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An extending Borgonovo’s global sensitivity analysis is proposed to measure the influence of fuzzy distribution parameters on
fuzzy failure probability by averaging the shift between the membership functions (MFs) of unconditional and conditional failure
probability. The presented global sensitivity indices can reasonably reflect the influence of fuzzy-valued distribution parameters
on the character of the failure probability, whereas solving the MFs of unconditional and conditional failure probability is time-
consuming due to the involved multiple-loop sampling and optimization operators. To overcome the large computational cost, a
single-loop simulation (SLS) is introduced to estimate the global sensitivity indices. By establishing a sampling probability density,
only a set of samples of input variables are essential to evaluate the MFs of unconditional and conditional failure probability in the
presented SLS method. Significance of the global sensitivity indices can be verified and demonstrated through several numerical
and engineering examples.

1. Introduction

Two different uncertainty sources are involved in reliability
engineering: aleatory uncertainty and epistemic uncertainty
[1–3]. Aleatory uncertainty describes the inherent variabil-
ity associated with a structural system, which is referred
to as irreducible, objective uncertainty, while epistemic
uncertainty results from lack of knowledge of fundamental
phenomena and is related to our ability to understand,
measure, and describe the systemunder study. Employing the
probability theory, the aleatory uncertainty can be modeled
as random variable with probability density function (PDF).
When dealing with the epistemic uncertainty, more than one
theory has been developed, such as the interval analysis [4–
6], the evidence theory [7, 8], and the fuzzy set theory [9].

Input variables can be modeled as random variables
when pure aleatory uncertainty is present. Thus available
sensitivity analysis (SA) techniques can be applied to study
how uncertainty in the output of a model can be apportioned
to different sources of uncertainty in the model input. SA
is commonly divided into two groups: local SA (LSA) and
global SA (GSA). LSA is defined as the partial derivatives
of model output with respect to model input, which is

generally computed at one given point. GSA, also known as
importance analysis, focuses on determining which of the
input variables affects output most in the whole uncertainty.
With the ranking of the input variables resulting from impor-
tance analysis, one can pay more attention to variables with
high importance and neglect variables with low importance
during the process of design and optimization, thus providing
useful information and guidance for engineers. At present,
many GSA techniques and indices are available in the case
of randomness, such as nonparametric techniques [10–12],
variance-based importance measure indices [13–16], and
moment-independent importance measures [17–19], among
which moment independent sensitivity analysis is attracting
growing attention among both academics and practitioners.
The moment independent sensitivity index 𝛿

𝑖
proposed by

Borgonovo is widely extended in GSA: Castaings et al. [20],
Plischke et al. [21], and Luo et al. [22] developed methods for
moment independent indices recently; the moment indepen-
dent model was applied to environmental models [23] and
climate model [24] et al.; Wei et al. [25] and Borgonovo et al.
[26] brought up new moment independent indices.

When fuzzy set theory is employed, assignedmembership
function (MF) is used to model the epistemic uncertainty.
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Subsequently, methods for calculating the possibility distri-
bution of output response are proposed [27–32]. Based on
the fuzzy set theory which models the epistemic uncertainty
as a fuzzy variable represented by MF, some methods have
been developed for evaluating the importance of fuzzy
variables [29–31, 33], among which Song et al. [33] proposed
a generalized Borgonovo’s sensitivity indicator to analyze
the effect of fuzzy-valued variables on the output response,
and optimization techniques are employed to calculate the
MF of output response [34]. When two kinds of uncertain-
ties are concomitant in reliability problems, where aleatory
uncertainty is described by PDF and epistemic uncertainty is
modeled by fuzzy set theory, GSA for both fuzzy and random
input variables is constructed by Zhangchun et al. in recent
years [35–37].

However, obviously, the importance of basic variable is
affected by distribution parameters of all involved basic ran-
domvariableswhich need to be designed for the required out-
put response. Therefore, it is essential to analyze the impor-
tance of distribution parameter on probabilistic response in
engineering applications. Recently, GSA is constructed for
systems with both input variables and distribution param-
eters described by PDF [38–40], whereas in this paper, the
input variables are described by PDF and the distribution
parameters are modeled as fuzzy parameters with assigned
MF [41–43].

Then, a global sensitivity analysis is proposed to estimate
the effect of fuzzy-valued distribution parameters on failure
probability. Estimation of the established global sensitivity
indices involves calculating the MFs of unconditional and
conditional failure probability. For the problem that the
computational cost for directMonte-Carlo simulation (MCS)
is rather too expensive to be accepted, a single-loop simula-
tion (SLS) based on the concept of importance sampling is
introduced to calculate the failure probability function (FPF),
where a sampling PDF is introduced to generate a group of
samples of the input variables. Thus, only one set of function
calls is necessary to evaluate the sensitivity indices, and the
efficiency has been greatly improved comparing with the
existed direct MCS.

The paper is organized as follows. In Section 2, sen-
sitivity indices of fuzzy-valued distribution parameters on
failure probability are proposed and their properties are
established. Section 3 gives the detailed procedures for direct
MCS. Section 4 presents the SLS which can greatly save the
computation cost. Applicability of sensitivity indices and
accuracy and efficiency of the SLS are demonstrated by the
numerical and engineering examples in Section 5. The paper
ends with conclusions in Section 6.

