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Correspondence should be addressed to Andrzej Włoch; awloch@prz.edu.pl

Received 2 June 2014; Revised 21 August 2014; Accepted 23 August 2014; Published 23 October 2014

Academic Editor: Ali R. Ashrafi

Copyright © 2014 Anetta Szynal-Liana et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We introduce new types of distance Fibonacci numbers which are closely related with number decompositions. Using special
decompositions of the number 𝑛 we give a sequence of identities for them. Moreover, we give matrix generators for distance
Fibonacci numbers and their direct formulas.

1. Introduction

The 𝑛th Fibonacci numbers 𝐹
𝑛
are defined by recurrence

relation𝐹
𝑛
= 𝐹
𝑛−1

+𝐹
𝑛−2

, 𝑛 ≥ 2with the initial conditions𝐹
0
=

𝐹
1
= 1.There aremany generalizations of the Fibonacci num-

bers 𝐹
𝑛
with respect to one ormore parameters; see for exam-

ple [1–3]. In [1] the distance Fibonacci numbers 𝐹𝑑
(1)

(𝑘, 𝑛)

were introduced and studied. We recall this definition.
Let 𝑘 ≥ 2, 𝑛 ≥ 0 be integers.The distance Fibonacci num-

bers of the first kind 𝐹𝑑
(1)

(𝑘, 𝑛) are defined recursively in the
following way:

𝐹𝑑
(1)

(𝑘, 𝑛) = 𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑘 + 1)

+ 𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑘) for 𝑛 ≥ 𝑘,

(1)

and 𝐹𝑑
(1)

(𝑘, 𝑛) = 1 for 𝑛 = 0, . . . , 𝑘 − 1.
Wewill call the numbers𝐹𝑑

(1)

(𝑘, 𝑛) the distance Fibonac-
ci numbers of the first kind.The number 𝐹𝑑

(1)

(𝑘, 𝑛) is closely
related to the special quasi 𝑘-decomposition of the number 𝑛;
see [1].

In this paper we define other three types of distance
Fibonacci numbers which are also related to the special
number decomposition. Moreover we shall show relations
between all three types of distance Fibonacci numbers. Next
we study their matrix generators and direct formulas.

2. Distance Fibonacci Numbers
𝐹𝑑
(2)

(𝑘, 𝑛) and 𝐹𝑑
(3)

(𝑘, 𝑛)

In this section we introduce two kinds of distance Fibonacci
numbers. Some relations between numbers 𝐹𝑑

(𝑖)

(𝑘, 𝑛) for 𝑖 =
1, 2, 3 will be studied.

Let 𝑘 ≥ 2, 𝑛 ≥ 0 be integers. We define the 𝑛th distance
Fibonacci numbers of the second kind 𝐹𝑑

(2)

(𝑘, 𝑛) by the 𝑘th
order linear recurrence relation of the form

𝐹𝑑
(2)

(𝑘, 𝑛) = 𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑘 + 1)

+ 𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑘) for 𝑛 ≥ 𝑘,

(2)

with the initial conditions

𝐹𝑑
(2)

(𝑘, 𝑛) = 0 for 𝑛 = 0, . . . , 𝑘 − 2,

𝐹𝑑
(2)

(𝑘, 𝑘 − 1) = 1,

𝐹𝑑
(2)

(1, 1) = 1,

𝐹𝑑
(2)

(2, 2) = 2,

𝐹𝑑
(2)

(𝑘, 𝑘) = 1, for 𝑘 ≥ 3.

If 𝑘 = 2, 𝑛 ≥ 1, then 𝐹𝑑
(2)

(𝑘, 𝑛) gives the Fibonacci num-
bers 𝐹

𝑛
.
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Let 𝑘 ≥ 2, 𝑛 ≥ 0 be integers. We define the 𝑛th distance
Fibonacci numbers of the third kind 𝐹𝑑

(3)

(𝑘, 𝑛) by the 𝑘th
order linear recurrence relation of the form

𝐹𝑑
(3)

(𝑘, 𝑛) = 𝐹𝑑
(3)

(𝑘, 𝑛 − 𝑘 + 1)

+ 𝐹𝑑
(3)

(𝑘, 𝑛 − 𝑘) for 𝑛 ≥ 2𝑘 − 1,

(3)

with the initial conditions

𝐹𝑑
(3)

(𝑘, 𝑛) = 1 for 𝑛 = 0, ..., 𝑘 − 1,

𝐹𝑑
(3)

(2, 2) = 2,

for 𝑘 ≥ 3 𝐹𝑑
(3)

(𝑘, 𝑘) = 3 = 𝐹𝑑
(3)

(𝑘, 2𝑘 − 2),

for 𝑘 + 1 ≤ 𝑛 ≤ 2𝑘 − 3 𝐹𝑑
(3)

(𝑘, 𝑛) = 4.

If 𝑘 = 2, then 𝐹𝑑
(3)

(𝑘, 𝑛) gives the classical Fibonacci
numbers.

Nowwe give an interpretation of the numbers 𝐹𝑑
(1)

(𝑘, 𝑛),
𝐹𝑑
(2)

(𝑘, 𝑛), and 𝐹𝑑
(3)

(𝑘, 𝑛) with respect to special decompo-
sitions of the number 𝑛.

By a decomposition of a number 𝑛, 𝑛 ≥ 1, we mean an
ordered number partition of it. For example for 𝑛 = 3 we
have the following four decompositions: 1 + 1 + 1, 2 + 1, 1+
2, and 3. In this paper we study special decompositions of
a number 𝑛 which are closely related to distance Fibonacci
numbers 𝐹𝑑

(𝑖)

(𝑘, 𝑛), for 𝑖 = 1, 2, 3.
Let 1 ≤ 𝑟 ≤ 𝑘 − 2 be a fixed integer. A decomposition of

the number 𝑛 ≥ 𝑘 − 1 of the form 𝑟 + 𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑝
(resp.,

𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑝
+ 𝑟) where 𝑛

𝑖
∈ {𝑘, 𝑘 − 1}, 𝑖 = 1, . . . , 𝑝

is called an 𝑟
−
𝑘-decomposition (resp., 𝑟

+
𝑘-decomposition).

