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When the domain is a polygon ofR2, the solution of a partial differential equation is written as a sum of a regular part and a linear
combination of singular functions. The purpose of this paper is to present explicitly the singular functions of Stokes problem. We
prove the Kondratiev method in the case of the crack. We finish by giving some regularity results.

1. Introduction

The regularity of the solution of a partial differential equation
depends on the geometry of the domain even when the data
is smooth. Indeed, for each corner of the polygonal domain
a countable family of singular functions can be defined,
which depends only on the geometry of the domain. Then
the solution of the equation can be written as the sum of a
finite number of singular functions multiplied by appropriate
coefficients and of a much more regular part. We refer to
Kondratiev [1] and Grisvard [2] for their description.

The purpose of our work is to study the singularities of
the Stokes equation and the behavior of the solution in the
neighborhood of a corner of a polygonal domain of R2. We
are interested to nonconvex domains; we assume that there
exists an angle equal either to 3𝜋/2 or to 2𝜋 (case of the
crack). Handling the singular function is local process, so that
there is no restriction to suppose that the nonconvex corner
is unique; see Dauge [3]. We deduce the singular function
of the velocity from those of the bilaplacian problem with a
homogenous boundary conditions by applying the curl oper-
ator.We prove theKondratievmethod in the case of the crack.
The singularities of the pressure are done by integration from
the singular functions of the velocity near the corner.

To approach these problems by a numerical method, we
need to take into account the singular functions. Several
numeric methods have been proposed in this context; see [4–
9]. Since the singular functions are developed for the Stokes
problem in this paper, we intend in future work to implement
Strang and Fix algorithm, see [10], by the mortar spectral

element method. It will be an extension of a work done on
an elliptic operator [11, 12].

An outline of this paper is as follows. In Section 2, we
present the geometry of the domain and the continuous pro-
blem. In Section 3, we give the singular functions and some
regularity results. The Kondratiev method is described in
Section 4. Section 5 is devoted to the conclusion.

2. The Continuous Problem

We suppose that Ω is a polygonal domain of R2 simply
connected and has a connected boundary Γ. Γ is the union
of vertex Γ

𝑗
for 𝑗 ∈ {1, . . . , 𝐽}; 𝐽 is positive integer. Let 𝑎

𝑗
be

the corner of Ω between Γ
𝑗
and Γ
𝑗+1

; 𝜔
𝑗
is the measure of the

angle on 𝑎
𝑗
. We consider the velocity-pressure formulation of

the Stokes problem on the domainΩ.
Find the velocity u and the pressure 𝑝 such that

−]Δu + ∇𝑝 = f in Ω,

div u = 0 in Ω,

u = 0 on Γ,

(1)

where ] is the viscosity of the fluid that we suppose a positif
constant and f is the data which represent a density of body
forces. Then for f in [𝐻

−1
(Ω)]
2, the functional spaces are

[𝐻
1

0
(Ω)]
2 for the velocity and 𝐿

2

0
(Ω) for the pressure where

𝐿
2

0
(Ω) = {𝑞 ∈ 𝐿

2
(Ω) , ∫

Ω

𝑞 (𝑥) 𝑑𝑥 = 0} . (2)
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2 Abstract and Applied Analysis

The problem (1) is equivalent to the following variational
formulation.

For f in [𝐻
−1
(Ω)]
2, find u in [𝐻

1

0
(Ω)]
2 and 𝑝 in 𝐿

2
(Ω)

such that for all k in [𝐻
1

0
(Ω)]
2 and for all 𝑞 in 𝐿

2
(Ω).

𝑎 (u, k) + 𝑏 (k, 𝑝) = ⟨𝑓, k⟩ ,

𝑏 (u, 𝑞) = 0,

(3)

where

𝑎 (u, k) = ]∫
Ω

∇u∇k 𝑑𝑥,

𝑏 (u, 𝑞) = −∫

Ω

(div u) 𝑞 𝑑𝑥,

(4)

where the ⟨⋅, ⋅⟩ denotes the duality pairing between 𝐻
−1
(Ω)

and 𝐻
1

0
(Ω). The bilinear form 𝑎(⋅, ⋅) is continuous on the

space [𝐻1
0
(Ω)]
2
× [𝐻
1

0
(Ω)]
2 and elliptic on [𝐻

1

0
(Ω)]
2; also the

bilinear form 𝑏(⋅, ⋅) is continuous and verifies the following
inf-sup condition (see [13, 14]): there exists a nonnull positive
constant 𝛽 such that

∀𝑞 ∈ 𝐿
2

0
(Ω) , sup

k∈[𝐻1
0
(Ω)]
2

𝑏 (k, 𝑞)
‖k‖
[𝐻
1
(Ω)]
2

≥ 𝛽
󵄩󵄩󵄩󵄩𝑞

󵄩󵄩󵄩󵄩𝐿2(Ω)
. (5)

Then we conclude [15] that, for all f in the space [𝐻
−1
(Ω)]
2,

the problem (3) has a unique solution (u, 𝑝) in [𝐻
1

0
(Ω)]
2
×

𝐿
2

0
(Ω).This solution verifies the following stability condition:

‖u‖
[𝐻
1
(Ω)]
2 + 𝛽

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶‖f‖
[𝐻
−1
(Ω)]
2 , (6)

where 𝐶 is a positive constant.
We refer to the work of Pironneau [16] for themathemati-

calmodeling of problems resulting fromfluidsmechanics and
Girault and Raviart [17] for the mathematical analysis of the
Navier-Stokes equations.

3. Singular Functions and Regularity Results

We recall that, in an open simply connected ofR2, the condi-
tion of incompressibility div(u) = 0 induces the existence of
a stream function 𝜑 in the space𝐻

2

0
(Ω) such that

u = curl (𝜑) . (7)

It thus brings to study the regularity of the function 𝜑,
solution of Dirichlet problem for bilaplacian:

−]Δ2𝜑 = curl (f) , in Ω,

𝜑 = 0, on Γ,

𝜕𝜑

𝜕𝑛
= 0, on Γ.

(8)

The regularity of the solution of the problem is related to the
geometry of the domain and its behavior is local. Let 𝑔 =

curl(f).We know, see Cattabriga [18] and Ladyzhenskaya [14],
the following theorem.

Theorem 1. For 𝑔 in the space 𝐻𝑠(Ω), where 𝑠 ≥ −2, then

𝜑 ∈ 𝐻
𝑠+4

(Ω \V) , (9)

where V is the union of neighborhoods 𝑉
𝑗
of 𝑎
𝑗
for 𝑗 ∈

{1, . . . , 𝐽}.

