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Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy
markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity
production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned
the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating
smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews
applications in power system studies, market design, building control system design, and integration of wind power in a smart grid.

1. Introduction

Recent smart grid technological advances present a new
class of complex interdisciplinary modeling and simulation
problems that are increasingly difficult to solve using tradi-
tional computational methods. Emerging electric power sys-
tem operating paradigms such as demand response, energy
storage, retail markets, electric vehicles, and a new generation
of distribution automation systems not only require very
advanced power system modeling tools but also require that
these tools be integrated with building thermal and control
models, battery storage technology models, vehicle charging
systemmodels,market simulators, and detailed power system
control models. Historically all of these simulation tools were
developed independently and each treated the others as a
quasi-static boundary condition, an approach that not only
limits their effectiveness in evaluating technology impacts
overmultiple scale andmultiple time horizons but which also
neglects potentially important coupling effects.

In the case of electricity transmission simulation, PSLF
[1], PSS/E [2], and PowerWorld [3] have a longstanding
record showing their ability to simulate bulk power systems in

awide range of conditions. But evenwith recent improvement
to address new conditions such as fault-induced delayed
voltage recovery [4], these tools are largely unable to integrate
with the wide variety of tools needed to address distribution-
level phenomena in amanner that meets the needs for smart-
grid technology developers.

Electricity distribution level tools such as SynerGEE
[5], WindMil [6], Cymdist [7], and RTDS [8] face similar
challenges integrating with wholesale market and renewable
integration tools because they too were designed using
conventional models that depend on homogeneous descrip-
tions of the underlying electromechanical behavior of the
electric power system, either as an electromagnetic transient
solution with timescale of microsecond to milliseconds or as
a steady-state power flow solution with no timescale at all. At
intermediate timescales of seconds, minutes, hours, and days
there are many important phenomena that these simulations
cannot incorporate.

The same can be said for building energy simulation,
battery storage models, market simulations, and distribu-
tion automation controls in that they cannot represent the
behaviors of the subject systems at the same time and size
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scales as power system simulations. Thus, the problem of
integrating these tools into a single multiscale computational
framework appears insurmountable using conventional sim-
ulations based on the numerical solution of systems of
ordinary or partial differential equations (or their discretized
counterparts) to represent changes in quantities of interest
such as the voltage at a bus, the price of energy, the tempera-
ture in a building, or the charge in a battery.

Agent-based computational economics [8] has increas-
ingly been applied to electricity markets and consequently
was among the first fields to address the challenges of
using agent-based tools in power system simulation. The
limitationswith classicalmodelingmethods [9], the tendency
to ignore learning as a result of one-shot auctions [10], and
the concerns with stylized trading models used by game
theoretic methods [11] are among the chief motivations
cited for using agent-based methods. The exploration of
multiple equilibria [12] and a change from a focus on rational
behavior and equilibrium processes toward heterogeneity
and adaptation [13] only becomes possible with significant
computing resources. As a result, computational economics
has been divided into four areas of investigation [12]:

(1) empirical research that seeks to understand why and
how macroscopic regularity emerges from micro-
scopic properties and behaviors;

(2) normative research that uses agent-based models as
an in silico laboratory to design and test policies;

(3) theory generation that uses structured analysis to
discover the conditions under which global regularity
evolves;

(4) methodology development that seeks to improve
the tools and methods that support computational
economics.

Consistent with the postulate that markets should be
designed using engineering tools [14] and anticipating
the coming smart grid revolution the US Department
Energy’s Office of Electricity commissioned Pacific North-
west National Laboratory to develop a simulation environ-
ment that would address the gaps in existing power system
simulation and modeling tools. The first open-source release
of theGridLAB-D [15] occurred inApril 2008 and byNovem-
ber 2010 GridLAB-D was used to study a variety of smart
grid problems in demand response and renewable integration
[16–24]. Since then, the software has been improved and
additional capabilities have enabled the study of a wide range
of smart grid problems including conservation voltage reduc-
tion, microgrid control, retail market design, wholesale-retail
market integration, distributed resource control, smart grid
technology readiness evaluation, distributed energy resource
integration, reduced-order model development, appliance
control strategies, generation intermittency impacts on distri-
bution systems, photovoltaic integration impacts, large-scale
integration of wind power, smart grid cost-benefit analysis,
and transmission-distribution system model integration.