2. Global Sensitivity Indices for
Fuzzy Distribution Parameter Based on
Failure Probability

2.1. Definitions of Global Sensitivity Indices. Considering
structural systems with both epistemic and aleatory uncer-
tainties, the output response can be given as

𝑌 = 𝑔 (X) , (1)
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where 𝑌 is the output response. Let X denote the aleatory
variables whose PDF is given by 𝑓X(x | 𝜃

∗
), and 𝜃 =

(𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑝
) refers to the fuzzy-valued distribution param-

eter vector, and its characteristic is represented by a family of
MFs noted by 𝜇

𝜃𝑖
(𝜃
𝑖
) (𝑖 = 1, 2, . . . , 𝑝). Themembership grade

𝜇
𝜃𝑖
(𝜔) quantifies the degree of possibility that parameter 𝜃

𝑖

takes value𝜔. It is possible to evaluate fuzzy parameters using
𝜆-cuts or membership levels. Generally, the cut level 𝜆 takes
value from the interval [0, 1]. At each𝜆-cut level, the variation
of the fuzzy variable is defined by a lower bound 𝜃

𝑖𝐿
(𝜆) and

upper bound 𝜃
𝑖𝑈
(𝜆).

Once the bounds of distribution parameters at 𝜆-cut
are obtained by the corresponding MF 𝜇

𝜃𝑖
(𝜃
𝑖
), the bounds

[𝑃
𝐿

𝑓
(𝜃(𝜆)), 𝑃

𝑈

𝑓
(𝜃(𝜆))] of failure probability at various 𝜆-cut

can be calculated; that is, the MF 𝜇
𝑃𝑓
of unconditional failure

probability is obtained.
While the 𝑖th distribution parameter 𝜃

𝑖
was fixed at a

value 𝜃
∗

𝑖
, that is, 𝜃∗ = (𝜃

1
, . . . , 𝜃

𝑖−1
, 𝜃
∗

𝑖
, 𝜃
𝑖+1

, . . . , 𝜃
𝑝
), the MF

𝜇
𝜃𝑖

𝑃
󸀠
𝑓

of conditional failure probability can also be evaluated.

Obviously, the shift between𝜇
𝑃𝑓
and𝜇

𝜃𝑖

𝑃
󸀠
𝑓

measured by the area
𝑠
𝜃𝑖
, which is the shadow area shown in Figure 1, can reflect the

effect of the fixed parameter 𝜃
𝑖
on failure probability:

𝑠
𝜃𝑖

= ∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜇
𝑃𝑓

− 𝜇
𝜃𝑖

𝑃
󸀠
𝑓

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑃

𝑓
. (2)

The larger the value of 𝑠
𝜃𝑖
is, the more important the

fixed value 𝜃
𝑖
for failure probability is. In average, the global

sensitivity index of 𝜃
𝑖
can be measured by

𝜏
𝜃𝑖

= ∫

+∞

−∞

𝜇
𝜃𝑖
𝑠
𝜃𝑖
𝑑𝜃
𝑖
. (3)

However, in the engineering, the fuzzy-valued distribu-
tion parameters may have different dimensions. In order to
eliminate the infections of the units of distribution parame-
ters, we normalize the distribution parameters by introducing
the equivalent PDF 𝜇

(𝑒)

𝜃𝑖
= 𝜇

𝜃𝑖
/ ∫ 𝜇

𝜃𝑖
𝑑𝜃
𝑖
, which satisfies the

property that ∫𝜇
(𝑒)

𝜃𝑖
𝑑𝜃
𝑖
= 1.The equivalent PDF can eliminate

the effect of the dimensions, while it does not change the
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distribution type of the MFs of distribution parameters [44]
Thus, we have

Γ
𝜃𝑖

= ∫

+∞

−∞

𝜇
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𝑖
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∫

1

0
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(4)

From the above definitions, we know that Γ
𝜃𝑖
represents

the effect of the distribution parameter 𝜃
𝑖
on failure probabil-

ity of structural model.
Generally, MFs of failure probability cannot be expressed

by explicit expression, which are determined by the lower and
upper bounds at various 𝜆-cuts. So the integral of (4) needs
numerical integration to be evaluated; that is,

Γ
𝜃𝑖

=

𝑁

∑

𝑗=1

{Δ𝜃
𝑖
⋅
𝜇
𝜃𝑖
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𝑖,𝑗
)

∫ 𝜇
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×

𝑀

∑
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𝑓
⋅
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(𝑃
(𝑘)

𝑓
) − 𝜇
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𝑓

(𝑃
(𝑘)

𝑓
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
]} ,

(5)

where Δ𝜃
𝑖
and Δ𝑃

𝑓
are the spans of isometric sampling, 𝜃

𝑖,𝑗
is

the 𝑗th fixed value of the distribution parameter 𝜃
𝑖
, and 𝑃

(𝑘)

𝑓

is the 𝑘th value of unconditional failure probability 𝑃
𝑓
.

Global sensitivity index for an individual distribution
parameter can be easily extended to a group of distribution
parameters. Then the sensitivity index for a group of param-
eters can be given as:

Γ
𝜃𝑖 ,𝜃𝑗

= ∫

+∞

−∞

∫

+∞

−∞

𝜇
𝜃𝑖

∫𝜇
𝜃𝑖
𝑑𝜃
𝑖

𝜇
𝜃𝑗

∫𝜇
𝜃𝑗
𝑑𝜃
𝑗

× ∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜇
𝑃𝑓

− 𝜇
𝜃𝑖 ,𝜃𝑗

𝑃
󸀠
𝑓

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑃

𝑓
𝑑𝜃
𝑖
𝑑𝜃
𝑗

Γ
𝜃𝑖|𝜃𝑗

= ∫

+∞

−∞

∫

+∞

−∞

𝜇
𝜃𝑖

∫𝜇
𝜃𝑖
𝑑𝜃
𝑖

𝜇
𝜃𝑗

∫𝜇
𝜃𝑗
𝑑𝜃
𝑗

× ∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜇
𝜃𝑖

𝑃
󸀠
𝑓

− 𝜇
𝜃𝑖 ,𝜃𝑗

𝑃
󸀠
𝑓

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑃

𝑓
𝑑𝜃
𝑖
𝑑𝜃
𝑗
,

(6)

where 𝜇
𝜃𝑖 ,𝜃𝑗

𝑃
󸀠
𝑓

is the MF of conditional failure probability with
distribution parameters 𝜃

𝑖
and 𝜃

𝑗
taken the fixed values 𝜃

∗

𝑖

and 𝜃
∗

𝑗
, respectively.