To study the function 𝜑 in the neighborhood of a fixed
vertex 𝑎

𝑗
, 𝑗 ∈ 1, . . . , 𝐽, it is convenient to introduce the polar

coordinates (𝑟, 𝜃), centered at 𝑎
𝑗
. We start by enunciating the

characteristic equation of bilaplacian:

sin2 𝜔
𝑗
𝑧 = 𝑧
2sin2 𝜔

𝑗
. (10)

Then we stated the following theorem. We refer to ([17],
Chapter 7Theorem 7.2.1.12) andKondratiev [1] for the proof.

Theorem 2. Let 𝜔
𝑗
in ]0, 2𝜋[. For all 𝑔 in 𝐻

𝑠
(Ω), 𝑠 ≥ −2, the

solution 𝜑 of the problem (8) is written as

𝜑 = 𝜑
𝑟
+ 𝜑
𝑠
, (11)

where 𝜑
𝑟
is in the space (𝐻𝑠+4(Ω) ∩ 𝐻

2

0
(Ω)).

We set

𝜏
𝑘
(𝑟, 𝜃) = 𝑟

1+𝑧
𝑘𝜓
𝑘
(𝜃) ,

𝜇
𝑘
(𝑟, 𝜃) = 𝑟

1+𝑧̂
𝑘 (𝜎
𝑘
(𝜃) + log (𝑟) 𝜂

𝑘
(𝜃)) .

(12)

𝜑
𝑠
is given by

𝜑
𝑠
= ∑

0<Re(𝑧𝑘)<𝑠+2

𝜆
𝑘
𝜏
𝑘
(𝑟, 𝜃) + ∑

0<Re(𝑧̂𝑘)<𝑠+2

𝜆̂
𝑘
𝜇
𝑘
(𝑟, 𝜃) , (13)

where 𝜆
𝑘
and 𝜆̂

𝑘
are real constants,𝜓

𝑘
, 𝜎
𝑘
, and 𝜂

𝑘
belong to the

vectorial space C∞([0, 𝜔
𝑗
]) ∩ 𝐻

2

0
([0, 𝜔
𝑗
]) of finite dimension,

𝑧
𝑘
and 𝑧̂
𝑘
are, respectively, the simple and double roots of (10)

in the band 0 < Re(𝑧
𝑘
) < 𝑠 + 2, excepting 1 if 𝜔

𝑗
̸= 𝑡𝑔 (𝜔

𝑗
),

without exception if 𝜔
𝑗
= 𝑡𝑔(𝜔

𝑗
).

We called 𝜔
𝑒
the unique solution of equation 𝜔 = 𝑡𝑔 (𝜔),

in the ]0, 2𝜋[ (𝜔
𝑒
≃ 1.430297𝜋). We prove, see ([19], chapter

3, § 3.3), that 𝑧 is a double root of (10) if and only if 𝑧 = 0 or
𝑧 = ±√(1/ sin𝜔

2

𝑗
) − (1/𝜔

2

𝑗
). Hence the sufficient condition

on the angle 𝜔 for a double root is

sin(√

𝜔
2

𝑗

(sin𝜔
𝑗
)
2
− 1) = ±√(1 −

(sin𝜔
𝑗
)
2

𝜔
2

𝑗

),

𝜔
𝑗
∈ ]0, 2𝜋[ .

(14)

Then, if 𝜔
𝑗
is not a solution of (14), (10) takes the following

simplified form:

𝜑
𝑠
(𝑟, 𝜃) = ∑

0<Re(𝑧𝑘)<𝑠+2

𝜆
𝑘
𝜏
𝑘
(𝑟, 𝜃) . (15)

In the following we suppose that Ω has a unique vertex 𝑎

where 𝜔 is equal to 3𝜋/2 or 2𝜋 and the other angles are 𝜋/2.
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We introduce 𝑉 as a neighborhood of 𝑎. All these angles are
different of 𝜔

𝑒
.

In the case where 𝜔 = 3𝜋/2 and 𝑠 = −1, (10) has two
real simple roots in the band 0 < Re(𝑧) < 1. We apply the
Newton method to approximate those roots 𝑧

1
≃ 0.544484

and 𝑧
2

≃ 0.908529. The functions 𝜏
1
and 𝜏

2
are written as

follows:

𝜏
1
(𝑟, 𝜃) = 𝑟

1+𝑧
1𝜓
1
(𝜃) ,

𝜏
2
(𝑟, 𝜃) = 𝑟

1+𝑧
2𝜓
2
(𝜃) ,

(16)

with

𝜓
𝑖
(𝜃) = ((𝑧

𝑖
− 1)
−1 sin(

3 (𝑧
𝑖
− 1) 𝜋

2
) − (𝑧

𝑖
+ 1)
−1

× sin(
3 (𝑧
𝑖
+ 1) 𝜋

2
))

× (cos ((𝑧
𝑖
− 1) 𝜃) − cos ((𝑧

𝑖
+ 1) 𝜃))

−((𝑧
𝑖
− 1)
−1 sin ((𝑧

𝑖
−1) 𝜃)−(𝑧

𝑖
+1)
−1 sin ((𝑧

𝑖
+1) 𝜃))

×(cos(
3 (𝑧
𝑖
− 1) 𝜋

2
) − cos(

3 (𝑧
𝑖
+ 1) 𝜋

2
)) .

(17)

Proposition 3. For all 𝜖 ≥ 0, the functions 𝜏
𝑖
, 𝑖 in {1, 2}, are

belonging to the space 𝐻
(2+𝑧
𝑖
)−𝜖

(𝑉) and are solutions of the
problem:

Δ
2
𝜏
𝑖
= 0 𝑖𝑛 𝑉,

𝜏
𝑖
=

𝜕𝜏
𝑖

𝜕𝑛
= 0 𝑜𝑛 Γ ∩ 𝜕𝑉,

(18)

where Γ is the boundary of Ω.

