and Analysis of Dynamic System. The
diversity of ore raw material composition and complexity
of the chemical reaction combined with the recurrence plot
analysis have showed that the system is stochastic dynamical
systems; in the meanwhile it is the discrete dynamical system
determined by characteristics of the attractor and discrete
point, So it can be concluded that it belongs to the random
discrete dynamic system [20–23]. The statistical regularities
of the dynamical system for each stage were preliminary ana-
lyzed to obtain kinetic characteristic.The analytical results of
the various stages were shown in Figure 12.

It can be inferred from Figure 12(a), the points inside
“∞” within the curve of double “∞” characterized that the
smelting reduction system came into the stage of interfacial
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chemical reaction control, the reduction process of iron ore
generally came into the stage of chemical reaction control
at low temperature phase [24]; it can be inferred from
Figures 12(b), 12(c), and 12(d) that points outside “∞”
characterized the system came into the stage of diffusion-
controlled [25], while the points scattered around the curve
characterized the stage of the mixed control. In addition, due
to the diversity of ore ingredients and the complexity of the
chemical reaction, dynamic characteristics of the dynamical
system restored by the DTG coupled and integrated with
the results of the various reaction kinetics control (they are
shown in Figures 8(b), 8(c), and 8(d)), the points distributed
around the curve were the transitional situation of mixed
control.

4. Conclusion

TGA experiment on smelting reduction of the Huimin high-
phosphorus iron ore was made with five different alkalin-
ities and four kinds of different heating rates at the same
alkalinity, the derivative thermogravimetric (DTG) data have
been obtained from the experiments. Then the phase space
reconstruction analysis is found as follows.

(1) The DTG phase portrait by first-order delay has
clear graphical structural feature of double “∞” attractor. It
is very profound that statistical properties with inside and
outside “∞” of the attractor had verified two kinetics cases
of chemical reaction control stage and diffusion-controlled.

(2) The recurrence plot of the DTG time series showed
nonlinear dynamic random and chaotic, complex character-
istics.

(3) There is a significant error when DTG equation was
deduced by the kinetic mechanism functions of thermal
analysis. It indicated that a simple mechanism functions
could not express complex reaction in the iron smelting
reduction process.The DTG data is certainly a true reflection
of the details of the smelting process, but it is coupling
and integration of various reactions; the dynamic control of
the situation corresponding to the process is comprehensive
control of the situationwith all kinds of elementary reactions.
To this end, it is the correct way to explore the various stages
of the statistical law by the ergodicity of the system, which
reflects the superiority of the phase space reconstruction
method.

The equations of mathematical physics for the attractor
has not established accurately, every exaction cannot be
reflect in the attractor, they are the faultiness of our method
and we will develop future work combined these two aspects.
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