We denote the number of all 𝑟
−
𝑘-decompositions (resp., 𝑟

+
𝑘-

decompositions) by 𝜎
−𝑟

(𝑘, 𝑛) (resp., 𝜎
+𝑟

(𝑘, 𝑛)). Clearly

𝜎
−𝑟

(𝑘, 𝑛) = 𝜎
+𝑟

(𝑘, 𝑛) . (4)

A decomposition of the number 𝑛 ≥ 𝑘−1 of the form 𝑛
1
+

𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑝
, where 𝑛

𝑖
∈ {𝑘, 𝑘 − 1}, 𝑖 = 1, . . . , 𝑝, is called a

𝑘-decomposition. We denote the number of all 𝑘-decompo-
sitions by 𝜎

0
(𝑘, 𝑛).

Let 0 ≤ 𝑟
0

≤ 𝑘 − 2 be a fixed integer. A decomposition
of the number 𝑛 ≥ 𝑘 − 1 of the form 𝑟

0
+ 𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ +

𝑛
𝑝
(resp., 𝑛

1
+ 𝑛
2

+ ⋅ ⋅ ⋅ + 𝑛
𝑝

+ 𝑟
0
) where 𝑛

𝑖
∈ {𝑘, 𝑘 − 1},

𝑖 = 1, . . . , 𝑝 is called an 𝑟
0−

𝑘-decomposition (resp., 𝑟
0+

𝑘-
decomposition). Consequently as the above we denote the
number of all 𝑟

0−
𝑘-decompositions (resp., 𝑟

0+
𝑘-decompo-

sitions) by 𝜎
−𝑟0

(𝑘, 𝑛) (resp., 𝜎
+𝑟0

(𝑘, 𝑛)). Clearly for 𝑟
0

= 0

a 0
−
𝑘-decomposition of 𝑛 is a 𝑘-decomposition and for

𝑟
0

≥ 1 an 𝑟
0−

𝑘-decomposition (resp., 𝑟
0+

𝑘-decompositions)
is an 𝑟

−
𝑘-decompositions (resp., 𝑟

+
𝑘-decompositions). From

the above definitions immediately follow relations between

numbers 𝜎
−𝑟

(𝑘, 𝑛), 𝜎
−𝑟0

(𝑘, 𝑛), and 𝜎
0
(𝑘, 𝑛) (resp., 𝜎

+𝑟
(𝑘, 𝑛),

𝜎
+𝑟0

(𝑘, 𝑛), and 𝜎
0
(𝑘, 𝑛)):

𝜎
−𝑟0

(𝑘, 𝑛) =

𝑘−2

∑

𝑟=1

𝜎
−𝑟

(𝑘, 𝑛) + 𝜎
0
(𝑘, 𝑛) , (5)

𝜎
+𝑟0

(𝑘, 𝑛) =

𝑘−2

∑

𝑟=1

𝜎
+𝑟

(𝑘, 𝑛) + 𝜎
0
(𝑘, 𝑛) , (6)

𝜎 (𝑘, 𝑛) =

𝑘−2

∑

𝑗=−(𝑘−2)

𝜎
𝑗
(𝑘, 𝑛) . (7)

Theorem 1 (see [1]). Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 − 1 be integers. Then
𝜎
+𝑟0

(𝑘, 𝑛) = 𝐹𝑑
(1)

(𝑘, 𝑛).

For the proof of the next theoremwewill need the follow-
ing lemma.

Lemma 2. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 − 1 be integers. Then

2𝐹𝑑
(1)

(𝑘, 𝑛) − 𝐹𝑑
(2)

(𝑘, 𝑛) = 𝐹𝑑
(3)

(𝑘, 𝑛) ,

for 𝑛 ≥ 𝑘 − 1.

(8)

Proof. If 𝑛 = 𝑘 − 1, then the equality immediately follows.
Assume that the lemma is true for an arbitrary 𝑡 < 𝑛 and
we prove it for 𝑛. Using the definitions of numbers 𝐹𝑑

(1)

(𝑘, 𝑛)

and 𝐹𝑑
(2)

(𝑘, 𝑛) we obtain that 2𝐹𝑑
(1)

(𝑘, 𝑛) − 𝐹𝑑
(2)

(𝑘, 𝑛) =

2𝐹𝑑
(1)

(𝑘, 𝑛−𝑘)+2𝐹𝑑
(1)

(𝑘, 𝑛−𝑘+1)−𝐹𝑑
(2)

(𝑘, 𝑛−𝑘)−𝐹𝑑
(2)

(𝑘, 𝑛−

𝑘 + 1) = 𝐹𝑑
(3)

(𝑘, 𝑛) by the induction’s hypothesis.

We can write the above lemma also in the following form.

Corollary 3. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 − 1 be integers. Then

𝐹𝑑
(1)

(𝑘, 𝑛) − 𝐹𝑑
(2)

(𝑘, 𝑛) = 𝐹𝑑
(3)

(𝑘, 𝑛) − 𝐹𝑑
(1)

(𝑘, 𝑛) . (9)

Theorem 4. Let 𝑘 ≥ 2, 𝑛 ≥ 1, 1 ≤ 𝑟 ≤ 𝑘 − 2 be integers. Then

(i) 𝜎
−𝑟0

(𝑘, 𝑛) = 𝜎
+𝑟0

(𝑘, 𝑛) = 𝐹𝑑
(1)

(𝑘, 𝑛),

(ii) 𝜎
0
(𝑘, 𝑛) = 𝐹𝑑

(2)

(𝑘, 𝑛),
(iii) 𝜎(𝑘, 𝑛) = 𝐹𝑑

(3)

(𝑘, 𝑛).

Proof. The equality (i) follows immediately byTheorem 1 and
(4).

We shall show that 𝜎
0
(𝑘, 𝑛) = 𝐹𝑑

(2)

(𝑘, 𝑛). If 𝑛 = 1, 2, . . . ,

𝑘 − 2, then there is no 𝑘-decomposition of the number 𝑛 into
parts 𝑘 − 1 and 𝑘. So 𝜎

0
(𝑘, 𝑛) = 0 = 𝐹𝑑

(2)

(𝑘, 𝑛). If 𝑛 = 𝑘 −

1, 𝑘, then there is a unique 𝑘-decomposition of the number
𝑛; hence 𝜎

0
(𝑘, 𝑛) = 1 = 𝐹𝑑

(2)

(𝑘, 𝑛). Let 𝑛 ≥ 𝑘 + 1. Assume
that the equality holds for an arbitrary 𝑡 < 𝑛. We shall show
that 𝜎

0
(𝑘, 𝑛) = 𝐹𝑑

(2)