Proof. Since 𝜓
𝑖
is inC0(]0, 3𝜋/2[), we find 𝑠 such that

𝑟
1+𝑧
𝑖𝜓
𝑖
(𝜃) ∈ 𝐻

𝑠
(𝑉) . (19)

Then we find (𝑚, 𝑞) in N ×R,𝑚 > 𝑠, and 1 < 𝑞 ≤ 2 such that:

𝑟
1+𝑧
𝑖𝜓
𝑖
(𝜃) ∈ 𝑊

𝑚

𝑞
(𝑉) ⊂ 𝐻

𝑠
(𝑉) . (20)

From the Sobolev injection theorem, we have 𝑚 − 2 = 𝑠 − 1.
If 𝑟1+𝑧𝑖𝜓

𝑖
(𝜃) ∈ 𝑊

𝑚

𝑞
(𝑉), then 1 + 𝑧

𝑖
> 𝑚 − 2/𝑞. Since 1 < 𝑞 ≤

2, we can take only the value 𝐸(3 + 𝑧
𝑖
) = 3 (0 < 𝑧

𝑖
< 1).

Consequently, 𝑠 < (2 + 𝑧
𝑖
) for 𝑖 ∈ {1, 2}. And by construction,

we obtain that 𝜏
𝑖
, for 𝑖 ∈ {1, 2}, is the solution of problem

(18).

Corollary 4. For all 𝑓 in [𝐿
2
(Ω)]
2, the velocity u is written as

u = u
𝑟
+ u
𝑠
, (21)

where u
𝑟
is in [𝐻

2
(Ω)∩𝐻

1

0
(Ω)]
2 and there exists a constant 𝜆

𝑖

such that:

u
𝑠
= ∑

1≤𝑖≤2

𝜆
𝑖
𝑠
𝑖
, (22)

where 𝑠
𝑖
(𝑟, 𝜃) = curl(𝜏

𝑖
(𝑟, 𝜃)). The functions 𝑠

𝑖
belong to the

space [𝐻(1+𝑧𝑖)−𝜖(𝑉)]
2, 𝑖 in {1, 2}, for all 𝜖 > 0.

4. Kondratiev’s Method Case of the Crack

In the case of the crack there are no known results; we recall
the method of kondratiev. We extend this method to the case
of crack. We consider the polar coordinates and a truncation
function 𝜒with compact support that does not intersect with
the boundary Γ. We define

𝐺 = {𝑟𝑒
𝑖𝜃
, 0 < 𝜃 < 2𝜋, 𝑟 > 0} . (23)

Let 𝜓 = 𝜒𝜑; then, 𝜓 is in the space 𝐻
2

0
(𝐺); with a compact

support included in 𝐺, then 𝜓 is the solution of the problem:

]Δ2𝜓 = 𝑔 in 𝐻
𝑠
(𝐺) ,

𝜓 ∈ 𝐻
2

0
(𝐺) with compact support.

(24)

Definition 5. For 𝑠 ≥ 0, one defines the weight Sobolev space:

𝑍
𝑠

2
(𝐺) = {𝜓 ∈ 𝐿

2
(𝐺) , 𝑟

−𝑠+|𝛼|
𝐷
𝛼
𝜓 ∈ 𝐿

2
(𝐺) , |𝛼| ≤ 𝑠}

𝑍
−1

2
(𝐺) = {𝜓 ∈ D

󸀠
(𝐺) , 𝜓 =

𝑔
0

𝑟
+ 𝜕
𝑥
𝑔
1
+ 𝜕
𝑦
𝑔
2
,

such that 𝑔
0
, 𝑔
1
and 𝑔

2
∈ 𝐿
2
(Ω) } .

(25)

Remark 6. We remark that 𝑍
0

2
(𝐺) = 𝑍

2
(𝐺) and 𝐻

𝑠

0
(𝐺) ⊂

𝑍
𝑠

2
(𝐺) ⊂ 𝐻

𝑠
(𝐺).

In the following, we suppose that 𝑔 is in the space 𝑍
𝑠

2
(𝐺),

for 𝑠 in {−1, 0}. The solution 𝜓 of the problem:

]Δ2𝜓 = 𝑔 in 𝐻
𝑠
(𝐺) ,

𝑢 ∈ 𝑍
2

2
(𝐺) ,

(26)

is with a compact support; then, there exists a real number 𝑅
such that

𝜓 (𝑟, 𝜃) = 0, for 𝑟 ≥ 𝑅. (27)

The Kondratiev’s method consists to change the variable
𝑟 = 𝑒

𝑡; then we replace the domain 𝐺 by the domain 𝐵 =

R×]0, 2𝜋[, and the weight Sobolev space by the ordinary
one. We apply the Fourier transformation relative to the first
variable of the problem (26).

Proposition 7. If 𝜓 is in the space 𝑃
2

2
(𝐺), the function V =

𝑒
−𝑡
𝜓(𝑒
𝑡 cos 𝜃, 𝑒𝑡 sin 𝜃) belongs to 𝐻

2
(𝐵).

For 𝑠 ∈ {−1, 0}, if 𝑔 belongs to 𝑃
𝑠

2
(𝐺), and let ℎ =

𝑒
3𝑡
𝜓(𝑒
𝑡 cos 𝜃, 𝑒𝑡 sin 𝜃), then the function 𝑒

−(𝑠+2)𝑡
ℎ is in the space

𝐻
𝑠
(𝐵).

Proof. Let 𝑠 = −1.
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Since 𝑔 ∈ 𝑃
−1

2
(𝐺), then 𝑔 = 𝑔

0
/𝑟+𝜕
𝑥
𝑔
1
+𝜕
𝑦
𝑔
2
with 𝑔

0
, 𝑔
1
,

and 𝑔
2
in 𝐿
2
(𝐺).

We denote

𝐹 (𝑡, 𝜃) = 𝑔 (𝑒
𝑡 cos 𝜃, 𝑒𝑡 sin 𝜃) ,

𝐺
𝑗
(𝑡, 𝜃) = 𝑔

𝑗
(𝑒
𝑡 cos 𝜃, 𝑒𝑡 sin 𝜃) , for 𝑗 ∈ {0, 1, 2} ,

𝐹 (𝑡, 𝜃) = 𝑒
−𝑡
𝐺
0
+ (𝑒
−𝑡 cos 𝜃𝜕𝐺

1

𝜕𝑡
− 𝑒
−𝑡 sin 𝜃

𝜕𝐺
1

𝜕𝜃
)

+ (𝑒
−𝑡 sin 𝜃

𝜕𝐺
2

𝜕𝑡
− 𝑒
−𝑡 cos 𝜃𝜕𝐺

2

𝜕𝜃
) .