The primary purpose of this paper is to place the devel-
opment of GridLAB-D in the context of research on the
application of agent-based simulations and provide details

of how GridLAB-D solves interdisciplinary simulation prob-
lems as a time series using the agent-based paradigm. The
first section discusses the general features of agent-based
systems and briefly discusses examples and features of such
systems in various domains. Next, the solutionmethods used
by GridLAB-D are discussed and application examples are
reviewed to demonstrate how the methods have been applied
to various smart grid problems. Finally, planned future work
is discussed and opportunities for other researchers to con-
tribute further developments to the open source GridLAB-D
tools are enumerated.

2. Fundamentals

Agent-based modeling is not a new approach to modeling
complex systems. Early development of this approach was
pioneered by Von Neumann [25], popularized by Holland
[26] andConway [27], and systematized byWolfram [28]. But
advances in computational capabilities in recent years have
made large-scale agent-based models much more accessible
to the nonexperts using desktop computing systems. Agent-
based simulations have become commonplace in games,
finance, epidemiology, ecological research, and training sys-
tems, to name a few examples. This section will examine a
well-known example from ecology to elucidate the funda-
mental aspect of agent-based simulation.

To illustrate the difference between conventional mod-
els and agent-based models, we review the Lotka-Volterra
predator-prey model [29], a well-studied class of system
that has been modeled using both conventional and agent-
based methods. A Lotka-Volterra system describes a simple
ecosystem that exhibits quasi-harmonic behavior we can
observe using simulations based on both methods and thus
provides a good basis for comparison [30]. This well-known
predator-prey system is described by the ordinary differential
equations

𝑥̇ = 𝑥 (𝑎 − 𝑏𝑦) , (1a)

̇𝑦 = 𝑦 (𝑐𝑥 − 𝑑) , (1b)
where 𝑥 is the size of the prey population at time 𝑡 and 𝑦 is
the size of the predator population at the same time 𝑡. If 𝑥
represents the number of rabbits and𝑦 represents the number
of foxes, (1a) says that while rabbits grow at a rate 𝑎 they
are also killed by foxes at a rate proportional to the number
of foxes 𝑏 ⋅ 𝑦. Similarly, (1b) says that while foxes grow as a
function of the food supply 𝑐 ⋅ 𝑥 they also die at a rate 𝑑.

The simplicity of the Lotka-Volterra system lends itself
to analysis in the sense that one can compute aggregate
properties such as the fixed population equilibriumby solving
(1a) and (1b) for the steady state when 𝑥̇ = ̇𝑦 = 0. In this case
we find only one nontrivial equilibrium state when

𝑦 =

𝑎

𝑏

, 𝑥 =

𝑑

𝑐

.
(2)

Similarly, the stability of the fixed points can be determined
using the Jacobian

𝐽 (𝑥, 𝑦) = [

𝑎 − 𝑏𝑦 −𝑏𝑥

𝑑𝑦 𝑐𝑥 − 𝑑

] (3)
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from which we conclude the trivial fixed point 𝐽(0, 0) is
an unstable saddle point, which explains why populations
are not “attracted” to extinction conditions. The nontrivial
fixed point is different because 𝐽(𝑑/𝑐, 𝑎/𝑏) has imaginary
eigenvalues 𝜆

1
= 𝑖

√

𝑎𝑑 and 𝜆
2
= −𝑖

√

𝑎𝑑 and no conclusions
can be drawn. Solving the original differential equations by
integrating directly allows us to find a conserved quantity

𝐶 = 𝑎 ln𝑦 (𝑡) − 𝑏𝑦 (𝑡) − 𝑐𝑥 (𝑡) + 𝑑 ln𝑥 (𝑡) , (4)

the value of which corresponds to a stationary population
that oscillates around the nontrivial fixed point along invari-
ant trajectories. Thus, satisfying (4) provides the basis for
any simulation that will accurately model the population
dynamics based on the parameters (𝑎, 𝑏, 𝑐, 𝑑) and the initial
conditions 𝑥(0) and 𝑦(0). Given this condition all possible
states of the system can be explored, as shown in Figure 1.

Several significant problems become apparent when one
attempts to find analytic solutions to many real-world sys-
tems. First, the parametric form of (4) is often difficult
to solve numerically as a time-series solution, even for
simple systems such as the Lotka-Volterra model, and finite
differencemethods often exhibit numerical integration errors
that accumulate over time and lead to divergence, as shown
in Figure 2. The source of this particular error is the estimate
of the derivative at the start of each finite time interval. Euler’s
method addresses this problem to a first order and higher
order solutions using Runge-Kutta methods to eliminate the
error. Unfortunately, for many systems these error correction
methods can be challenging to implement numerically using
suitable finite difference methods.