(𝑘, 𝑛). Let 𝑛 = 𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑝
be a

𝑘-decomposition of the number 𝑛 into parts 𝑘 and 𝑘 − 1. If
𝑛
𝑝

= 𝑘, then 𝑛 = 𝑛
1
+ 𝑛
2
+ . . . + 𝑛

𝑝−1
+ 𝑘 so 𝑛 − 𝑘 = 𝑛

1
+

𝑛
2
+ ⋅ ⋅ ⋅ +𝑛

𝑝−1
. By induction’s hypothesis there are 𝐹𝑑

(2)

(𝑘, 𝑛−

𝑘) 𝑘-decompositions in this case. If 𝑛
𝑝

= 𝑘 − 1 then proving
analogously we obtain 𝐹𝑑

(2)

(𝑘, 𝑛 − 𝑘 + 1) 𝑘-decompositions
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of the form 𝑛 = 𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑝−1
+ 𝑘 − 1. From the above

we have 𝐹𝑑
(2)

(𝑘, 𝑛−𝑘)+𝐹𝑑
(2)

(𝑘, 𝑛−𝑘+1) 𝑘-decompositions
of the number 𝑛 into parts 𝑘 and 𝑘 − 1, and by the definition
of 𝐹𝑑
(2)

(𝑘, 𝑛) it follows that 𝜎
0
(𝑘, 𝑛) = 𝐹𝑑

(2)

(𝑘, 𝑛).
Now we shall prove that 𝜎(𝑘, 𝑛) = 𝐹𝑑

(3)

(𝑘, 𝑛). From the
definition of 𝜎(𝑘, 𝑛) we obtain that

𝜎 (𝑘, 𝑛) =

𝑘−2

∑

𝑗=−(𝑘−2)

𝜎
𝑗
(𝑘, 𝑛)

= 2

𝑘−2

∑

𝑟=1

𝜎
+𝑟

(𝑘, 𝑛) + 𝜎
0
(𝑘, 𝑛)

= 𝐹𝑑
(1)

(𝑘, 𝑛)

+

𝑘−2

∑

𝑟=1

𝜎
+𝑟

(𝑘, 𝑛) + 𝜎
0
(𝑘, 𝑛) − 𝜎

0
(𝑘, 𝑛)

= 2𝐹𝑑
(1)

(𝑘, 𝑛) − 𝐹𝑑
(2)

(𝑘, 𝑛) ,

(10)

by the statements (i) and (ii) of this theorem.
Then the statement (iii) follows immediately by Lemma 2,

which ends the proof.

Theorem 5. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘−1 and 1 ≤ 𝑟 ≤ 𝑘−2 be integers.
Then

𝜎
−𝑟

(𝑘, 𝑝𝑘 + 𝑖) = 2
𝑝

, (11)

for natural 𝑝 and 𝑖 = 1, 2, . . . , 𝑘 − (𝑝 + 2).

Proof. Let𝑝 be natural and 𝑖 = 1, 2, . . . , 𝑘−(𝑝+2).Thenumber
𝑝𝑘 + 𝑖 is equal to (𝑖 + 𝑙) + 𝑙 ⋅ (𝑘 − 1) + (𝑝 − 𝑙) ⋅ 𝑘, for 𝑙 =

0, 1, . . . , 𝑝, and all 𝑟
−
𝑘-decompositions of 𝑝𝑘+𝑖 have the form

(𝑖 + 𝑙) + 𝑛
1
+ . . . + 𝑛

𝑝
. We can put 𝑘 − 1 on 𝑙 positions, so we

have (
𝑝

𝑙
) possibilities. The sum ∑

𝑝

𝑙=0
(
𝑝

𝑙
) is equal to 2

𝑝 which
ends the proof.

Now we give applications of distance Fibonacci numbers
for counting of the number of other special decompositions
of the number 𝑛.

Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 be integers and let 𝜎
±𝑟0

(𝑘, 𝑛) be the num-
bers of all decomposition of the number 𝑛 = 𝑛

1
+𝑛
2
+⋅ ⋅ ⋅+𝑛

𝑝
,

where 𝑛
𝑖
∈ {𝑘, 𝑘−1}, for 𝑖 = 2, . . . , 𝑝−1 and 𝑛

1
, 𝑛
𝑝

∈ {1, . . . , 𝑘}.

Theorem 6. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 be integers. Then

𝜎
±𝑟0

(𝑘, 𝑛) =

𝑘

∑

𝑟=1

𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑟) . (12)

Proof. Let 𝑛 = 𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑝
be a decomposition of the

number 𝑛, where 𝑛
𝑖
∈ {𝑘, 𝑘−1}, for 𝑖 = 2, . . . , 𝑝−1 and 𝑛

1
, 𝑛
𝑝

∈

{1, . . . , 𝑘}. Then 𝑛 − 𝑛
𝑝

= 𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑝−1
, where 𝑛

1
+ 𝑛
2
+

⋅ ⋅ ⋅+𝑛
𝑝−1

is either a 𝑟
−
𝑘-decomposition or a 𝑘-decomposition

of the number 𝑛− 𝑛
𝑝
. Since 𝑛

𝑝
∈ {1, . . . , 𝑘} byTheorem 4(i) it

follows that 𝜎
±𝑟0

(𝑘, 𝑛) = ∑
𝑘

𝑟=1
𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑟), which ends the
proof.

Theorem 7. Let 𝑘 ≥ 3, 𝑛 ≥ 𝑘 be integers. Then

𝑘−2

∑

𝑖=1

𝑘−2

∑

𝑗=1

𝐹𝑑
(2)

(𝑘, 𝑛 − (𝑖 + 𝑗))

=

𝑘−2

∑

𝑖=1

(𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑖) − 𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑖)) ,

(13)

for natural 𝑝 and 𝑖 = 1, 2, . . . , 𝑘 − (𝑝 + 2).