(28)

We have

𝑒
−𝑡
ℎ = 𝑒
2𝑡
𝐹 (𝑡, 𝜃) = 𝑒

𝑡
𝐺
0
+ 𝜕
𝑡
(𝑒
𝑡 cos 𝜃𝐺

1
+ sin 𝜃𝑒

𝑡
𝐺
2
)

+ 𝜕
𝜃
(−𝑒
𝑡 sin 𝜃𝐺

1
+ cos 𝜃𝑒𝑡𝐺

2
)

(29)

and if

𝐾
0
= 𝐺
0
,

𝐾
1
= cos 𝜃𝐺

1
+ sin 𝜃𝐺

2
,

𝐾
2
= − sin 𝜃𝐺

1
+ cos 𝜃𝐺

2
,

(30)

then we conclude

𝑒
−𝑡
ℎ = 𝑒
𝑡
𝐾
0
+ 𝜕
𝑡
{𝑒
𝑡
𝐾
1
} + 𝜕
𝜃
{𝑒
𝑡
𝐾
2
} , (31)

since 𝑔
𝑗

∈ 𝐿
2
(𝐺) et 𝑒𝑡𝐺

𝑗
∈ 𝐿
2
(𝐵), then, 𝑒𝑡𝐾

𝑗
∈ 𝐿
2
(𝐵) for

𝑗 ∈ {0, 1, 2}. So

𝑒
−𝑡
ℎ ∈ 𝐻

−1
(𝐵) . (32)

We end the proof.

As 𝜓 is the solution of the problem (26), then for ℎ = 𝑒
3𝑡
𝑔

the function V = 𝑒
−𝑡
𝜓(𝑒
𝑡 cos 𝜃, 𝑒𝑡 sin 𝜃) is a solution of the

problem:

(𝐷
4

𝑡
− 𝐷
2

𝑡
+ 1) V + 2 (𝐷

2

𝑡
+ 1)𝐷

2

𝜃
V + 𝐷

4

𝜃
V = ℎ

V (𝑡, 0) = V (𝑡, 2𝜋) = 𝜕
𝑡
V (𝑡, 0) = 𝜕

𝜃
V (𝑡, 2𝜋) = 0,

V ∈ 𝐻
2
(𝐵) .

(33)

We have V(𝑡, 𝜃) = 0 for 𝑡 ≥ log(𝑅) = 𝑡
0
.

The Fourier’s transformation on the variable 𝑡 of the
function V is

V̂ (𝑧, 𝑡) =
1

√2𝜋

∫

R

𝑒
−𝑖𝑡𝑧V (𝑡, 𝑧) 𝑑𝑡. (34)

𝑧 is a complex variable; we denote:

𝐿 (𝑧,𝐷
𝜃
) = (𝑧

4
+ 2𝑧
2
+ 1) + 2 (1 − 𝑧

2
)𝐷
2

𝜃
+ 𝐷
4

𝜃
. (35)

The function V̂ becomes a solution of the problem:

𝐿 (𝑧,𝐷
𝜃
) V̂ = ℎ̂,

V̂ (𝑡, 0) = V̂ (𝑡, 2𝜋) = 𝜕
𝑡
V̂ (𝑡, 0) = 𝜕

𝜃
V̂ (𝑡, 2𝜋) = 0.

(36)

For all 𝑧 such that Im(𝑧) ≥ 0, the operator 𝐿(𝑧, 𝐷
𝜃
) has

𝑝
4
+ 2 (1 − 𝑧

2
) 𝑝
2
+ (𝑧
4
+ 2𝑧
2
+ 1) = 0 (37)

as a characteristic polynomial. This polynomial function has
two roots 𝑝 = ±𝑧 and 𝑝 = ±𝑖.

(i) If 𝑧 ̸= 0 and 𝑧 ̸= ± 𝑖, then the fundamental solutions of
the fourth order partial differential equation are

sin 𝜃𝑠ℎ𝜃𝑧, sin 𝜃𝑐ℎ𝑧𝜃, cos 𝜃𝑐ℎ𝜃𝑧, et cos 𝜃𝑠ℎ𝑧𝜃.
(38)

(ii) If 𝑧 = 0, the solutions have the form

sin 𝜃, cos 𝜃, 𝜃 sin 𝜃, et 𝜃 cos 𝜃. (39)

(iii) If 𝑧 = ±𝑖, the solutions have the form

1, 𝜃, sin 2𝜃, et cos 2𝜃. (40)

Then, let the following homogeneous problem

𝐿 (𝑧,𝐷
𝜃
) 𝜑 = 0 in ]0, 2𝜋[ ,

𝜑 (0) = 𝜑 (2𝜋) = 𝜕
𝑡
𝜑 (0) = 𝜕

𝜃
𝜑 (2𝜋) = 0.

(41)

We note 𝐸
𝑧

= {𝜑
𝑧

∈ 𝐻
2

0
(]0, 2𝜋[), 𝜑

𝑧
solution of the

problem (41)}.

Proposition 8. The set 𝐸
𝑧
satisfies the following properties:

(1) if 𝑧 ̸= 0 and 𝑧 ̸= ± 𝑖 where 𝑠ℎ2𝜋𝑧 ̸= 0, then,

𝐸
𝑧
= {0} , (42)

(2) if 𝑧 ± 𝑖, then,

𝐸
𝑧
= {𝜑
𝑧
∈ 𝐻
2

0
(]0, 2𝜋[) , 𝜑𝑧 = 𝛼

𝑧
sin2𝜃, 𝛼

𝑧
∈ C} , (43)

(3) if 𝑧 ̸= 0, 𝑧 ̸= ± 𝑖 and 𝑠ℎ2𝜋𝑧 = 0, which implies that 𝑧 is
equal to −𝑖(𝑘/2) where 𝑘 ̸= 0 and 𝑘 ̸= 2, then,

𝐸
𝑧
= {𝜑
𝑧
∈ 𝐻
2

0
([0, 2𝜋]) , 𝜑

𝑧
= 𝛼
𝑘
𝑔
𝑘
(𝜃) + 𝛽

𝑘
ℎ
𝑘
(𝜃) ,

(𝛼
𝑘
, 𝛽
𝑘
) ∈ C
2
} ,

𝑔
𝑘
(𝜃) = sin(1 +

𝑘

2
) 𝜃 − (

𝑘 + 2

𝑘 − 2
) sin(−1 +

𝑘

2
) 𝜃,

ℎ
𝑘
= cos(1 +

𝑘

2
) 𝜃 − cos(−1 +

𝑘

2
) 𝜃.