Similarly, the numerical integrations for (6) are shown as
follows:

Γ
𝜃𝑖 ,𝜃𝑗

=

𝑁𝑖

∑

𝑙=1

𝑁𝑗

∑
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)

∫ 𝜇
𝜃𝑗
𝑑𝜃
𝑗

× {

𝑀

∑

𝑞=1

[Δ𝑃
𝑓
⋅
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𝜇
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(𝑘)

𝑓
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Γ
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⋅
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(7)

Mathematical properties of the sensitivity indices are
discussed in Section 2.2.

2.2. Mathematical Properties of the Proposed Sensitivity Indi-
ces. Similar to the sensitivity indices of the random input
variables proposed by Song et al. [33], themathematical prop-
erties of the proposed sensitivity indices for fuzzy distribution
parameters can be explained as follows.

Property 1. Γ
𝜃𝑖

≥ 0.

Property 2. If failure probability 𝑃
𝑓
is independent of 𝜃

𝑖
, then

Γ
𝜃𝑖

= 0.

Property 3. If 𝑃
𝑓
is dependent of 𝜃

𝑖
but independent of 𝜃

𝑗
,

then Γ
𝜃𝑖𝜃𝑗

= Γ
𝜃𝑖
, Γ
𝜃𝑖|𝜃𝑗

= 0, and Γ
𝜃𝑗|𝜃𝑖

= Γ
𝜃𝑖
.

Proofs for the above properties are similar with those in
[19].

Note that since the sensitivity index 𝛿
𝑖
proposed by Bor-

gonovo et al. has the property of transformation invariance
[45, 46], thus the algorithms of computing the delta index can
converge even faster if a monotonic transformation is applied
when dealing with large distribution region of the model
output. From the definitions in (2) and (3), we can see that
the inner statistic of Γ

𝜃𝑖
and inner statistic of 𝛿

𝑖
both are 𝐿

1-
norm on densities; thus; the moment independent sensitivity
index for fuzzy-valued parameters is also monotonic trans-
formation invariant. For knowing about the detailed property
of moment-independent sensitivity index, one could refer to
[45, 46].

3. MCS for Evaluating MFs of
Failure Probability

Failure probability 𝑃
𝑓
is a function of the basic fuzzy-valued

distribution parameter 𝜃 = (𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑝
), given by 𝑃

𝑓
=

𝜓(𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑝
). Details of MCS for evaluating the MF of

failure probability are as follows.
(1) At 𝜆

𝑘
-cut (𝑘 = 1, 2, . . . , 𝑁

𝜆
), the lower bounds and

upper bounds of the parameters 𝜃 = (𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑝
)
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can be obtained as [𝜃
𝑖𝐿
(𝜆
𝑘
), 𝜃

𝑖𝑈
(𝜆
𝑘
)] (𝑖 = 1, 2, . . . , 𝑝)

according to the MF 𝜇
𝜃𝑖
(𝜃
𝑖
) of basic fuzzy-valued

parameter 𝜃
𝑖
. Generate 𝑁 samples 𝜃

𝑡
= (𝜃

1𝑡
,

𝜃
2𝑡
, . . . , 𝜃

𝑝𝑡
) (𝑡 = 1, 2, . . . , 𝑁) according to the inter-

vals of distribution parameters at the given 𝜆
𝑘
-cut.

(2) For each sample 𝜃
𝑡
, generate 𝑁 samples x

𝑠
= (𝑥

1𝑠
,

𝑥
2𝑠
, . . . , 𝑥

𝑛𝑠
) (𝑠 = 1, 2, . . . , 𝑁) of aleatory variables

X, and then the corresponding 𝑁 samples 𝑃
𝑠

𝑓
(𝑠 =

1, 2, . . . , 𝑁) of failure probability 𝑃
𝑓
can be evaluated.

Thus, the lower bound 𝑃
𝐿

𝑓
(𝜆
𝑘
) and upper bound

𝑃
𝑈

𝑓
(𝜆
𝑘
) of unconditional failure probability at given

𝜆
𝑘
-cut can be obtained.

(3) Iterate (1) and (2) for 𝑁
𝜆
times; then, the MF of un-

conditional failure probability 𝜇
𝑃𝑓

is evaluated.

(4) Change parameter matrix 𝜃
𝑡

= (𝜃
1𝑡
, 𝜃
2𝑡
, . . . , 𝜃

𝑝𝑡
)

to 𝜃∗
𝑡

= (𝜃
1𝑡
, 𝜃
2𝑡
, . . . , 𝜃

∗

𝑖𝑡
, . . . , 𝜃

𝑝𝑡
) by fixing the 𝑖th

distribution parameter 𝜃
𝑖
at its fixed value 𝜃

𝑖𝑡
(𝑖 =

1, 2, . . . , 𝑝, 𝑡 = 1, 2, . . . , 𝑁).