Proof. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 be integers. Let 𝑛 = 𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑝

be a decomposition 𝜂 of the number 𝑛, where 𝑛
𝑖

∈ {𝑘, 𝑘 −

1}, for 𝑖 = 2, . . . , 𝑝 − 1 and 𝑛
1
, 𝑛
𝑝

∈ {1, . . . , 𝑘 − 2}. Then the
number of such decomposition is equal to the number of 𝑘-
decomposition of the number 𝑛− (𝑛

1
+𝑛
𝑝
). ByTheorem 4(ii)

we obtain that we have 𝐹𝑑
(2)

(𝑘, 𝑛− (𝑛
1
+𝑛
𝑝
)) decompositions

𝜂. Since 𝑛
1
, 𝑛
𝑝

∈ {1, . . . , 𝑘 − 2} it is clear that totally we have

𝑘−2

∑

𝑖=1

𝑘−2

∑

𝑗=1

𝐹𝑑
(2)

(𝑘, 𝑛 − (𝑖 + 𝑗)) (14)

decompositions of the number 𝑛.
On the other hand, we have that the total number of

decompositions 𝜂 is equal to the number of 𝑟
−
𝑘-decomposi-

tions of the number 𝑛−𝑛
𝑝
. Since 𝑛

𝑝
∈ {1, . . . , 𝑘−2} by formula

(5) andTheorem 4 we obtain

𝑘−2

∑

𝑖=1

(𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑖) − 𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑖)) . (15)

From the above it immediately follows that

𝑘−2

∑

𝑖=1

𝑘−2

∑

𝑗=1

𝐹𝑑
(2)

(𝑛 − (𝑖 + 𝑗))

=

𝑘−2

∑

𝑖=1

(𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑖) − 𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑖)) ,

(16)

which ends the proof.

3. Identities for 𝐹𝑑
(1)

(𝑘, 𝑛),
𝐹𝑑
(2)

(𝑘, 𝑛), and 𝐹𝑑
(3)

(𝑘, 𝑛)

In this section we give some identities for distance Fibonacci
numbers: 𝐹𝑑

(𝑖)

(𝑘, 𝑛), for 𝑖 = 1, 2, 3.

Theorem 8. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 be integers. Then

3

∑

𝑗=1

𝑎
𝑗
𝐹𝑑
(𝑗)

(𝑘, 𝑛)

=

𝑝

∑

𝑖=0

(

𝑝

𝑖
)(

3

∑

𝑗=1

𝑎
𝑗
𝐹𝑑
(𝑗)

(𝑘, 𝑛 − 𝑝𝑘 + 𝑖)) .

(17)
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Proof (by induction on 𝑛). For 𝑛 = 𝑘 we have 𝑝 = 1 and

3

∑

𝑗=1

𝑎
𝑗
𝐹𝑑
(𝑗)

(𝑘, 𝑘)

=

3

∑

𝑗=1

𝑎
𝑗
(𝐹𝑑
(𝑗)

(𝑘, 𝑘 − 𝑘) + 𝐹𝑑
(𝑗)

(𝑘, 𝑘 − 𝑘 + 1))

=

3

∑

𝑗=1

𝑎
𝑗
(𝐹𝑑
(𝑗)

(𝑘, 0) + 𝐹𝑑
(𝑗)

(𝑘, 1))

=

3

∑

𝑗=1

𝑎
𝑗
(𝐹𝑑
(𝑗)

(𝑘, 𝑘 − 1 ⋅ 𝑘 + 0)

+𝐹𝑑
(𝑗)

(𝑘, 𝑘 − 1 ⋅ 𝑘 + 1))

=

1

∑

𝑖=0

(

1

𝑖
)

3

∑

𝑗=1

𝑎
𝑗
𝐹𝑑
(𝑗)

(𝑘, 𝑖) .

(18)

Let 𝑛 > 𝑘. Assume that (17) is true for arbitrary 𝑡 < 𝑛 and
we prove it for 𝑛. Using induction’s assumption for 𝑡 = 𝑛 − 𝑘

and 𝑡 = 𝑛 − 𝑘 + 1 we have

𝐹𝑑
(𝑗)

(𝑘, 𝑛)

= 𝐹𝑑
(𝑗)

(𝑘, 𝑛 − 𝑘) + 𝐹𝑑
(𝑗)

(𝑘, 𝑛 − 𝑘 + 1)

=

𝑝

∑

𝑖=0

(

𝑝

𝑖
)𝐹𝑑
(𝑗)

(𝑘, 𝑛 − 𝑘 − 𝑝𝑘 + 𝑖)

+

𝑝

∑

𝑖=0

(

𝑝

𝑖
)𝐹𝑑
(𝑗)

(𝑘, 𝑛 − 𝑘 + 1 − 𝑝𝑘 + 𝑖)

=

𝑝

∑

𝑖=0

(

𝑝

𝑖
) [𝐹𝑑

(𝑗)

(𝑘, 𝑛 − 𝑘 − 𝑝𝑘 + 𝑖)

+𝐹𝑑
(𝑗)

(𝑘, 𝑛 − 𝑘 + 1 − 𝑝𝑘 + 𝑖)]

=

𝑝

∑

𝑖=0

(

𝑝

𝑖
) [𝐹𝑑

(𝑗)

(𝑘, 𝑛 − 𝑝𝑘 + 𝑖 − 𝑘)

+𝐹𝑑
(𝑗)

(𝑘, 𝑛 − 𝑝𝑘 + 𝑖 − 𝑘 + 1)]

=

𝑝

∑

𝑖=0

(

𝑝

𝑖
)𝐹𝑑
(𝑗)

(𝑘, 𝑛 − 𝑝𝑘 + 𝑖) ,

(19)

which ends the proof.

Corollary 9. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 be integers. Then

(iv) 𝐹𝑑
(1)

(𝑘, 𝑛) = ∑
𝑝

𝑖=0
(
𝑝

𝑖
) 𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑝𝑘 + 𝑖),

(v) 𝐹𝑑
(2)

(𝑘, 𝑛) = ∑
𝑝

𝑖=0
(
𝑝

𝑖
) 𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑝𝑘 + 𝑖),

(vi) 𝐹𝑑
(3)

(𝑘, 𝑛) = ∑
𝑝

𝑖=0
(
𝑝

𝑖
) 𝐹𝑑
(3)

(𝑘, 𝑛 − 𝑝𝑘 + 𝑖).

Proof. (iv)This formula directly follows fromTheorem 8 put-
ting 𝑎

1
= 1 and 𝑎

2
= 𝑎
3
= 0. For (v) and (vi) analogously.