(44)

Proof. If 𝑧 ̸= 0 and 𝑧 ̸= ± 𝑖,

𝜑 = 𝛼 sin 𝜕𝑠ℎ𝑧𝜃 + 𝛽 sin 𝜃𝑐ℎ𝑧𝜃 + 𝛾 cos 𝜃𝑠ℎ𝑧𝜃 + 𝛿 cos 𝜃𝑐ℎ𝑧𝜃
(45)
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is solution of the problem (41). Since 𝜑(0) = 𝜑(2𝜋) =

𝜕𝑡𝜑(0) = 𝜕
𝜃
𝜑(2𝜋) = 0, we obtain the following system:

𝛿 = 0,

𝛾𝑠ℎ2𝜋𝑧 + 𝛿𝑐ℎ2𝜋𝑧 = 0,

𝛽 = 0,

𝛼𝑠ℎ2𝜋𝑧 + 𝛽𝑐ℎ2𝜋𝑧 + 2𝜋𝛾𝑠ℎ2𝜋𝑧 + 2𝜋𝛿𝑐ℎ2𝜋𝑧 = 0,

(46)

its determinant is equal to 𝑠ℎ
2
2𝜋𝑧. Then, if 𝑠ℎ2𝜋𝑧 ̸= 0, 𝐸

𝑧
=

{0}. Otherwise, the system has the following complexes roots:
𝑧
𝑘
= −𝑖(𝑘/2) for 𝑘 ̸= 0 and 𝑘 ̸= 2, 𝑘 ∈ N. The space of solutions

of the homogeneous equation is of dimension 2. Indeed, for
𝑧 = 𝑧
𝑘
, we obtain

𝜑 =
𝛼

2
𝑖ℎ
𝑘
(𝜃) + 𝑖𝛾 (

𝑘

2
− 1)𝑔

𝑘
(𝜃) . (47)

We check that (ℎ
𝑘
, 𝑔
𝑘
) are two independent solutions of

the problem (41); then

∫

2𝜋

0

󵄨󵄨󵄨󵄨ℎ𝑘
󵄨󵄨󵄨󵄨 𝑑𝜃 = ∫

2𝜋

0

󵄨󵄨󵄨󵄨𝑔𝑘
󵄨󵄨󵄨󵄨 𝑑𝜃 = 1. (48)

This ends the proof of 1 and 3.
Now we prove property 2.
If 𝑧 = ±𝑖,

𝜑 = 𝛼 + 𝛽𝜃 + 𝛾 sin 2𝜃 + 𝛿 cos 2𝜃 (49)

is solution of the problem (41), which gives the following
system:

𝛼 + 𝛿 = 0,

𝛼 + 2𝜋𝛽 + 𝛿 = 0,

𝛽 + 2𝛾 = 0.

(50)

The determinant of this system is zero; then the dimension of
𝐸
𝑧
is equal to 1. Indeed,

𝜑 = 𝛼 (1 − cos 2𝜃) = 2𝛼 sin2 2𝜃. (51)

This completed the proof.

Remark 9. If

𝐷
𝑘
= {𝑧
𝑘
= −𝑖

𝑘

2
, for 𝑘 ̸= 0, 𝑘 ̸= 2, 𝑘 ∈ N} . (52)

𝐷
𝑘
is the set of nonregular values. Since ℎ̂ is analytic for

Im(𝑧) > −(𝑠 + 2), then V̂ analytically extends across {Im(𝑧) >

−(𝑠 + 2)} ∩ 𝐷
𝑘
.

Is then

𝑑 (𝑧) =
−𝑠ℎ
2
2𝜋𝑧

𝑧2 (1 + 𝑧2)
, for 𝑧 ̸= 0, 𝑧 ̸= ± 𝑖. (53)

We verify that 𝑑(𝑧
𝑘
) = 𝜕

𝑧
𝑑(𝑧
𝑘
) = 0 and 𝜕

2

𝑧
𝑑(𝑧
𝑘
) ̸= 0. Hence

the multiplicity of 𝑧
𝑘
is 2 for 𝑘 ̸= 0 and 𝑘 ̸= 2. 𝑑(±𝑖) = 0, then,

(±𝑖) are simple solutions.

Theorem 10. (1) The solution V̂ of the problem (36) can be
written in the neighborhood of −𝑖:

V̂ (𝑧, 𝜃) =
𝜑
1
(𝜃)

(𝑧 + 𝑖)
+ 𝑤
1
(𝑧, 𝜃) , (54)

where 𝜑
1
is the solution of problem (41) with 𝑧 = (−𝑖) and 𝑤

1

is an analytic function in the neighborhood of −𝑖with values in
𝐻
2
(]0, 2𝜋[).
(2) The solution V̂ of the problem (36) is written in the

neighborhood of (−𝑖(𝑘/2)), 𝑘 = 1 or 𝑘 = 3, as

V̂ (𝑧, 𝜃) =
𝜓
𝑘
(𝜃)

(𝑧 + 𝑖 (𝑘/2))
2

+
𝜑
𝑘
(𝜃)

(𝑧 + 𝑖 (𝑘/2))
+ 𝑤
𝑘
(𝑧, 𝜃) , (55)

where 𝜓
𝑘
and 𝑤

𝑘
satisfy the same properties as above and 𝜑

𝑘

satisfies:

𝐿 (𝑧,𝐷
𝜃
) 𝜑
𝑘
= 2𝑖𝑘(1 −

𝑘
2

4
)𝜓
𝑘
− 2𝑖𝑘𝜓

󸀠󸀠

𝑘
,

𝜑
𝑘
(0) = 𝜑

𝑘
(2𝜋) = 𝜕

𝑡
𝜑
𝑘
(0) = 𝜕

𝜃
𝜑
𝑘
(2𝜋) = 0.

(56)

Proof. We verified that any solution to the problem (41) is a
linear combination of

𝑢
1
(𝑧, 𝜃) =

sin 𝜃𝑠ℎ𝑧𝜃

𝑧
for 𝑧 ̸= 0,

𝑢
1
(0, 𝜃) = 𝜃 sin 𝜃,

𝑢
2
(𝑧, 𝜃) =

1

𝑧2 + 1
(
cos 𝜃𝑠ℎ𝑧𝜃

𝑧
− sin 𝜃𝑐ℎ𝑧𝜃) ,

for 𝑧 ̸= 0, 𝑧 ̸= ± 𝑖,

𝑢
2
(0, 𝜃) = 𝜃 cos 𝜃 − sin 𝜃,

𝑢
2
(±𝑖, 𝜃) =

1

2
(
sin 2𝜃

2
− 𝜃) .

(57)

In fact, if 𝑧 = −𝑖(𝑘/2) for 𝑘 = 1 or 𝑘 = 3, we have

𝑢
1
(−𝑖

𝑘

2
, 𝜃) = −

1

𝑘
ℎ
𝑘
(𝜃) ,

𝑢
2
(−𝑖

𝑘

2
, 𝜃) =

2

𝑘 (𝑘 + 2)
𝑔
𝑘
(𝜃) .