(5) For each sample 𝜃∗
𝑡
, generate 𝑁 samples x∗

𝑠
= (𝑥

1𝑠
,

𝑥
2𝑠
, . . . , 𝑥

𝑛𝑠
) (𝑠 = 1, 2, . . . , 𝑁) of aleatory variables

X; then, the corresponding 𝑁 samples 𝑃
𝑠
∗

𝑓
(𝑠 =

1, 2, . . . ,𝑀) of failure probability𝑃
∗

𝑓
can be evaluated.

Thus, the lower bound 𝑃
𝐿
∗

𝑓
(𝜆
𝑘
) and upper bound

𝑃
𝑈
∗

𝑓
(𝜆
𝑘
) of conditional failure probability at given 𝜆

𝑘
-

cut can be obtained.

(6) Iterate (4) and (5) for 𝑁 times; then, the 𝑁 MFs
𝜇
𝑃𝑓|𝜃𝑖=𝜃𝑖𝑡

(𝑡 = 1, 2, . . . , 𝑁) of conditional failure
probability can be obtained.

(7) Iterate (4), (5), and (6) for 𝑝 times; all the MFs of
conditional failure probability of distribution param-
eters 𝜇

𝑃𝑓|𝜃𝑗=𝜃𝑗𝑡
(𝑗 = 1, 2, . . . , 𝑝, 𝑡 = 1, 2, . . . , 𝑁) can be

evaluated.

We can see from the procedures in Figure 2 that using
MCS combing optimization techniques 𝑁 × 𝑁 × 𝑁

𝜆
and

𝑝 × 𝑁 × 𝑁 × 𝑁 × 𝑁
𝜆
function calls are needed to calculate

the MFs of unconditional and conditional failure probability,
which is unacceptable especially in engineering problems.
Thus, a single-loop method is proposed to evaluate the FPF
of the distribution parameters in Section 4. (𝑁 is the sample
number of distribution parameters and𝑁

𝜆
is the cut number

of the membership functions.)

4. SLS for Evaluating MFs of
Failure Probability

By definition, FPF is expressed as

𝑃
𝑓 (𝜃) = ∫

𝑔(x)≤0
𝐼
𝐹 (x) 𝑓 (x𝜃) 𝑑x. (8)

Suppose now we have a joint PDF ℎx(x) of model input
vector with constant distribution parameter vector 𝜃∗ =

(𝜃
∗

1
, 𝜃
∗

2
, . . . , 𝜃

∗

𝑚
). Then the FPF can be derived as

𝑃
𝑓 (𝜃) = ∫

𝐼
𝐹 (x) 𝑓x (x | 𝜃)

ℎx (x)
ℎx (x) 𝑑x

= 𝐸
ℎ
(
𝐼
𝐹 (x) 𝑓x (x | 𝜃)

ℎx (x)
) ,

(9)

where ℎx(x) is an arbitrary selected joint PDF of X with
constant distribution parameters 𝜃∗. Equation (9) indicates
that 𝑃

𝑓
(𝜃) can be expressed as the expectation of the function

𝐼
𝐹
(x)𝑓x(x | 𝜃)/ℎx(x). Given a set of model input vector sam-

ples x(𝑘) = (𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
) (𝑘 = 1, 2, . . . , 𝑁) generated by

the joint PDF ℎx(x), then 𝑃
𝑓
(𝜃) can be estimated by

𝑃̂
𝑓 (𝜃) =

1

𝑁

𝑁

∑

𝑘=1

𝐼
𝐹
(x(𝑘)) 𝑓x (x(𝑘)𝜃)

ℎx (x(𝑘))
. (10)

Detailed procedures for SLS are as follows.

(1) Generate 𝑁 samples x
𝑠

= (𝑥
1𝑠
, 𝑥
2𝑠
, . . . , 𝑥

𝑛𝑠
) (𝑠 =

1, 2, . . . , 𝑁) according to the joint PDF ℎx(x). For each
x
𝑠
(𝑠 = 1, 2, . . . , 𝑁), calculate the values of selected

joint PDF ℎx(x𝑠) and failure indicator 𝐼𝐹(x𝑠) as ℎ𝑠 and
𝐼
𝑠

𝐹
.

(2) At 𝜆
𝑘
-cut (𝑘 = 1, 2, . . . , 𝑁

𝜆
), the lower and upper

bounds of the parameters 𝜃 = (𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑝
) can be

obtained as [𝜃
𝑖𝐿
(𝜆
𝑘
), 𝜃

𝑖𝑈
(𝜆
𝑘
)] (𝑖 = 1, 2, . . . , 𝑝) accord-

ing to the MF 𝜇
𝜃𝑖
(𝜃
𝑖
) of basic fuzzy-valued parameter.

Generate 𝑁 samples 𝜃
𝑡

= (𝜃
1𝑡
, 𝜃
2𝑡
, . . . , 𝜃

𝑝𝑡
) (𝑡 =

1, 2, . . . , 𝑁) according to the intervals of distribution
parameters at the given 𝜆

𝑘
-cut.

(3) For each 𝜃
𝑡
(𝑡 = 1, 2, . . . , 𝑁), calculate the values of

the original joint PDF 𝑓x(x𝑠 | 𝜃) as 𝑓
𝑠. Then (10) can

be calculated as (1/𝑁)∑
𝑁

𝑠=1
𝐼
𝑠

𝐹
𝑓
𝑠
/ℎ
𝑠; that is, 𝑃̂

𝑓
(𝜃
𝑡
) is

obtained.
(4) Iterate (3) for 𝑁 times; then, 𝑃̂

𝑓
(𝜃) is calculated.