Theorem 10. Let 𝑘 ≥ 3, 𝑛 ≥ 𝑘 be integers. Then

𝐹𝑑
(1)

(𝑘, 𝑛) =

𝑘−2

∑

𝑖=0

𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑖) . (20)

Proof (by induction on 𝑛). For 𝑛 = 𝑘 we have 𝐹𝑑
(1)

(𝑘, 𝑘) =

𝐹𝑑
(1)

(𝑘, 0) + 𝐹𝑑
(1)

(𝑘, 1) = 1 + 1 = 2. The right side of (20) has
the form ∑

𝑘−2

𝑖=0
𝐹𝑑
(2)

(𝑘, 𝑘 − 𝑖) = 𝐹𝑑
(2)

(𝑘, 𝑘 − 0) + 𝐹𝑑
(2)

(𝑘, 𝑘 −

1) + 𝐹𝑑
(2)

(𝑘, 𝑘 − 2) + ⋅ ⋅ ⋅ + 𝐹𝑑
(2)

(𝑘, 𝑘 − (𝑘 − 2)) = 𝐹𝑑
(2)

(𝑘, 𝑘) +

𝐹𝑑
(2)

(𝑘, 𝑘 − 1) + 𝐹𝑑
(2)

(𝑘, 𝑘 − 2) + ⋅ ⋅ ⋅ + 𝐹𝑑
(2)

(𝑘, 2) = 1 + 1 + 0 +

⋅ ⋅ ⋅ + 0 = 2.
Let 𝑛 > 𝑘. Assume that (20) is true for arbitrary 𝑡 < 𝑛 and

we prove it for 𝑛. Using induction’s assumption for 𝑡 = 𝑛 − 𝑘

and 𝑡 = 𝑛 − 𝑘 + 1 we have

𝐹𝑑
(1)

(𝑘, 𝑛)

= 𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑘) + 𝐹𝑑
(1)

(𝑘, 𝑛 − 𝑘 + 1)

=

𝑘−2

∑

𝑖=0

𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑘 − 𝑖)

+

𝑘−2

∑

𝑖=0

𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑘 + 1 − 𝑖)

=

𝑘−2

∑

𝑖=0

[𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑘 − 𝑖)

+𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑘 + 1 − 𝑖)]

=

𝑘−2

∑

𝑖=0

[𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑖 − 𝑘)

+𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑖 − 𝑘 + 1)]

=

𝑘−2

∑

𝑖=0

𝐹𝑑
(2)

(𝑘, 𝑛 − 𝑖) ,

(21)

which ends the proof.

4. Matrix Generators and
Combinatorial Formulas for 𝐹𝑑

(1)

(𝑘, 𝑛),
𝐹𝑑
(2)

(𝑘, 𝑛), and 𝐹𝑑
(3)

(𝑘, 𝑛)

Matrix methods are important in recurrence relations. In the
last decades some mathematicians have studied to find mis-
cellaneous affinities betweenmatrices and linear recurrences.
Using matrix methods different identities and algebraic
representations of considered sequences can be obtained, for
instance [1, 2, 4–6]. Theory of Fibonacci numbers was previ-
ously complemented by the theory of so-called the Fibonacci
𝑄-matrix or the golden matrix. It is worth mentioning that
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the American mathematician V. Hoggat was one of the first
mathematicians who paid the attention to the 𝑄-matrix.
For the classical Fibonacci sequence the matrix generators,
named as the golden matrix, have the form 𝑄 = [

1 1

1 0
] and

𝑄
𝑛

= [
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1

], for 𝑛 ≥ 1.
Golden number and golden section have many inter-

esting applications in different areas of science (physics,
chemistry, and mechanics); see for example [7, 8]. In this
section we give the matrix generators for distance Fibonacci
numbers 𝐹𝑑

(𝑖)

(𝑘, 𝑛), where 𝑖 = 1, 2, 3. The matrix generator
of the distance Fibonacci numbers of the first kind 𝐹𝑑

(1)

(𝑘, 𝑛)

was introduced in [1] and in this paper we apply this method
for all kinds of distance Fibonacci numbers.

Let 𝑘 ≥ 2 be a fixed integer. Let 𝑄
𝑘

= [𝑞
𝑡𝑗
] be a square

matrix of size 𝑘. For a fixed 1 ≤ 𝑡 ≤ 𝑘 an element 𝑞
𝑡1
is equal

to the coefficient of 𝐹𝑑
(𝑖)

(𝑘, 𝑛 − 𝑡) in the recurrence formula
for the distance Fibonacci numbers 𝐹𝑑

(𝑖)

(𝑘, 𝑛), 𝑖 = 1, 2, 3. For
𝑗 ≥ 2 we define 𝑞

𝑡𝑗
as follows:

𝑞
𝑡𝑗

=

{

{

{

1 if 𝑗 = 𝑡 + 1

0 otherwise.
(22)

In other words,

𝑄
2
= [

1 1

1 0
] ,

𝑄
3
=

[

[

[

0 1 0

1 0 1

1 0 0

]

]

]

, . . . , 𝑄
𝑘
=

[

[

[

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 1

1 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

]

]

]

,

(23)

and the matrix 𝑄
𝑘
is named as the distance Fibonacci

matrix or the generator of the distance Fibonacci numbers
𝐹𝑑
(𝑖)

(𝑘, 𝑛), 𝑖 = 1, 2, 3.
For a fixed 1 ≤ 𝑖 ≤ 3 we define the square matrix 𝐴

(𝑖)

𝑘
of

size 𝑘 named as the matrix of initial conditions of the form

𝐴
(𝑖)

𝑘
=

[

[

[

[

[

[

[

[

[

[

[

𝐹𝑑
(𝑖)

(𝑘, 2𝑘 − 2 + 𝑢 (𝑖)) 𝐹𝑑
(𝑖)

(𝑘, 2𝑘 − 3 + 𝑢 (𝑖)) ⋅ ⋅ ⋅ 𝐹𝑑
(𝑖)

(𝑘, 𝑘 − 1 + 𝑢 (𝑖))

𝐹𝑑
(𝑖)

(𝑘, 2𝑘 − 3 + 𝑢 (𝑖)) 𝐹𝑑
(𝑖)

(𝑘, 2𝑘 − 4 + 𝑢 (𝑖)) ⋅ ⋅ ⋅ 𝐹𝑑
(𝑖)

(𝑘, 𝑘 − 2 + 𝑢 (𝑖))

...
... d

...
𝐹𝑑
(𝑖)

(𝑘, 𝑘 + 𝑢 (𝑖)) 𝐹𝑑
(𝑖)

(𝑘, 𝑘 − 1 + 𝑢 (𝑖)) ⋅ ⋅ ⋅ 𝐹𝑑
(𝑖)

(𝑘, 1 + 𝑢 (𝑖))

𝐹𝑑
(𝑖)

(𝑘, 𝑘 − 1 + 𝑢 (𝑖)) 𝐹𝑑
(𝑖)

(𝑘, 𝑘 − 2 + 𝑢 (𝑖)) ⋅ ⋅ ⋅ 𝐹𝑑
(𝑖)

(𝑘, 0 + 𝑢 (𝑖))

]

]

]

]

]

]

]

]

]

]

]

, (24)

where

𝑢 (𝑖) = {

𝑖 − 1 for 𝑖 = 1, 2

𝑘 − 1 for 𝑖 = 3.