The second problem is any change to the structure of the
system or coupling with other dynamic systems requires that
the solution be rederived (often manually) from the original
differential equations. This difficulty is encountered when
using a mixed electromechanical, thermal, and economic
system such as

̃

𝐼

𝑁×1
= 𝑌

𝑁×𝑁
̃

𝑉

𝑁×1
, (5a)

̃

𝑉

𝐿×1
̃

𝐼

∗

𝐿×1
= 𝑄

𝐿×1
𝑅 (𝑃

𝑀×1
) , (5b)

̃

𝑉

𝐺×1
̃

𝐼

∗

𝐺×1
= 𝑄

𝐺×1
𝑅 (𝑃

𝑀×1
) , (5c)

𝜕𝐷

𝐿×𝑀

𝜕𝑃

𝐿×𝑀

=

𝜕𝑆

𝐺×𝑀

𝜕𝑃

𝐺×𝑀

, (5d)

where ̃𝐼
𝑁×1

represents the phasor currents flowing into the
network at the𝑁 electric nodes,𝑌

𝑁×𝑁
is the node admittance

matrix, ̃𝑉
𝑁×1

represents the 𝑁 node voltage phasors, 𝑄
𝐿×1

represents the 𝐿 customers thermal loads, 𝑄
𝐺×1

represents
the 𝐺 generators outputs, 𝑅(𝑃

𝑀×1
) represents the generator

or customers responses to the 𝑀 prices for electricity (e.g.,
energy, power, ramping),𝐷

𝐿×𝑀
is the demand of 𝐿 customers

in 𝑀 markets, and 𝑆
𝐺×𝑀

is the supply of 𝐺 generators in 𝑀

markets.
The first equation describes the equilibrium condition for

the electric power flow network, the second and third equa-
tions describe the equilibrium condition for the generator
and consumer response to pricing, and the fourth equation
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Figure 1: State space trajectories of a predator-prey system.

describes the equilibrium condition for the power market.
These systems tend to operate on different timescales using
different variables to describe interfaces between them.

Finally, the third problem is that as the systems become
more complex the differential equations become sonumerous
and unwieldy that themodel becomes analytically intractable
for any nontrivial condition. This is certainly the case when
power systems,market systems, and building thermalmodels
are combined as above with (5a)–(5d).

Fortunately, no matter how complex these systems
become they can be numerically modeled using agent-based
methods. To illustrate how this is done we review a model of
the same predator-prey systems usingConway’s Game of Life,
which uses cellular automata to represent a 2-dimensional
landscape in which the populations interact. This landscape
is represented by a matrix of cells that can take one of three
values: 0 when a cell is vacant; 1 when it is occupied by a
prey; and 2 when it is occupied by a predator. To simulate
the advance of time the total population of each is counted
as the matrix is iteratively updated using simple rules such as
the following:

(1) the probability that a rabbit is born in a cell “adjacent”
to a cell occupied by a rabbit is 𝑝;

(2) the probability that a fox replaces a rabbit in a cell
“adjacent” to a fox is 𝑞;

(3) the probability that a fox dies is 𝑟.

Here, the meaning of “adjacent” uses a “north-east-south-
west” cell adjacency condition that embodies the probability
of the 𝑥𝑦 component in the Lotka-Volterra model. But the
2-dimensional adjacency definition is unnecessary for the
purposes of simulation. Adjacency can also be accomplished
using a 1-dimensional “left-right” adjacency definition with-
out loss of generality.
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Figure 2: Integration error of a “naive” finite difference solution.

The output of an agent-based simulation of the Lotka-
Volterra model based on these rules using a simpler random
1-dimensional “encounter” map generated at each iteration
can be seen in Figure 3 for 𝑝 = 0.2, 𝑞 = 1.0, and 𝑟 = 0.2.
The fixed point for these conditions is 𝑥 = 10

4 and 𝑦 =

5 × 10

3. The simulation produces similar oscillatory behavior
to that observed in the analytic model. The model naturally
introduces small fluctuations to which it is sensitive, which is
why it deviates from the fixed point even when it is initialized
at it. This phenomenon can be important in systems where
the action of a single entity can influence the outcome of
the entire system. Such situations are difficult to describe
using ODEs because they involve fast-growing instabilities
emanating from independent perturbations.

The simulation shown in Figure 3 exhibits another char-
acteristic not seen in ODE solutions and which is shown in
Figure 4 (only the initial conditions have changed). While
finite difference solutions typically exhibit distinctly con-
vergent or divergent behavior, agent-based solutions often
exhibit mixed convergence behavior not seen in simpler ODE
solutions.