Thus, the lower bound 𝑃̂
𝐿

𝑓
and upper bound 𝑃̂

𝑈

𝑓
of

unconditional failure probability at given 𝜆
𝑘
-cut are

obtained.
(5) Iterate (3) and (4) for 𝑁

𝜆
times, and the MF 𝜇

𝑃𝑓
of

unconditional failure probability can be evaluated.
(6) Change parameter matrix 𝜃

𝑡
= (𝜃

1𝑡
, 𝜃
2𝑡
, . . . , 𝜃

𝑝𝑡
)

to 𝜃∗
𝑡

= (𝜃
1𝑡
, 𝜃
2𝑡
, . . . , 𝜃

∗

𝑖𝑡
, . . . , 𝜃

𝑝𝑡
) by fixing the 𝑖th

distribution parameter 𝜃
𝑖
at its fixed value 𝜃

𝑖𝑡
(𝑖 =

1, 2, . . . , 𝑝, 𝑡 = 1, 2, . . . , 𝑁).
(7) For each 𝜃∗

𝑡
(𝑡 = 1, 2, . . . , 𝑁), calculate the values of

the original joint PDF 𝑓x(x𝑠 | 𝜃) as 𝑓𝑠
∗

. Then (10) can
be calculated as (1/𝑁)∑

𝑁

𝑘=1
𝐼
𝑠

𝐹
𝑓
𝑠
∗

/ℎ
𝑠; that is, 𝑃̂

𝑓
(𝜃
∗

𝑡
) is

obtained.
(8) Iterate (7) for 𝑁 times; then, 𝑃̂

𝑓
(𝜃
∗
) is calculated.

Thus, the lower bound 𝑃̂
𝐿
∗

𝑓
and upper bound 𝑃̂

𝑈
∗

𝑓

of conditional failure probability at given 𝜆
𝑘
-cut are

obtained.
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Generate N samples ∗
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𝜃
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x

(b) MCS for evaluating MFs of conditional failure probability

Figure 2: Flow chart of MCS for evaluating the MFs of unconditional and conditional failure probability.
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Table 1: Results of global sensitivity indices for Example 1, Case 1.

MCS SLS
{Γ
𝜇1
, Γ
𝜇2
} {0.0461, 0.0461} {0.0458, 0.0463}

{Γ
𝜇1𝜇2

} {0.0356} {0.0362}
{Γ
𝜇1 |𝜇2

, Γ
𝜇2 |𝜇1

} {0.0192, 0.0193} {0.0187, 0.0189}
Function Calls
(𝑁 = 2000,𝑁

𝜆
= 21, 𝑝 = 2)

𝑝 × 𝑁 × 𝑁 × 𝑁 × 𝑁
𝜆
+ 𝑁 × 𝑁 × 𝑁

𝜆
𝑁

(9) Iterate (7) and (8) for 𝑁
𝜆
times, and the MF 𝜇

𝑃𝑓|𝜃𝑖=𝜃𝑖𝑡

of conditional failure probability can be evaluated.

(10) Iterate (7), (8), and (9) for 𝑁 × 𝑝 times, and all the
MFs 𝜇

𝑃𝑓|𝜃𝑖=𝜃𝑖𝑡
(𝑖 = 1, 2, . . . , 𝑝, 𝑡 = 1, 2, . . . , 𝑁) of

conditional failure probability are evaluated.

The procedure in Figure 3 shows that given any 𝜆
𝑘
-cut

(𝑘 = 1, 2, . . . , 𝑁
𝜆
), the interval of distribution parameters

[𝜃
𝐿
(𝜆
𝑘
), 𝜃

𝑈
(𝜆
𝑘
)] can be obtained; thus, the failure prob-

ability can be estimated using (10); that is, (10) can be
treated as the imitate explicit function of the distribution
parameters. Then any arbitrary optimization method can be
used to get the upper and lower bounds of failure prob-
ability [𝑃

𝐿

𝑓
(𝜆
𝑘
), 𝑃

𝑈

𝑓
(𝜆
𝑘
)] at given interval [𝜃

𝐿
(𝜆
𝑘
), 𝜃

𝑈
(𝜆
𝑘
)]

of distribution parameters. Only one set of samples of the
aleatory variables is used in the procedure at different 𝜆

𝑘
-

cut and only 𝑁 function calls are needed to calculate the
MF of unconditional failure probability. The procedures for
calculating the MFs of conditional failure probability are
similar, and the only difference is that the one or a group of
distribution parameters are fixed at certain value.

Hence the above procedures for estimating the FPF need
only one set of samples for implementing it; that is, the
function calls for SLS is𝑁; thus, it is computationally efficient.

Considering that the computational cost is rather expen-
sive, optimization techniques can be employed to calculate
the minimum and maximum values of the failure probability
within the specified bounds of the cuts of the fuzzy-valued
parameters corresponding to 𝜆-cut. Thus, combing MCS
and SLS with local/global optimization techniques can be
efficient. Accuracy and efficiency of the SLS can be established
in Section 5.

5. Examples

A number of examples are used to demonstrate the availabil-
ity and feasibility of the presented sensitivity indicator. These
examples involve some cases met in engineering commonly,
for example, normal, triangular, or trapezoidal types MFs,
and MFs of failure probability are calculated by employing
the optimization techniques.

Example 1. The response function 𝑧 = 4 − 𝑥
1
− 𝑥

2
has two

variables. Case 1: 𝑥
𝑖
∼ 𝑁(𝜇

𝑖
, 2), 𝜇

𝑖
(𝑖 = 1, 2) are fuzzy-valued

Table 2: Results of global sensitivity indices for Example 1, Case 2.