(25)
Theorem 11. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 be integer. Then for a fixed
1 ≤ 𝑖 ≤ 3 holds

𝐴
(𝑖)

𝑘
𝑄
𝑛

𝑘
=

[

[

[

[

[

[

[

[

[

[

𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 2𝑘 − 2 + 𝑢 (𝑖)) 𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 2𝑘 − 3 + 𝑢 (𝑖)) ⋅ ⋅ ⋅ 𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 𝑘 − 1 + 𝑢 (𝑖))

𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 2𝑘 − 3 + 𝑢 (𝑖)) 𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 2𝑘 − 4 + 𝑢 (𝑖)) ⋅ ⋅ ⋅ 𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 𝑘 − 2 + 𝑢 (𝑖))

...
... d

...
𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 𝑘 + 𝑢 (𝑖)) 𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 𝑘 − 1 + 𝑢 (𝑖)) ⋅ ⋅ ⋅ 𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 1 + 𝑢 (𝑖))

𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 𝑘 − 1 + 𝑢 (𝑖)) 𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 𝑘 + 𝑢 (𝑖)) ⋅ ⋅ ⋅ 𝐹𝑑
(𝑖)

(𝑘, 𝑛 + 0 + 𝑢 (𝑖))

]

]

]

]

]

]

]

]

]

]

. (26)

Since the proof is analogous as in [1] we omit it. To obtain
other matrix generators apart distance Fibonacci numbers
𝐹𝑑
(𝑖)

(𝑘, 𝑛), 𝑖 = 1, 2, 3, we define a collection of special sequen-
ces which are given by the same 𝑘th order linear recurrence
relations as 𝐹𝑑

(𝑖)

(𝑘, 𝑛), 𝑖 = 1, 2, 3. These sequences give
auxiliary tools for other matrix generators of 𝐹𝑑

(𝑖)

(𝑘, 𝑛), 𝑖 =

1, 2, 3 and their explicit formulas.

Let 𝑘 ≥ 2, 𝑛 ≥ 0 be integers. LetF
𝑘
= {𝐹𝑑

(4)

𝑙
(𝑘, 𝑛), 𝑙 = 0,

1, . . . , 𝑘 − 1}, where {𝐹𝑑
(4)

𝑙
(𝑘, 𝑛)} is the sequence defined as

follows:

𝐹𝑑
(4)

𝑙
(𝑘, 𝑛) = 𝐹𝑑

(4)

𝑙
(𝑘, 𝑛 − 𝑘 + 1) + 𝐹𝑑

(4)

𝑙
(𝑘, 𝑛 − 𝑘) ,

for 𝑛 ≥ 𝑘,

(27)
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with the initial conditions 𝐹𝑑
(4)

𝑙
(𝑘, 𝑙) = 1 and 𝐹𝑑

(4)

𝑙
(𝑘, 𝑗) = 0

for 𝑗 ̸= 𝑙.
The number 𝐹𝑑

(4)

1
(𝑘, 𝑛) will be also denoted shortly by

𝐹𝑑
(4)

(𝑘, 𝑛) and named as the 𝑛th distance Fibonacci number
of the fourth kind. If 𝑘 = 2 and 𝑛 ≥ 1, then 𝐹𝑑

(4)

(2, 𝑛) = 𝐹
𝑛−1

.
By simple observation we obtain the following relations

between numbers 𝐹𝑑
(4)

𝑙
(𝑘, 𝑛), for 𝑙 = 0, 1, . . . , 𝑘 − 1:

𝐹𝑑
(4)

0
(𝑘, 𝑛) = 𝐹𝑑

(4)

(𝑘, 𝑛 − 𝑘 + 1) ,

𝐹𝑑
(4)

𝑙
(𝑘, 𝑛) = 𝐹𝑑

(4)

(𝑘, 𝑛 − 𝑙 + 1) for 2 ≤ 𝑙 ≤ 𝑘 − 1.

(28)

Using sequences from the collectionF
𝑘
we can generate

the distance Fibonacci numbers 𝐹𝑑
(𝑖)

(𝑘, 𝑛), 𝑖 = 1, 2, 3:

𝐹𝑑
(1)

(𝑘, 𝑛) =

𝑘−1

∑

𝑙=0

𝐹𝑑
(1)

(𝑘, 𝑙) 𝐹𝑑
(4)

𝑙
(𝑘, 𝑛) =

𝑘−1

∑

𝑙=0

𝐹𝑑
(4)

𝑙
(𝑘, 𝑛) ,

𝐹𝑑
(2)

(𝑘, 𝑛) =

𝑘

∑

𝑙=𝑘−1

𝐹𝑑
(2)

(𝑘, 𝑙) 𝐹𝑑
(4)

𝑙−1
(𝑘, 𝑛 − 1)

=

𝑘

∑

𝑙=𝑘−1

𝐹𝑑
(4)

𝑙−1
(𝑘, 𝑛 − 1) for 𝑛 ≥ 1,

𝐹𝑑
(3)

(𝑘, 𝑛)

=

𝑘−1

∑

𝑙=0

𝐹𝑑
(3)

(𝑘, 𝑘 − 1 + 𝑙) 𝐹𝑑
(4)

𝑙
(𝑘, 𝑛 − (𝑘 − 1))

for 𝑛 ≥ 𝑘 − 1.

(29)

Theorem 12. Let 𝑘 ≥ 2 be integer. Then

(i) 𝐹𝑑
(1)

(𝑘, 𝑛) = ∑
𝑘−1

𝑡=0
𝐹𝑑
(4)

(𝑘, 𝑛 − 𝑡) for 𝑛 ≥ 𝑘,

(ii) 𝐹𝑑
(2)

(𝑘, 𝑛) = 𝐹𝑑
(4)

(𝑘, 𝑛− (𝑘−2))+𝐹𝑑
(4)

(𝑘, 𝑛− (𝑘−1))

for 𝑛 ≥ 𝑘,

(iii) 𝐹𝑑
(3)

(𝑘, 𝑛) = 𝐹𝑑
(4)

(𝑘, 𝑛 − 2(𝑘 − 1)) + 3𝐹𝑑
(4)

(𝑘, 𝑛 − (𝑘 −

1)) + 4∑
𝑘−2

𝑡=2
𝐹𝑑
(4)

(𝑘, 𝑛 − (𝑘 − 1) − 𝑡 + 1) + 3𝐹𝑑
(4)

(𝑘, 𝑛 −

2(𝑘 − 1) + 1) for 𝑛 ≥ 2𝑘 − 1.