(58)

Therefore, any solution of the problem (41) is linear combi-
nation of 𝑢

1
and 𝑢

2
. We also verified that 𝑢

1
and 𝑢

2
are whole

solutions with respect to the variable 𝑧 and if we set

𝑑
𝑧
= 𝑢
1
(𝑧, 2𝜋)𝐷

𝜃
𝑢
2
(𝑧, 2𝜋) − 𝑢

2
(𝑧, 2𝜋)𝐷

𝜃
𝑢
1
(𝑧, 2𝜋) ,

(59)

we note that 𝑑(𝑧
𝑘
)V̂(𝑧
𝑘
, 𝜃) = 0.This implies that V̂ is analytical

in the neighborhood of 𝑧
𝑘
= −𝑖(𝑘/2) for 𝑘 in {1, 2, 3}. (−𝑖) is

a single root of 𝑑; then, V̂ admits a simple pole at (−𝑖). On the
other side −𝑖/2 and (−3/2)𝑖 are roots of multiplicity two of 𝑑,
and poles of multiplicity two of V̂.

In the neighborhood of (−𝑖), V̂(𝑧, 𝜃) = (𝜓
1
(𝜃)/(𝑧 − 𝑖)) +

𝑤
1
(𝑧, 𝜃), and, for all 𝑧,

(𝑧 − 𝑖) ℎ̂ = 𝐿 (−𝑖, 𝐷
𝜃
) V̂ (𝑧 − 𝑖)

= 𝐿 (−𝑖, 𝐷
𝜃
) 𝜓
1
+ (𝑧 − 𝑖) 𝐿 (−𝑖, 𝐷

𝜃
) 𝑤
1
.

(60)
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Then, for 𝑧 = −𝑖, we have

𝐿 (−𝑖, 𝐷
𝜃
) 𝜓
1
= 0,

𝜓
1
(0) = (𝑧 − 𝑖) 𝑤

1
(𝑧, 0) .

(61)

Then

𝜓
1
(0) = 0 (62)

and even

𝜓
1
(2𝜋) = 0,

𝜓
󸀠

1
(0) = lim

𝜃→0

𝜓 (𝜃)

𝜃
= lim
𝜃→0

V̂ (𝑧, 𝜃) − (𝑧 + 1)𝑤
1
(𝑧, 𝜃)

𝜃
= 0,

(63)

and even for:

𝜓
󸀠

1
(2𝜋) = 0. (64)

Thus, 𝜓
1
is a solution of the problem (41) at 𝑧 = −𝑖.

The expression of V̂ in the neighborhood of 𝑧
𝑘
= −𝑖(𝑘/2)

for 𝑘 = 1 and 𝑘 = 3 is

V̂ (𝑧, 𝜃) =
𝜓
𝑘
(𝜃)

(𝑧 + 𝑖 (𝑘/2))
2
+

𝜑
𝑘
(𝜃)

(𝑧 + 𝑖 (𝑘/2))
+ 𝑤
𝑘
(𝑧, 𝜃) ,

for 𝑘 = 1, 𝑘 = 3.

(65)

Then, for 𝑧 in the neighborhood of 𝑧
𝑘

ℎ̂(𝑧 − 𝑧
𝑘
)
2

= 𝐿 (𝑧,𝐷
𝜃
) 𝜓
𝑘
+ (𝑧 − 𝑧

𝑘
) 𝐿 (𝑧, 𝐷

𝜃
) 𝜑
𝑘

+ (𝑧 − 𝑧
𝑘
)
2

𝐿 (𝑧,𝐷
𝜃
) 𝑤
𝑘
.

(66)

For 𝑧 = 𝑧
𝑘
, we obtain that 𝐿(𝑧

𝑘
, 𝐷
𝜃
)𝜓
𝑘
= 0 and we verify that

𝜓
𝑘
is solution of the problem (41). And we have:

𝐿 (𝑧,𝐷
𝜃
) 𝜑
𝑘
= −

𝐿 (𝑧,𝐷𝜃) + 𝐿 (𝑧
𝑘
, 𝐷
𝜃
)

(𝑧 − 𝑧
𝑘
)

𝜓
𝑘

+ (𝑧 − 𝑧
𝑘
) (ℎ̂ − 𝐿 (𝑧, 𝐷𝜃)𝑤

𝑘
) .

(67)

And if 𝑧 tends to 𝑧
𝑘

𝐿 (𝑧,𝐷
𝜃
) 𝜑
𝑘
= 2𝑖𝑘(1 −

𝑘
2

4
)𝜓
𝑘
− 2𝑖𝑘𝜓

󸀠󸀠

𝑘
(68)

and 𝜑
𝑘
verifies the boundary conditions, which completes the

proof.

Remark 11. We remark that the operator 𝐿(𝑧,𝐷
𝜃
) is self-

adjoint:

⟨𝐿𝜓
𝑘
, 𝜑
𝑘
⟩ = ⟨𝜓

𝑘
, 𝐿𝜑
𝑘
⟩

= ∫

2𝜋

0

𝜓
𝑘
(2𝑘(1 −

𝑘
2

4
)𝜓
𝑘
− 2𝑖𝑘𝜓

󸀠󸀠

𝑘
)𝑑𝜃.

(69)

For 0 < 𝑘 < 4

∫

2𝜋

0

𝜓
2

𝑘
𝑑𝜃 = ∫

2𝜋

0

𝜓
󸀠2

𝑘
𝑑𝜃 = 0. (70)

This implies that 𝜓
𝑘
= 0; thus

V̂ (𝑧, 𝜃) =
𝜑
𝑘
(𝜃)

(𝑧 + 𝑖 (𝑘/2))
+ 𝑤
𝑘
(𝑧, 𝜃) ,

for 𝑘 = 1 or 𝑘 = 3,

(71)

where 𝜑
𝑘
is solution of problem (41).

Let 𝜂 be in R such that 0 < 𝜂 < 1/2. We note

𝑤
𝑠
(𝑡, 𝜃) =

1

√2𝜋

∫

+∞

−∞

𝑒
𝑖𝑡𝑧V̂ (𝑧 − 𝑖 (𝑠 + 2) + 𝑖𝜂, 𝜃) 𝑑𝑧,

𝜇 (𝜃) = 𝑖√2𝜋𝑒
𝑖𝑡𝑧V̂ (𝑧, 𝜃) for fixed 𝑡.