MCS SLS
{Γ
𝜎1
, Γ
𝜎2
} {0.0172, 0.0178} {0.0175, 0.0173}

{Γ
𝜎1𝜎2

} {0.0281} {0.0279}
{Γ
𝜎1 |𝜎2

, Γ
𝜎2 |𝜎1

} {0.0149, 0.0147} {0.0151, 0.0146}

distribution parameters. Case 2: 𝑥
𝑖
∼ 𝑁(1, 𝜎

𝑖
), 𝜎

𝑖
(𝑖 = 1, 2)

are fuzzy-valued parameters. The MFs are listed as follows:

𝜇
𝜇𝑖

(𝜇
𝑖
) = {

4 − 𝜇
𝑖

3 ≤ 𝜇
𝑖
≤ 4

𝜇
𝑖
− 2 2 ≤ 𝜇

𝑖
≤ 3,

𝜇
𝜎𝑖

(𝜎
𝑖
) = {

4 − 𝜎
𝑖

3 ≤ 𝜎
𝑖
≤ 4

𝜎
𝑖
− 2 2 ≤ 𝜎

𝑖
≤ 3.

(11)

The MFs of failure probability are drawn in Figures 4
and 5, and the results of global sensitivity indices calculated
by MCS and SLS combing with optimization techniques are
listed in Table 1.

Case 1. See Figure 4 and Table 1.

Case 2. See Figure 5 and Table 2.

Figures 4 and 5 show that the MFs of failure probability
obtained by the SLS are in good accordance with those
obtained by MCS, which testifies the accuracy of SLS. And
Tables 1 and 2 indicate that the sensitivity indices of the two
distribution parameters are equal, which is reasonable in this
example. In addition, the accuracy of SLS is proved again by
the results estimated by the two methods in Tables 1 and 2. In
addition, the function calls of the two methods are also listed
in Table 1, proving that SLS is greatly efficient in evaluating
the proposed sensitivity indices.

To make the numerical results more robust, we carry out
the calculations of sensitivity indices at increasing sample
sizes to demonstrate convergence. Figures 6 and 7 show the
convergence plot for Case 1 using MCS and SLS, respectively.
One can easily find that the results begin to converge at the
level of 2 × 10

3. Thus we take 𝑁 = 2 × 10
3 as shown in

Table 1.
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f(𝜆k) and upper bound PU

f (𝜆k)

k = N𝜆? k = k + 1
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No

Evaluate the MF 𝜇P𝑓 of unconditional failure probability

Generate N samples s = (x1s, x2s, , xns) according to the PDF hx(x) and calculate hx(xs) and IF(xs)

Calculate the corresponding fx (x | ), and obtain Pf( ) according to Pf =
1

N
∑ I

s
Ff

s
/h

s

s = 1

N

. . .

Generate N samples t = (𝜃1t, 𝜃2t, , 𝜃pt) according to the interval [𝜃iL(𝜆k), 𝜃iU(𝜆k)] = 1, 2, , p). . . . . .(i

x

𝜃

𝜃 𝜃

(a) SLS for evaluating MF of unconditional failure probability

Generate N samples 𝜃t = (𝜃1t, 𝜃2t, , 𝜃pt) according to the interval [𝜃iL(𝜆k), 𝜃iU(𝜆k)] = 1, 2, , p). . . . . .(i

Start

End

Obtain the lower bound PU∗

f (𝜃) and upper bound PL∗

f (𝜃)

k = N𝜆? k = k + 1

Yes

Yes

Yes

No

No

No
t = N?

i = p?

t = t + 1

i = i + 1

Obtain the failure probability function P∗
f (𝜃) according to Pf =

1

N
∑ I

s
Ff

s
/h

s
N

s = 1

Generate N samples xs = (x1s, x2s, , xns) according to the PDF hx(x) and calculate hx(xs) and IF(xs). . .

Change matrix 𝜃t = (𝜃1t, 𝜃2t, , 𝜃pt) to 𝜃∗t = (𝜃1t, 𝜃2t, , 𝜃∗it, , 𝜃pt) by fixing 𝜃i at 𝜃it. . .. . .. . .

Generate N samples x∗s = (x1s, x2s, , xns), and calculate fx (x∗s |𝜃
∗
t ). . .

Evaluate all the MFs 𝜇P𝑓|𝜃𝑖𝑡 (i = 1, , p, t = 1, , N) of conditional failure probability. . .. . .

(b) SLS for evaluating MFs of conditional failure probability

Figure 3: Flow chart of SLS for evaluating the MFs of unconditional and conditional failure probability.



8 Journal of Applied Mathematics

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pf

𝜇
P
𝑓

MCS
SLS

Figure 4: MFs of failure probability for Example 1, Case 1.
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Figure 5: MFs of failure probability for Example 1, Case 2.

Example 2. The response function 𝑔 = sin𝑥
1
+ 7sin2𝑥

2
+

0.1𝑥
4

3
sin𝑥

1
includes three variables, where 𝑥

𝑖
∼ 𝑁(0, 𝜎

𝑖
).

And the MFs of distribution parameters 𝜎
𝑖
are given as

𝜇
𝜎𝑖

(𝜎
𝑖
) =

{{{{{{{{{

{{{{{{{{{

{

0 𝜎
𝑖
≤ 0.3𝜋

5

𝜋𝜎
𝑖

− 1.5 0.3𝜋 ≤ 𝜎
𝑖
≤ 0.5𝜋

1 0.5𝜋 ≤ 𝜎
𝑖
≤ 0.7𝜋

8 −
10𝜎

𝑖

𝜋
0.7𝜋 ≤ 𝜎

𝑖
≤ 0.8𝜋

0 𝜎
𝑖
≥ 0.8𝜋.