The primary characteristics of verisimilar agent-based
models are based on realistically defining the agents and
their relationships in an interaction landscape so that their
evolution over time accurately reproduces the dynamics of
the system being modeled. This requires that the following
considerations be addressed carefully:

(1) the internal states of the agents are represented by
variables (discrete or continuous) that provide suf-
ficient dynamic range and resolution to allow small
fluctuations to affect agent behavior realistically;

(2) the agents’ behaviors are represented such that they
evolve in a manner akin to a state machine (e.g.,
a Markov process, a cellular automaton, or a state
space model) or equivalent model (e.g., differential
equations);

(3) the agents interact with an environment that evolves
over time such that the agents are both affecting the
environment and affected by the environment;

(4) the agents interact with each other in a manner that
is consistent with the expected interactions in the
systembeingmodeled; that is, not all the internal state
variables of agent are revealed to other agents.
More complex systemsmay also involve the following
additional considerations:

(5) the environment may change over time; that is,
an external simulation, underlying model, or prere-
corded set of conditions changes it slowly with respect
to the dynamics of the agents;

(6) agents of different types can be interacting concur-
rently, which is the most common situation in highly
realistic simulations.

Unfortunately, while the descriptive power of agent-based
models is readily apparent and has been amply demonstrated
[31–34], these models have a few significant shortcomings
that remain for the most part unresolved. The first is that
agent-based simulations provide even less analytic insight
than numerical simulations that are derived on ab initio
models. For example, the simulation shown in Figures 3 and 4
has an obvious fixed point that corresponds towhat we expect
from the Lotka-Volterramodel. However, the simulation does
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Figure 3: Fluctuation behavior of agent-based simulation.

not provide us with an analytic relationship between the fixed
point that we observe, which is easily found numerically
by taking the mean values of 𝑥 and 𝑦 over a nontrivial
range of time, and the parameters of the analytic model or
the probabilities of the rules. While both 𝑥 and 𝑦 can be
determined analytically from the Lotka-Volterra parameters
using (2), there is no obvious way to relate the fixed point
to probabilities 𝑝, 𝑞, and 𝑟 without running the agent-based
model.This challenge remains unresolved except for themost
trivial system.

The second shortcoming is that agent-basedmodel verifi-
cation and validation are difficult to accomplish using formal
methods. When considering conventional simulations such
as theODE solution to the Lotka-Volterra system, verification
is the process of ensuring, for example, that the populations
always satisfy (4) given any particular initial conditions 𝑥(0)
and 𝑦(0), whereas validation is the process of ensuring that a
series of observations of a real population evolves in amanner
consistent with predictions of the simulation.
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Figure 4: Convergent behavior of agent-based simulation.

In principle the same should be possible with agent-
based simulations. However, as we have already seen agent-
based model often exhibits fluctuations that resemble real
systems so that instead of trying to verify an idealized
model (nonfluctuating) against real (fluctuating) data, model
developers are often trying to validate the model using a
system that fluctuates in a different way. The verification
question is no longer just about the uncertainty associated
with the empirical data. Now the uncertainty associated with
the agent-based model must be considered as well. Even for
simple models like the Lotka-Voltera system the agent-based
model does not strictly obey its conservation law: it only
approximately follows the law in the sense that the simulation
converges toward the fixed pointwhen far from it but diverges
when very close to it.

The problems with agent-based model validation came
to the fore in the development of agent-based computational
economics used in the design of electricity markets. In their
discussion of this problem LeBaron and Tesfatsion identified
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three challenges [37]. Foremost is the embarrassing number
of degrees of freedom that arise from the large number
of parameters contained in the models (a simple 1000-
home GridLAB-D model contains nearly 200,000 distinct
parameters that can affect the outcome). This problem is
aggrevated by the nearly unlimited functional and learning
algorithms that can be implemented, and evenmixed. Finally
the properties of the agents themselves are often difficult to
identify precisely and are often informed more by modelers
intuition and engineering expertise than by data collected or
observed human behavior.

One commonly used approach is verification against
experimental and/or reduced simulations and validation
against empirically collected data that demonstrate con-
sistency with known initial conditions and outcomes. In
this way, GridLAB-D models are often verified with simple
“known good” simulations and validated using telemetry
from large-scale real-world systems for which models are
available. The latter is discussed further in the applications
section below.

These problems are not unique to GridLAB-D. Widely
used agent-based simulation environments such as SWARM
[31], Repast [32], EMCAS [33], AMES [34], and others have all
addressed these challenges and the reader is referred to these
for details on how the verification and validation problem is
addressed variously by them.