Proof. Let 𝐹𝑑
(1)

𝑙
(𝑘, 𝑛) denote a sequence defined by the same

recurrence as 𝐹𝑑
(1)

(𝑘, 𝑛) with initial conditions

𝐹𝑑
(1)

𝑙
(𝑘, 𝑛) = {

𝐹𝑑
(1)

(𝑘, 𝑙) if 𝑛 = 𝑙

0 if 𝑛 ̸= 𝑙

for 𝑛 ≤ 𝑘 − 1. (30)

Then

𝐹𝑑
(1)

𝑙
(𝑘, 𝑛)

= 𝐹𝑑
(1)

0
(𝑘, 𝑛) + ⋅ ⋅ ⋅ + 𝐹𝑑

(1)

𝑘−1
(𝑘, 𝑛)

= 𝐹𝑑
(1)

(𝑘, 0) 𝐹𝑑
(1)

0
(𝑘, 𝑛)

+ ⋅ ⋅ ⋅ + 𝐹𝑑
(1)

(𝑘, −1) 𝐹𝑑
(1)

𝑘−1
(𝑘, 𝑛)

= 1𝐹𝑑
(1)

0
(𝑘, 𝑛) + ⋅ ⋅ ⋅ + 1𝐹𝑑

(1)

𝑘−1
(𝑘, 𝑛)

=

𝑘−1

∑

𝑡=0

𝐹𝑑
(4)

(𝑘, 𝑛 − 𝑡) .

(31)

We prove analogously formulas (ii) and (iii).

Using the above theorem we obtain a newmatrix genera-
tor for distance Fibonacci numbers 𝐹𝑑

(𝑖)

(𝑘, 𝑛), 𝑖 = 1, 2, 3.

Corollary 13. For the distance Fibonacci numbers 𝐹𝑑
(𝑖)

(𝑘, 𝑛),
𝑖 = 1, 2, 3, Theorem 12 gives its matrix generator, respectively:

(1) ∑
𝑘−1

𝑡=0
𝑄
𝑛−𝑡

𝑘
for 𝑛 ≥ 𝑘,

(2) 𝑄
𝑛−(𝑘−2)

𝑘
+ 𝑄
𝑛−(𝑘−1)

𝑘
for 𝑛 ≥ 𝑘,

(3) 𝑄
𝑛−2(𝑘−1)

𝑘
+3𝑄
𝑛−(𝑘−1)

𝑘
+4∑
𝑘−2

𝑡=2
𝑄
𝑛−(𝑘−1)−𝑡+1

𝑘
+𝑄
𝑛−2(𝑘−1)+1

𝑘

for 𝑛 ≥ 2𝑘 − 1.

Theorem 14. Let 𝑘 ≥ 2, 𝑛 ≥ 𝑘 be integer. Then

𝐹𝑑
(4)

(𝑘, 𝑛 + 1) = ∑

𝑘1 ,𝑘2

𝑘1 ⋅𝑘+𝑘2 ⋅(𝑘−1)=𝑛

(

𝑘
1
+ 𝑘
2

𝑘
1

) . (32)

Proof. We consider a digraph 𝐷
𝑘
represented by adjacency

matrix 𝑄
𝑘
auxiliary (Figure 1).

Note that matrix 𝑄
𝑛

𝑘
has the following form:

[

[

[

[

[

[

[

[

[

[

𝐹𝑑
(4)

(𝑘, 𝑛 + 1) 𝐹𝑑
(4)

(𝑘, 𝑛) ⋅ ⋅ ⋅ 𝐹𝑑
(4)

(𝑘, 𝑛 − (𝑘 − 2))

𝐹𝑑
(4)

(𝑘, 𝑛 + 2) 𝐹𝑑
(4)

(𝑘, 𝑛 + 1) ⋅ ⋅ ⋅ 𝐹𝑑
(4)

(𝑘, 𝑛 − (𝑘 − 1))

...
... d

...
𝐹𝑑
(4)

(𝑘, 𝑛 + (𝑘 − 1)) 𝐹𝑑
(4)

(𝑘, 𝑛 + (𝑘 − 2)) ⋅ ⋅ ⋅ 𝐹𝑑
(4)

(𝑘, 𝑛)

𝐹𝑑
(4)

(𝑘, 𝑛) 𝐹𝑑
(4)

(𝑘, 𝑛 − 1) ⋅ ⋅ ⋅ 𝐹𝑑
(4)

(𝑘, 𝑛 − (𝑘 − 1))

]

]

]

]

]

]

]

]

]

]

. (33)

It is well known that 𝑞
𝑖𝑗

∈ 𝑄
𝑛

𝑘
is equal to the number of all

distinct paths of length 𝑛 between vertices V
𝑖
and V

𝑗
in the

digraph 𝐷
𝑘
.

Each path 𝑃 from V
1
to V
1
in digraph𝐷

𝑘
has the following

form: 𝑃 : V
1
[V
𝑥1

→ V
1
[V
𝑥2

→ V
1
⋅ ⋅ ⋅ V
1
[V
𝑥𝑖

→ V
1
where

V
1
[V
𝑥
denotes the unique shortest path from V

1
to V
𝑥
in
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Table 1: The 𝑛th distance Fibonacci numbers 𝐹𝑑
(1)

(𝑘, 𝑛).

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
𝐹𝑑
(1)

(2, 𝑛) 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
𝐹𝑑
(1)

(3, 𝑛) 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37
𝐹𝑑
(1)

(4, 𝑛) 1 1 1 1 2 2 2 3 4 4 5 7 8 9 12
𝐹𝑑
(1)

(5, 𝑛) 1 1 1 1 1 2 2 2 2 3 4 4 4 5 7
𝐹𝑑
(1)

(6, 𝑛) 1 1 1 1 1 1 2 2 2 2 2 3 4 4 4
𝐹𝑑
(1)

(7, 𝑛) 1 1 1 1 1 1 1 2 2 2 2 2 2 3 4
𝐹𝑑
(1)

(8, 𝑛) 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

Table 2: The 𝑛th distance Fibonacci numbers 𝐹𝑑
(2)

(𝑘, 𝑛).