(12)

The MFs of failure probability are drawn in Figure 8, and
the results of sensitivity indices calculated by MCS and SLS
combing with optimization techniques are listed in Table 3.

Results of sensitivity indices in Table 3 indicate that
the fuzzy-valued parameter 𝜎

3
makes more contribution to

failure probability of the structural model than the other
parameters. And the results evaluated by SLS are in good
agreement with those evaluated by MCS.
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Figure 6: Convergence plot of MCS for Example 1, Case 1.
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Figure 7: Convergence plot of SLS for Example 1, Case 1.

Table 3: Results of global sensitivity indices for Example 2.

MC SL
{Γ
𝜎1
, Γ
𝜎2
, Γ
𝜎3
} {0.0230, 0.0207, 0.0278} {0.0228, 0.0201, 0.0291}

{Γ
𝜎1𝜎2

, Γ
𝜎1𝜎3

, Γ
𝜎2𝜎3

} {0.0213, 0.0318, 0.0308} {0.0221, 0.0336, 0.0324}
{Γ
𝜎1 |𝜎2

, Γ
𝜎1 |𝜎3

} {0.0191, 0.0342} {0.0195, 0.0361}
{Γ
𝜎2 |𝜎1

, Γ
𝜎2 |𝜎3

} {0.0169, 0.0294} {0.0187, 0.0302}
{Γ
𝜎3 |𝜎1

, Γ
𝜎3 |𝜎2

} {0.0371, 0.0376} {0.0369, 0.0381}

Example 3. A roof truss is shown in Figure 9, and the top
boom and the compression bars are reinforced by concrete,
and the bottom boom and the tension bars are steel. Assume
the uniformly distributed load 𝑞 is applied on the roof truss,
and the uniformly distributed load can be transformed into
the nodal load 𝑃 = 𝑞𝑙/4. Taking the safety and applicability
into account, the perpendicular deflection Δ

𝐶
of the peak

of structure node 𝐶 not exceeding 2.8 cm is taken as the
constraint condition, and the performance response function
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Table 4: Distribution parameters of the input variables of roof truss.

Random variables 𝑞 (N/m) 𝑙 (m) 𝐴
𝑆
(m2) 𝐴

𝐶
(m2) 𝐸

𝑆
(N/m2) 𝐸

𝐶
(N/m2)

Mean 𝜇
𝑥

20000 12 9.82 × 10
−4

0.04 1 × 10
11

2 × 10
10

Standard deviation 𝜎
𝑥

𝜎
𝑞

𝜎
𝑙

𝜎
𝐴𝑠

𝜎
𝐴𝑐

𝜎
𝐸𝑠

𝜎
𝐸𝑐

Table 5: Coefficients for membership function of 𝜎
𝑥
.

Standard deviation 𝜎
𝑥

𝜎
𝑞

𝜎
𝑙

𝜎
𝐴𝑠

𝜎
𝐴𝑐

𝜎
𝐸𝑠

𝜎
𝐸𝑐

Coefficient 𝑎 1400 0.12 5.892 × 10
−5 0.0048 6 × 10

9
1.2 × 10

9

Coefficient 𝑏 700 0.006 2.95 × 10
−6 0.0002 3 × 10

8
6 × 10

7
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Figure 8: MFs of failure probability for Example 2.

can be constructed by 𝑔(𝑥) = 0.028 − Δ
𝐶
, where Δ

𝐶

is the function of the basic random variables and Δ
𝐶

=

(𝑞𝑙
2
/2)(3.81/𝐴

𝐶
𝐸
𝐶

+ 1.13/𝐴
𝑆
𝐸
𝑆
), and 𝐴

𝐶
, 𝐴

𝑆
, 𝐸

𝐶
, 𝐸

𝑆
, and

𝑙, respectively, are sectional area, elastic modulus, length
of the concrete, and steel bars; the distribution parameters
of these independent normal basic random variables are
listed in Table 4. It is assumed that the standard deviation of
the variables is fuzzy parameters with membership function
𝜇
𝜎𝑖
(𝜎
𝑖
) = exp(−(𝑥 − 𝑎)

2
/2𝑏

2
). And the coefficients are listed

in Table 5.

TheMFs of failure probability are drawn in Figure 10, and
the results of sensitivity indices calculated by MCS and SLS
combing with optimization techniques are listed in Table 6.

Results of sensitivity indices in Table 6 show that the
rank of fuzzy valued distribution parameter is 𝜎

𝐴𝑠
> 𝜎

𝐸𝑠
>

𝜎
𝐴𝑐

> 𝜎
𝐸𝑐

> 𝜎
𝑙

> 𝜎
𝑞
, among which 𝜎

𝑞
has little effect

on the failure probability of the fuzzy structural model,
and the effect of 𝜎

𝑞
with other parameters is the smallest

among all the Γ
𝜃𝑖𝜃𝑗

. In addition, the sensitivity indices can
be estimated by the SLS guaranteeing acceptable accuracy
with only one set of samples, which can greatly improve the
computational efficiency. As testified by the results of Exam-
ples 1–3, properties of the sensitivity indices are obviously
satisfied.
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Figure 9: Schematic diagram of a roof truss.
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Figure 10: MFs of failure probability for Example 3.

6. Conclusion

Aglobal sensitivity index of fuzzy-valued distribution param-
eter on the fuzzy failure probability is defined in this work.
The key to calculate the sensitivity index is to evaluate
the MFs of failure probability. For the problem that the
computational cost of MCS is rather expensive, a SLS is
introduced to estimate the proposed sensitivity indices,
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Table 6: Results of global sensitivity indices for Example 3.