Ultimately the decision whether to accept the mathemat-
ics of agent-based models hinges on an argument made by
LeBaron and Tesfatsion in their assessment of the relevant
differences between classical and constructive mathematics
[37]. The former is supported by those who accept the law of
excludedmiddle so that existence proofs by contradiction are
permissible, while the latter is supported by thosewho require
direct proof that a proposition is true in order to rule out both
falseness and undecidability. This latter proof can be realized
as computer programs that embody concepts of information
flow that limit what an agent knows and when it knows it:

“This distinction provides a dramatically different
perspective on how we perceive models in our
mind in relation to the real-world systems they are
intended to represent. For example, social system
modelers using classical mathematics typically
assume (explicitly or implicitly) that all modeled
decision makers share common knowledge about
an objective reality, even if there is no constructive
way in which these decision makers could attain
this common knowledge. In contrast, social system
modelers advocating a constructive mathematics
approach have argued that the “reality” of each
modeled decision maker ought to be limited to
whatever that decision maker is able to compute.”

GridLAB-D was designed and implemented with the
latter view in mind.

3. Solution Method

The success of GridLAB-D as a tool to study smart grids is
primarily attributed to the use of the agent-based simulation

paradigm. The approach has made GridLAB-D easy to use
in spite of the extensive use of multidisciplinary elements
in various modules. In addition the output of GridLAB-D
is highly similar to data collected from smart grid demon-
stration project conducted in the field, which has facilitated
verification and validation.

GridLAB-D allows modelers to choose which of the
agent-based characteristics are implemented in a given mod-
ule. Multiple modules may be operated concurrently in any
given simulation and there is no requirement that every
module uses the samemodelingmethod in any given simula-
tion. For example, the power flow module uses a state-space
model with an underlying algebraic solver to compute the
voltages and currents given the loading conditions presented
to it by the other modules. The residential building module
in turn uses the voltages to determine the energy input to
home energy systems and an underlying ODE thermalmodel
to solve the indoor air and mass temperatures. The market
models use the building control systems to determine the
price of electricity, which in turn is used to determine the
price at which overall supply and demand for electricity are
equal.

Agents are organized into ranks based on the relation-
ships between them imposed on them by the modules’
solvers. The ranks are organized in trees of parent-child
relationships, with each parent agent primarily depending on
the values accumulated from one or more child agents. The
ranks are given ordinal numbers with the greatest ordinal
assigned to the agent that is the topmost rank and zero
assigned to the bottom-most rank. In practice it is typical to
find only one agent at the topmost rank and a plurality of
agents of rank zero.

The determination of the ranks is made by the modules
and based on the solution method implemented. For exam-
ple, the power flow module uses a different rank structure
depending on whether the forward-back sweep method [38]
and current injection [39] method are used. When the
forward-backs weepmethod is used, the rank structure tends
to require many ranks, whereas when the current injection
method is used only two ranks are required. This difference
is known to influence the relative performance of the solvers
depending on the size and general structure of the electric
network being modeled.

To illustrate how GridLAB-D’s solver gathers values from
multiple agents consider how the average

𝑦 =

1

𝑁

𝑁

∑

𝑛=1

𝑥

𝑛
(6)

is computed. There are three steps required to complete this
operation:

(1) set 𝑦 = 0 and𝑁 = 0;
(2) add each 𝑥

𝑛
to 𝑦 for 𝑛 = 1, 2, . . . , 𝑁 incrementing 𝑁

each time;
(3) sivide 𝑦 by𝑁 if𝑁 is nonzero.

This process can be conducted for 𝑁 values of 𝑥 in three
phases, within which multiple operations (if any) can be
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conducted in parallel provided that the operations on 𝑦 and
𝑁 are atomic.

Phase 1

𝑦 ←󳨀 0

𝑛 ←󳨀 0.

(7)

Phase 2

𝑦 ←󳨀 𝑦 + 𝑥

1
, 𝑛 ←󳨀 𝑛 + 1

𝑦 ←󳨀 𝑦 + 𝑥

2
, 𝑛 ←󳨀 𝑛 + 1

...

𝑦 ←󳨀 𝑦 + 𝑥

𝑁
, 𝑛 ←󳨀 𝑛 + 1.

(8)

Phase 3

𝑦 ←󳨀

{

{

{

indet: 𝑛 = 0

𝑦

𝑛

: 𝑛 > 0.

(9)

In GridLAB-D parlance this process is conducted in the
following three parallelized phases. (1) Pre-Top-Down Pass:
This phase gives agents the opportunity to prepare to receive
updates from other agents. (2) Bottom-Up Pass: This phase
gives agents the opportunity to update other agents. (3) Post-
Top-Down Pass: This phase gives agents the opportunity to
compute final values based on updates received from other
agents.

In addition, GridLAB-D includes modules that allow
implementation of the so-called “precommit” and “commit”
passes before and after the three main phases, respectively.
This permits solvers that collect global data to prepare and
commit the global data that are affected, if any.There is also a
finalize pass that is complete only when the clock is advanced
to allow any objects that need to compute time-dependent
updates to do so before the clock is advanced.