(72)

We prove by Cauchy’s theorem that

V (𝑡, 𝜃) = 𝑒
(𝑠+2−𝜖)𝑡

𝑤
𝑠
(𝑡, 𝜃) + 2𝑖𝜋 ∑

−(𝑠+2)<Im(𝑧)<0
𝑅
𝑠
. (73)

𝜇 is an analytic function on 𝐷
𝑘
; 𝑅
𝑠
is its residue on the poles

𝑧
𝑘
. Then,

(i) for 𝑠 = −1

V (𝑡, 𝜃) = 𝑒
(1−𝜂)𝑡

𝑤
−1

(𝑡, 𝜃) + 𝑖√2𝜋𝜓
1
(𝜃) , (74)

(ii) for 𝑠 = 0

V (𝑡, 𝜃) = 𝑒
(2−𝜂)𝑡

𝑤
0
(𝑡, 𝜃)

+ 𝑖√2𝜋 (𝑒
3𝑡/2

𝜓
3
(𝜃) + 𝑒

𝑡/2
𝜓
1
(𝜃) + 𝑒

𝑡
𝜓
2
(𝜃)) ,

(75)

where 𝜓
𝑖
are solutions of the problem (36).

Notation. Using the variables (𝑟, 𝜃), we introduce the follow-
ing notations.

For 𝑠 = −1, we define the two singular functions:

𝜏
1
(𝑟, 𝜃) = 𝑟

3/2
(sin 3

2
𝜃 − 3 sin 𝜃

2
) ,

𝜇
1
(𝑟, 𝜃) = 𝑟

3/2
(cos 3

2
𝜃 − cos 𝜃

2
) .

(76)

For 𝑠 = 0, we define four singular functions:

𝜏
1
(𝑟, 𝜃) = 𝑟

3/2
(sin 3

2
𝜃 − 3 sin 𝜃

2
) ,

𝜇
1
(𝑟, 𝜃) = 𝑟

3/2
(cos 3

2
𝜃 − cos 𝜃

2
) ,

𝜏
2
(𝑟, 𝜃) = 𝑟

5/2
(sin 5

2
𝜃 − 5 sin 𝜃

2
) ,

𝜇
2
(𝑟, 𝜃) = 𝑟

5/2
(cos 5

2
𝜃 − cos 𝜃

2
) .

(77)
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Proposition 12. For 𝜖 > 0, 𝜏
1
and 𝜇

1
belong to the space

𝐻
5/2−𝜖

(𝑉), 𝜏
2
and 𝜇

2
belong to the space 𝐻

7/2−𝜖
(𝑉) and They

are solutions to the problem:

Δ
2
𝜑 = 0 𝑖𝑛 𝑉,

𝜑 =
𝜕𝜑

𝜕𝑛
= 0 𝑜𝑛 Γ ∩ 𝜕𝑉,

(78)

where Γ is the boundary of Ω.

Proof. It is the same prove that in the case 𝜔 = 3𝜋/2.

For the Stokes problem we handle the case 𝑠 = −1; thus f
belongs to the space [𝐿

2
(Ω)]
2.

Corollary 13. For f in [𝐿
2
(Ω)]
2, the velocity is written in the

form

u = u
𝑟
+ u
𝑠
, (79)

where u
𝑟
is in [𝐻

2
(Ω) ∩ 𝐻

1

0
(Ω)]
2 and there exist two real

constants 𝜆 and 𝜆̃ such that

u
𝑠
= 𝜆𝑠
1
+ 𝜆̃𝑠
1

(80)

with

𝑠
1
(𝑟, 𝜃) = 𝑟

1/2
(3 sin 𝜃 sin 𝜃

2
, 3 (1 − cos 𝜃) sin 𝜃

2
) ,

𝑠
1
(𝑟, 𝜃) = 𝑟

1/2
(2 sin 𝜃

2
+ sin 𝜃 cos 𝜃

2
, (1 − cos 𝜃) cos 𝜃

2
) .

(81)

𝑠
1
and 𝑠
1
belong to the [𝐻3/2−𝜖(𝑉)]

2, for all 𝜖 positive.

For handling the singularities of the pressure we define

𝜂 (𝜔) = inf {Re (𝑧) , 𝑧 is solution of (10)} . (82)

Indeed for 𝜔 ∈]0, 2𝜋], using the Newton method, we can
obtain a good approximation of roots of (10). See [20] for the
approximation of 𝜂(𝜔). Thus

if 𝜋 < 𝜔 < 2𝜋, 1 −
𝜋

𝜔
< 𝜂 (𝜔) <

𝜋

𝜔
, 𝜂 (𝜔) >

1

2
. (83)

To find the pressure, we note that f − ]Δu belongs to
[𝐻
−1
(Ω)]
2
∩ 𝑊
⊥, where

𝑊 = {u ∈ [𝐻
1

0
(Ω)]
2

, such that, div (u) = 0} . (84)

Then, see [15], there exists a unique function 𝑝 in 𝐿
2
(Ω)

defined such that:

∇𝑝 = f + ]Δu in 𝐷
󸀠
(Ω) . (85)

From this equality we determine the singularities of the pres-
sure from the singularities of the velocity.

Then from a regular data f

𝑝 = 𝑝
𝑟
+ 𝑝
𝑠
, 𝑝
𝑟
∈ 𝐻
1
(Ω) , 𝑝

𝑠
= 𝛽𝑆
𝑝1
, (86)

where 𝛽 is first singular coefficient.The linearity of (85) gives
us

∇𝑆
𝑝1

= ]Δ (curl (𝑟1+𝜂(𝜔)𝜓 (𝜃))) (87)

and since we explicitly know the singularities of the velocity
we can deduce, by simple integration, the singularities of the
pressure.

Consider

𝑆
𝑝1

(𝑟, 𝜃)

=

−𝑟
𝜂(𝜔)−1

((1 + 𝜂 (𝜔))
2

(𝜕𝜓 (𝜃) /𝜕𝜃) + (𝜕
3
𝜓 (𝜃) /𝜕𝜃))

(1 + 𝜂 (𝜔))

(88)

in the case of crack

𝜓 (𝜃) = 3 sin(
𝜃

2
) − sin(

3

2
𝜃) , 𝜂 (𝜔) =

1

2
, (89)

in the case of 𝜔 = 3𝜋/2

𝜓 (𝜃) =
sin ((1 + 𝜂 (𝜔)) 𝜃) cos (𝜂 (𝜔) 𝜔)

(1 + 𝜂 (𝜔))

− cos ((1 + 𝜂 (𝜔)) 𝜃)

+
sin ((𝜂 (𝜔) − 1) 𝜃) cos (𝜂 (𝜔) 𝜔)

(1 − 𝜂 (𝜔))

+ cos ((𝜂 (𝜔) − 1) 𝜃) ,

(90)

and 𝜂(𝜔) = 0.544484.