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
𝐹𝑑
(2)

(2, 𝑛) 0 1 2 3 5 8 13 21 34 55 89 144 233 377 610
𝐹𝑑
(2)

(3, 𝑛) 0 0 1 1 1 2 2 3 4 5 7 9 12 16 21
𝐹𝑑
(2)

(4, 𝑛) 0 0 0 1 1 0 1 2 1 1 3 3 2 4 6
𝐹𝑑
(2)

(5, 𝑛) 0 0 0 0 1 1 0 0 1 2 1 0 1 3 3
𝐹𝑑
(2)

(6, 𝑛) 0 0 0 0 0 1 1 0 0 0 1 2 1 0 0
𝐹𝑑
(2)

(7, 𝑛) 0 0 0 0 0 0 1 1 0 0 0 0 1 2 1
𝐹𝑑
(2)

(8, 𝑛) 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1

�
1

�
2 �

3

· · ·

�
k−1 �

k

Figure 1: A digraph 𝐷
𝑘
.

digraph 𝐷
𝑘
. Parts V

1
[V
𝑥

→ V
1
are cycles of the length 𝑥,

where 𝑥 is 𝑘 or 𝑘 − 1. Thus the length of the path 𝑃 is equal to
𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑖
. There exists one-to-one correspondence

between the path 𝑃 and a tuple (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
). If the path

𝑃 has a length 𝑛, then the corresponding tuple is a decom-
position of an integer 𝑛 when 𝑘 occurs 𝑘

1
times and 𝑘 − 1

occurs 𝑘
2
times and 𝑘

1
⋅ 𝑘 + 𝑘

2
⋅ (𝑘 − 1) = 𝑛. The number

of such tuples is equal to the binomial coefficient ( 𝑘1+𝑘2
𝑘1

). We
determine analogously the number of different paths between
other pairs of vertices.

UsingTheorems 14 and 12 we can prove the following.

Theorem 15. Let 𝑘 ≥ 2 be integer. Then

𝐹𝑑
(1)

(𝑘, 𝑛)

=

𝑘−1

∑

𝑖=0

∑

𝑘1 ,𝑘2

𝑘1 ⋅𝑘+𝑘2 ⋅(𝑘−1)=𝑛−𝑖−1

(

𝑘
1
+ 𝑘
2

𝑘
1

) ,

𝑛 ≥ 𝑘,

𝐹𝑑
(2)

(𝑘, 𝑛)

=

𝑘−1

∑

𝑖=𝑘−2

∑

𝑘1 ,𝑘2

𝑘1 ⋅𝑘+𝑘2 ⋅(𝑘−1)=𝑛−𝑖−1

(

𝑘
1
+ 𝑘
2

𝑘
1

) ,

𝑛 ≥ 𝑘,

𝐹𝑑
(3)

(𝑘, 𝑛)

= ∑

𝑘1 ,𝑘2

𝑘1 ⋅𝑘+𝑘2 ⋅(𝑘−1)=𝑛−1−2(𝑘−1)

(

𝑘
1
+ 𝑘
2

𝑘
1

)

+ 3 ∑

𝑘1 ,𝑘2

𝑘1 ⋅𝑘+𝑘2 ⋅(𝑘−1)=𝑛−1−(𝑘−1)

(

𝑘
1
+ 𝑘
2

𝑘
1

)

+ 4

𝑘−2

∑

𝑖=2

∑

𝑘1 ,𝑘2

𝑘1 ⋅𝑘+𝑘2 ⋅(𝑘−1)=𝑛−𝑖−(𝑘−1)

(

𝑘
1
+ 𝑘
2

𝑘
1

)

+ ∑

𝑘1 ,𝑘2

𝑘1 ⋅𝑘+𝑘2 ⋅(𝑘−1)=𝑛−2(𝑘−1)

(

𝑘
1
+ 𝑘
2

𝑘
1

) ,

𝑛 ≥ 2𝑘 − 1.

(34)

Tables 1, 2, 3, and 4 present first words of four types of dis-
tance Fibonacci numbers 𝐹𝑑

(1)

(𝑘, 𝑛), 𝐹𝑑
(2)

(𝑘, 𝑛), 𝐹𝑑
(3)

(𝑘, 𝑛),
and 𝐹𝑑

(4)

(𝑘, 𝑛).
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Table 3: The 𝑛th distance Fibonacci numbers 𝐹𝑑
(3)

(𝑘, 𝑛).

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
𝐹𝑑
(3)

(2, 𝑛) 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
𝐹𝑑
(3)

(3, 𝑛) 1 1 1 3 3 4 6 7 10 13 17 23 30 40 53
𝐹𝑑
(3)

(4, 𝑛) 1 1 1 1 3 4 3 4 7 7 7 11 14 14 18
𝐹𝑑
(3)

(5, 𝑛) 1 1 1 1 1 3 4 4 3 4 7 8 7 7 11
𝐹𝑑
(3)

(6, 𝑛) 1 1 1 1 1 1 3 4 4 4 3 4 7 8 8
𝐹𝑑
(3)

(7, 𝑛) 1 1 1 1 1 1 1 3 4 4 4 4 3 4 7
𝐹𝑑
(3)

(8, 𝑛) 1 1 1 1 1 1 1 1 3 4 4 4 4 4 3

Table 4: The 𝑛th distance Fibonacci numbers 𝐹𝑑
(4)

(𝑘, 𝑛).

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
𝐹𝑑
(4)

(2, 𝑛) 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377
𝐹𝑑
(4)

(3, 𝑛) 0 1 0 1 1 1 2 2 3 4 5 7 9 12 16
𝐹𝑑
(4)

(4, 𝑛) 0 1 0 0 1 1 0 1 2 1 1 3 3 2 4
𝐹𝑑
(4)

(5, 𝑛) 0 1 0 0 0 1 1 0 0 1 2 1 0 1 3
𝐹𝑑
(4)

(6, 𝑛) 0 1 0 0 0 0 1 1 0 0 0 1 2 1 0
𝐹𝑑
(4)

(7, 𝑛) 0 1 0 0 0 0 0 1 1 0 0 0 0 1 2
𝐹𝑑
(4)

(8, 𝑛) 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would like to thank the referee for helpful valua-
ble suggestionswhich resulted in improvements to this paper.

References

[1] U. Bednarz, A.Włoch, andM.Wołowiec-Musiał, “Distance Fib-
onacci numbers, their interpretations and matrix generators,”
Commentationes Mathematicae, vol. 53, no. 1, pp. 35–46, 2013.
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