A number of built-in properties with special characteris-
tics are provided to represent physical or stochastic processes
and maintain endogenous or exogenous relationships. These
are always updated before the precommit stage to ensure that
all the global, module, and object properties are correct at
a given time indicated by the global clock. These built-in
properties are updated in the following order:

(i) links to external simulations (both read and write);
(ii) random variables (based on the supported distribu-

tions provided by GridLAB-D);
(iii) scheduled values (updates on the ISO “cron” schedule

standard);
(iv) load shapes (primarily used to shape values in time

using queues, pulse-width modulation, amplitude
modulation, or simple analog shapes);

(v) transforms (functions that update a property based on
the values of other properties);

(vi) end uses (structures that describe how electric loads
are composed);

(vii) heartbeats (events that occur on a regular basis
independent of synchronization events).

All these updates (with the exception of finalize updates)
return a time for the next expected event for the object or
property in question.

3.1. Convergence and Synchronization. The current imple-
mentation of GridLAB-D does not guarantee convergence
in the overall solution. Modelers can create situations in
which two ormore agents cannot find a combination of states
that satisfy their respective convergence criteria. The design
of GridLAB-D’s overall solver assumes that such situations
are not intentional but are due to modeling error. In this
case GridLAB-D detects the resulting large iteration count
without the global clock changing and stops the simulation.
Modelers must implement noniterative methods of resolving
such state conflicts based on the assumption that they occur
at a time scale less than the time resolution of themain solver.

If necessary modelers can process events with a time
resolution less than 1 second using a discrete fixed time-step
solution method. The discrete time step used is the shortest
time step requested by the agent(s) seeking subsecond pro-
cessing. During processing of subsecond simulations event-
driven simulation is disabled until all agents indicate that
they no longer require subsecond processing, which typically
occurs when the transient behavior settles to steady state and
event-based processing can resume.

Parallelization of many event and time-step update com-
putations is accomplished using a “thread group” strategy.
This multiprocessor approach improves simulation perfor-
mance by preallocating computational threads to groups
of objects that can always be executed independently. The
determination of parallelizability is based on the rank of
an object and the type of event being processed. Ranks are
established on the basis of which way information flows
during synchronization events, if any, with high-rank objects
depending on multiple low-rank objects during the bottom-
up synchronization event. This method of parallelization
has been shown to exhibit approximately linear scaling for
the smaller number of computing units typically found in
desktop computing systems [40].

Synchronization avoidance strategies are also included in
GridLAB-D’s main solver to reduce the number of unnec-
essary events and improve overall simulation performance.
Among these is the “valid to” time, which agents may set
when the time of the next event in an agent is independent
of external inputs to the agent and the agent is not expecting
to make any changes to its internal state until that time.
Using this valid-to time the main solver can avoid processing
certain agent event when the outcome of the call is a forgone
conclusion and the agent is not expected to change state.

3.2. Standard Modules and Solution Methods. The AC power
flow solution is implemented using a modified Newton-
Raphson method for meshed electric networks [41]. The
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power flow solver supports unbalanced three-phase net-
works. The modeler does not need to directly compute
the admittance matrix as the solver performs this update
during synchronization from the properties of the objects
that represent the various electrical components supported
by GridLAB-D power flow module, including power lines,
transformers, switchers, capacitor banks, and voltage reg-
ulators. In cases where the electric system is radial the
modeler may opt to use the power flow module’s forward-
back sweep solver, which is based on Kersting’s method [42].
A separate generators module provides classes that allow
modelers to implement various electricity generating and
storage resources.

Building thermal response is solved using the equivalent
thermal parameters (ETP) method, which implements both
the time and temperature solutions to the second-order ordi-
nary differential equation that describes the response of the
indoor air temperature of a building to outdoor temperature
conditions, internal appliance and occupant heat gains, ven-
tilation gains/losses, solar gains, and heating/cooling system
state. The building modules include thermostatic controllers
and appliance models, some of which incorporate demand
response control strategies. A retail electricity market is
included that implements a double-auction for feeder capac-
ity and determines the real-time price (RTP) at which feeder
supply is equal to the total load. The retail market supports
both demand response resources, such as thermostats and
electric vehicle chargers, as well as distributed generation
resources such as diesel backup generators, microturbines,
photovoltaics, and energy storage devices.