Proposition 14. For 𝜖 > 0, 𝑆
𝑝1

belongs to 𝐻
0.544484

(𝑉) when
𝜔 = 3𝜋/2 and 𝑆

𝑝1
belongs to 𝐻

0.5
(𝑉) when 𝜔 = 2𝜋.

Proof. It is the same proof that in the case of Proposition 3.

5. Conclusion

We summarize below the regularity results for the Stokes pro-
blem previously obtained.

(1) If f belongs to [𝐻
𝑠−2

(Ω)]
2, where 𝑠 > 0, then (u, 𝑝)

belongs to the space [𝐻𝑠(Ω)]
2
×𝐻
𝑠−1

(Ω), if 𝑠 < 1+𝜂(𝜔). This
means

[𝐻
𝑠
(Ω)]
2

× 𝐻
𝑠−1

(Ω) , for 𝑠 < 1.544484 when 𝜔 =
3𝜋

2
,

[𝐻
𝑠
(Ω)]
2

× 𝐻
𝑠−1

(Ω) , for 𝑠 < 1.5 when 𝜔 = 2𝜋.

(91)

(u, 𝑝) satisfies the following stability condition:

‖u‖
[𝐻
𝑠
(Ω)]
2 +

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻𝑠−1(Ω)

≤ 𝐶‖f‖
[𝐻
𝑠−2
(Ω)]
2 . (92)
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(2)We know, from Corollaries 4 and 13 and formula (86),
that if 𝜔 ̸= 2𝜋, (u, 𝑝) is written

u = u
𝑟
+ 𝜆𝑆
1
, 𝑝 = 𝑝

𝑟
+ 𝛽𝑆
𝑝1 (93)

and if 𝜔 = 2𝜋

u = u
𝑟
+ 𝜆
1
𝑆
1
+ 𝜆̃
1
𝑆
1
, 𝑝 = 𝑝

𝑟
+ 𝛽
1
𝑆
𝑝1

+ 𝛽
1
𝑆
𝑝1
. (94)

If f belongs to [𝐻
𝑠−2

(Ω)]
2, (u
𝑟
, 𝑝
𝑟
) belongs to [𝐻

𝑠
(Ω)]
2
×

𝐻
𝑠−1

(Ω) for 𝑠 < 1 + 𝜂
1
(𝜔), where 𝜂

1
(𝜔) is the second real

solution of (10), in the band 0 < Re(𝑧) < 𝑠; hence

[𝐻
𝑠
(Ω)]
2

× 𝐻
𝑠−1

(Ω) , for 𝑠 < 1.908529 when 𝜔 =
3𝜋

2
,

[𝐻
𝑠
(Ω)]
2

× 𝐻
𝑠−1

(Ω) , for 𝑠 < 2.5 when 𝜔 = 2𝜋.

(95)

We have the following stability condition:
󵄩󵄩󵄩󵄩u𝑟

󵄩󵄩󵄩󵄩[𝐻𝑠(Ω)]2
+
󵄩󵄩󵄩󵄩𝑝𝑟

󵄩󵄩󵄩󵄩𝐻𝑠−1(Ω)
+
󵄨󵄨󵄨󵄨𝜆1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽1

󵄨󵄨󵄨󵄨 ≤ 𝐶‖f‖
[𝐻
𝑠−2
(Ω)]
2 .

(96)

(3) If f belongs to [𝐻
𝑠−2

(Ω)]
2, we can further decompose

the regular part (u
𝑟
, 𝑝
𝑟
) of the solution as follows:

u
𝑟
= ũ
𝑟
+ 𝜆
2
𝑆
2
, 𝑝

𝑟
= 𝑝
𝑟
+ 𝛽
2
𝑆
𝑝2

(97)

(ũ
𝑟
, 𝑝) ∈ [𝐻

𝑠
(Ω)]
2
× 𝐻
𝑠−1

(Ω) for 𝑠 < 1 + 𝜂
2
(𝜔) where 𝜂

2
(𝜔)

is the third reel solution of (10), in the band 0 < Re(𝑧) < 𝑠;
then

[𝐻
𝑠
(Ω)]
2

× 𝐻
𝑠−1

(Ω) , for 𝑠 < 𝜂
2
(
3𝜋

2
) when 𝜔 =

3𝜋

2
,

[𝐻
𝑠
(Ω)]
2

× 𝐻
𝑠−1

(Ω) , for 𝑠 < 3, 5 when 𝜔 = 2𝜋.

(98)

(𝜆
2
, 𝛽
2
) is the singular coefficient associated to the second

singular function (𝑆
2
, 𝑆
𝑝2
); then

󵄩󵄩󵄩󵄩ũ𝑟
󵄩󵄩󵄩󵄩[𝐻𝑠(Ω)]2

+
󵄩󵄩󵄩󵄩𝑝𝑟

󵄩󵄩󵄩󵄩𝐻𝑠(Ω)
+
󵄨󵄨󵄨󵄨𝜆1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜆2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽2

󵄨󵄨󵄨󵄨

≤ 𝐶‖f‖
[𝐻
𝑠−2
(Ω)]
2 .

(99)

In general we can decompose (u, 𝑝) as

u = u
𝑟
+ 𝜆
1
𝑆
1
+ 𝜆
2
𝑆
2
+ ⋅ ⋅ ⋅ + 𝜆

𝑘
𝑆
𝑘
,

𝑝 = 𝑝
𝑟
+ 𝛽
1
𝑆
𝑝1

+ 𝛽
2
𝑆
𝑝2

+ ⋅ ⋅ ⋅ + 𝛽
𝑘
𝑆
𝑝𝑘

,

(100)

where 𝑘 is an integer number.
If f belongs to [𝐻

𝑠−2
(Ω)]
2, (u
𝑟
, 𝑝
𝑟
) belongs to [𝐻

𝑠
(Ω)]
2
×

𝐻
𝑠−1

(Ω) for 𝑠 < 1 + 𝜂
𝑘
(𝜔) where 𝜂

𝑘
(𝜔), 𝑘-ème reel solution

of (10), in the band 0 < Re(𝑧) < 𝑠.
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