MCS SLS

{Γ
𝜎𝑞
, Γ
𝜎𝑙
, Γ
𝜎𝐴𝑠

, Γ
𝜎𝐴𝑐

, Γ
𝜎𝐸𝑠

, Γ
𝜎𝐸𝑐

}
10
−3

×

{0.2553, 0.4535, 0.8478, 0.7000, 0.7010, 0.4694}

10
−3

×

{0.2385, 0.4412, 0.8324, 0.7132, 0.6829, 0.4367}

{Γ
𝜎𝑞𝜎𝑙

, Γ
𝜎𝑞𝜎𝐴𝑠

, Γ
𝜎𝑞𝜎𝐴𝑐

, Γ
𝜎𝑞𝜎𝐸𝑠

, Γ
𝜎𝑞𝜎𝐸𝑐

} {0.0009, 0.0010, 0.0011, 0.0009, 0.0009} {0.0007, 0.0008, 0.0009, 0.0007, 0.0007}
{Γ
𝜎𝑙𝜎𝐴𝑠

, Γ
𝜎𝑙𝜎𝐴𝑐

, Γ
𝜎𝑙𝜎𝐸𝑠

, Γ
𝜎𝑙𝜎𝐸𝑐

} {0.0027, 0.0032, 0.0025, 0.0024} {0.0023, 0.0028, 0.0022, 0.0021}
{Γ
𝜎𝐴𝑠

𝜎𝐴𝑐
, Γ
𝜎𝐴𝑠

𝜎𝐸𝑠
, Γ
𝜎𝐴𝑠

𝜎𝐸𝑐
} {0.0035, 0.0029, 0.0027} {0.0028, 0.0025, 0.0023}

{Γ
𝜎𝐴𝑐

𝜎𝐸𝑠
, Γ
𝜎𝐴𝑐

𝜎𝐸𝑐
} {0.0033, 0.0032} {0.0027, 0.0026}

{Γ
𝜎𝐸𝑠

𝜎𝐸𝑐
} {0.0024} {0.0021}

{Γ
𝜎𝑞 |𝜎𝑙

, Γ
𝜎𝑞 |𝜎𝐴𝑠

, Γ
𝜎𝑞 |𝜎𝐴𝑐

, Γ
𝜎𝑞 |𝜎𝐸𝑠

, Γ
𝜎𝑞 |𝜎𝐸𝑐

} {0.0024, 0.0023, 0.0029, 0.0024, 0.0024} {0.0021, 0.0020, 0.0027, 0.0021, 0.0021}
{Γ
𝜎𝑙 |𝜎𝑞

, Γ
𝜎𝑙 |𝜎𝐴𝑠

, Γ
𝜎𝑙 |𝜎𝐴𝑐

, Γ
𝜎𝑙 |𝜎𝐸𝑠

, Γ
𝜎𝑙 |𝜎𝐸𝑐

} {0.0023, 0.0070, 0.0084, 0.0069, 0.0069} {0.0020, 0.0064, 0.0078, 0.0064, 0.0064}
{Γ
𝜎𝐴𝑠

|𝜎𝑞
, Γ
𝜎𝐴𝑠

|𝜎𝑙
, Γ
𝜎𝐴𝑠

|𝜎𝐴𝑐
, Γ
𝜎𝐴𝑠

|𝜎𝐸𝑠
, Γ
𝜎𝐴𝑠

|𝜎𝐸𝑐
} {0.0023, 0.0072, 0.0087, 0.0073, 0.0072} {0.0020, 0.0066, 0.0080, 0.0067, 0.0067}

{Γ
𝜎𝐴𝑐

|𝜎𝑞
, Γ
𝜎𝐴𝑐

|𝜎𝑙
, Γ
𝜎𝐴𝑐

|𝜎𝐴𝑠
, Γ
𝜎𝐴𝑐

|𝜎𝐸𝑠
, Γ
𝜎𝐴𝑐

|𝜎𝐸𝑐
} {0.0028, 0.0085, 0.0085, 0.0085, 0.0085} {0.0024, 0.0080, 0.0080, 0.0080, 0.0080}

{Γ
𝜎𝐸𝑠

|𝜎𝑞
, Γ
𝜎𝐸𝑠

|𝜎𝑙
, Γ
𝜎𝐸𝑠

|𝜎𝐴𝑠
, Γ
𝜎𝐸𝑠

|𝜎𝐴𝑐
, Γ
𝜎𝐸𝑠

|𝜎𝐸𝑐
} {0.0024, 0.0072, 0.0073, 0.0087, 0.0070} {0.0021, 0.0066, 0.0066, 0.0080, 0.0064}

{Γ
𝜎𝐸𝑐

|𝜎𝑞
, Γ
𝜎𝐸𝑐

|𝜎𝑙
, Γ
𝜎𝐸𝑐

|𝜎𝐴𝑠
, Γ
𝜎𝐸𝑐

|𝜎𝐴𝑐
, Γ
𝜎𝐸𝑐

|𝜎𝐸𝑠
} {0.0023, 0.0070, 0.0071, 0.0085, 0.0070} {0.0020, 0.0064, 0.0064, 0.0067, 0.0064}

which can greatly improve the computational efficiency
considerably with acceptable accuracy. Applications of the
sensitivity indices proposed in this paper to the numeri-
cal and engineering examples show that fuzzy sensitivity
indices can provide useful information about the sequence
of the distribution parameters on the fuzzy uncertainty of
failure probability, and the proposed sensitivity indices can
identify the relative important fuzzy distribution parameters
of the structural model, thus providing useful informa-
tion for engineers in the process of reliability design and
optimization.
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