4. Applications

GridLAB-D has been used to study a wide variety of power
system problem as summarized above. In this section we
examine a few of the results obtained in more detail and
discuss the role that GridLAB-D’s solution method played
in enhancing the analysis beyond what is possible using
conventional simulation tools. Specific applications or recent
interests include Volt-VAR optimization (VVO), dynamic
real-time pricing (RTP) experiments, and integration of
renewable energy aided by demand response. In some cases,
reliable solutions can be found from other methods, while
in others, the agent-based methodology provides unique
insight. As validation is often a key question in agent-based
systems, studies that have been validated against experimen-
tal field data will be discussed.

4.1. Volt-VAR Optimization. VVO is a traditional utility
technique for reducing energy consumption or peak demand
on an electric circuit by lowering the system voltage to the
lower portion of the operational voltage band [43]. With the
proliferation of communication and sensor equipment, the
control and optimization techniques have become increas-
ingly more complex, but there are always questions about
the tradeoff between the cost of a more complicated system
and the benefits. GridLAB-D was used to estimate these

benefits prior to deployment [44], and simulations crossed
the boundary between power system and load behavior.

Each of the loads within the system is modeled as a com-
plex process driven by inputs such as outside air tempera-
ture, occupancy, and thermostat set points. Each load is
modeled as an agent with its own specifications and inputs.
As the voltage varies throughout the distribution system, this
is also used an input into the load model to quantify how
a change in system voltage affects the energy consumption
of the individual devices, and thus the overall system. For
example, an electric water heater is essentially a resistive
element at any given moment in time. As voltage is reduced,
the power demanddecreases.However, because of the closed-
loop thermostatic control on the device, the same amount of
energy is required to heat the water. This affects the duty-
cycle behavior of the water heater and is tracked through
time by each agent. The effect is that peak load (i.e., the
maximum number of devices in the on state simultaneously)
is reduced, but energy consumption (i.e., the cumulative time
the loads are in the on state) is not. Each model, whether
an air conditioner, dishwasher, or other appliance, has its
own inputs and responses to changes in voltage. Traditional
models, which are basically linear, time-invariant solvers, are
not able to easily capture these effects.

In a study with American Electric Power (AEP), new
VVO technology was tested in GridLAB-D on eight distri-
bution circuits.The technology was then deployed and tested
on those same circuits. Simulation predicted a 2.9% average
reduction while deployment produced a 3.3% average reduc-
tion in energy consumption. However, there were significant
differences on individual feeders that could be attributed
to changes in load composition between the modeling and
testing phases.

4.2. Real-Time Pricing Demonstration. As part of the Amer-
ican Recovery and Reinvestment Act, a real-time pricing
experiment was devised to engage consumer loads with
five-minute energy prices, in-home displays, and equipment
utilizing automated response [45]. The automated system
requires individual air conditioners to construct a market bid
that reflects their desire to run during the next market period
(every five minutes). A central auction collects all of the bids,
clears a market price, and then broadcasts a (single) price
signal to all of the devices. In turn, the devices respond to
this signal in a coordinated (but noncommunicative) manner
by modifying the behavior of the thermostat. The end goal
is to reduce overall energy costs, both for the customer and
the utility, and to reduce demand when there is a physical
constraint on the system. GridLAB-D was used to develop
and fine-tune the control and communication requirements
prior to deploying this system [46].

The power system is modeled along with individual
appliance loads. In addition, each thermostat is modeled with
additional market controls acting as bidding agents, and a
centralized auction agent collects all of the information and
dispatches a price signal.When required, the communication
system is also modeled separately (i.e., message packets
are dispatched through a communication layer rather than
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Figure 5: GRIDLab-MATLAB modelling framework for a smart self-regulating system (reproduced from [35] with permission from
Elsevier).

directly within the software), including message delays and
dropped packets [47]; each of the agents is responsible
for understanding what to do when information is lost or
delayed.

By working through the design of the control system
(both the distributed bidding agents and the centralized
auction) via the simulator prior to deployment, a number
of effects and impacts could be evaluated and redesigned.
Effects that caused undue strain on the system (such as
synchronization of loads in response to the price signal,
errors in load prediction, or loss of data) and potential
impacts (such as changes in customer bills, equitable rebate
and incentive mechanisms, or violation of local constraints)
were evaluated and modified. For example, it was found
through simulation that a slight error in the agent bidding

caused by the thermostat deadband could cause system
oscillations in power demand under certain circumstances.
This was potentially a major flaw in the control system
and was corrected prior to construction of the thermostats
that were deployed. Reports comparing field demonstration
results to GridLAB-D simulations will be available in late
2014. The combination of linear and nonlinear solutions,
noncontinuous state variables, binary operations, and sorting
algorithms is not solvable through direct solution method-
ologies.

4.3. Demand Response for Renewable Integration. Environ-
mental concerns have spurred a significant growth of electric-
ity generation from wind power and other renewable energy
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Figure 6: Effect of control on (a) load and (b) real power ramp rate (reproduced from [36] with permission from Elsevier).

sources in the last decade.The temporal and spatial variability
of these resources present a number of challenges to power
system operators, particularly with respect to power system
reliability and reserve requirements. These technoeconomic
challenges have typically limited wind penetration to at most
30% of grid generation. Smart grid technology now makes
it possible to address these challenges using novel strategies
such as demand response, whereby loads can be controlled
in response to power imbalance or market price signals,
and adjust their power demand. This essentially shifts part
of the burden of balancing power from the supply to the
demand side and results in a reduction of costly contingency
reserves.

Using GridLAB-D in conjunction with MATLAB,
Williams presented a smart grid model to assess the potential
of mitigating fluctuations associated with distributed wind
power by using self-regulating, thermostatically controlled
heat pumps. The modeling framework for the smart
self-regulating system is shown in Figure 5.

Different bus-level control algorithms were investigated
using the model, and Figure 6(a) illustrates the effectiveness
of bus-level distributed heat pump management strategy
in reducing load flow fluctuations by adjusting the heat
pump demand to follow wind generation. A useful way of
measuring the level of mitigation of wind fluctuations is to
examine the required ramping rates spectrum of probability
distribution [48]. Figure 6(b) shows the significantly lower
ramp rates achieved by the control strategy.

The viability of demand response will require effective
market pricing and the integration of price signals and load
controls. Broeer et al. [35] developed a general simulation
framework integrating a GridLAB-D smart grid system with
a market model. The model incorporates generator and
load controllers and allows bidding from both the supply
and demand sides into a double-auction RTP electricity
market. Demand response in the system is achieved through

thermostatically controlled loads such as heating, ventila-
tion, and air-conditioning (HVAC) units and electric water
heaters.

This model was validated using a physical demonstra-
tion project conducted in the Olympic Peninsula, Washing-
ton, USA. RTP simulation results obtained using a system
comprising 10,000 residential houses and a grid-integrated
35MW wind park are shown in Figure 7. The wind and
hydrosupplies consistently bid at $0/kWh and $0.1/kWh,
respectively. The figure shows the response of a sample
residential house to wind power variations. Bidding on the
demand side is from the responsive HVAC load. The HVAC
load switches offwhen the bid is below the clearing price.This
happens when the clearing price rises as a result of decreasing
wind power.TheHVAC system switches on again when wind
power recovers. This type of model allows operators to assess
the impact of extreme scenarios, such as the persistence of
high/low wind regimes over extended periods, and during
which a diversity of loads needs to be maintained in order
to avoid saturation (all loads becoming unresponsive).

These GridLAB-D-based renewable energy integration
studies indicate that controlled customer power consumption
can be modified to facilitate wind energy integration with-
out compromising customers comfort. Such DR strategies
can effectively modify load flow, improve energy efficiency,
and reduce contingency reserve requirements. The versa-
tile GridLAB-D agent-based modelling provides an inte-
grated framework to assess the potential of various demand
response strategies and to support the design of virtual power
plants that can effectively provide the additional contingency
reserve and regulation capacity required to increase the
penetration of variable renewable energy generation in the
electricity grid. Again, this cannot be accomplished through
the use of traditional solutionmethods without making gross
over-simplifications of the underlying behavior and response
systems.
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5. Future Work

As an open-source tool for the smart-grid research commu-
nity there are many prospective contributors to GridLAB-
D development and thus many directions where it can
go. The US Department of Energy’s Office of Electricity,
which currently directs the development of GridLAB-D at
Pacific Northwest National Laboratory (PNNL) is committed
to ongoing improvements in the power system, building,
markets, controls, and telecommunications modules them-
selves. In addition, PNNL is making investments in internal
solution methods, with special consideration being given to
parallelization for high-performance computing platforms,
cosimulation environments to simplify integration with mul-
tiple simulation environments, and improvements to allow
more formal model verification and validation methods.

6. Conclusions

In this paper we have presented previously unpublished
details on the agent-based simulation methods implemented
in GridLAB-D. Our objective is in part to introduce the
applied mathematics community to the challenges faced
by those who employ agent-based methods and encour-
age greater collaboration between applied mathematics and
power engineering communities. We have presented the
rationale for adopting an agent-based simulation approach to
simulating the smart grid, discussed some of the challenges
with using agent-based methods to design interdisciplinary
smart-grid technology solutions, and reviewed at a high-
level some applications and studies that best exemplify the
versatility and impact of GridLAB-D.
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