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In the rough fuzzy set theory, the rough degree is used to characterize the uncertainty of a fuzzy set, and the rough entropy of a
knowledge is used to depict the roughness of a rough classification. Both of them are effective, but they are not accurate enough. In
this paper, we propose a new rough entropy of a rough fuzzy set combining the rough degree with the rough entropy of a knowledge.
Theoretical studies and examples show that the new rough entropy of a rough fuzzy set is suitable. As an application, we introduce
it into a fuzzy-target decision-making table and establish a new method for evaluating the entropy weight of attributes.

1. Introduction

The rough set theory, introduced by Pawlak [1, 2], is a useful
and important tool to deal with uncertain information
systems. It has been studied and applied in many fields, such
as artificial intelligence, making decision, machine learning,
and pattern recognition. In the traditional rough set theory,
targets are often ordinary. However, in actual problems, we
often encounter some cases in which targets are fuzzy [3]. In
order to describe this kind of fuzzy targets, Dubois and Prade
[4, 5] proposed the concept of rough fuzzy set, which is a good
combination of rough sets and fuzzy sets. As an important
issue in the rough fuzzy set theory, measuring uncertainty
has been widely studied (see [6–9]). There are two primary
reasons which cause the uncertainty. One reason is that the
boundary region of the target’s approximation space could
produce roughness. The larger the boundary region is, the
larger the roughness of the target is. The kind of roughness is
classified into system uncertainty andmeasured by the rough
degree [3, 10] from the view of algebra. Another reason is the
roughness produced by a knowledge which is a division and
divided by the binary relation on universe. The more objects
the equivalent classes have, the rougher the knowledge is.This
kind of uncertainty is classified into knowledge’s uncertainty
and measured by the rough entropy [11, 12] of a knowledge
from the view of information theory.

However, there exist some deficiencies about these uncer-
tainty measures of rough fuzzy sets mentioned above. On
the one hand, the rough degree is not strictly monotonic
with finer knowledge. That implies that the rough degree is
not accurate enough. On the other hand, the rough entropy
of knowledge does not reflect the uncertainty produced by
the boundary region of approximation space. In order to
overcome these limitations, we propose a new rough entropy
about rough fuzzy sets, which considers not only the rough
degree but also the rough entropy of a knowledge. This is the
first aim in this paper (see Section 3).

Inmultiattribute decision-making problems, the research
of evaluating attribute weights is always a hot area. There
are some traditional methods to determine attribute weights,
such as expert grading, binary comparing, fuzzy statistics,
and grey relational analysis. Nevertheless these methods
depend largely on decision maker’s experience. Now, the
rough set theory has been introduced into research of
determiningweights. Usually, there are two kinds ofmethods.
From the view of algebraic theory [13, 14], the rough degree
is used to determine weights of attribute. This method is
effective but sometimes leads to an impractical case in which
some weights may be zero. From the view of information
theory [15, 16], information entropy is used to determine
weights. This method can avoid the case in which the weight
is equal to zero. But it may lead to an awkward case in which
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weights of some redundant attributes are bigger than that
of nonredundant attributes weights. In this paper, we will
introduce the new rough entropy of rough fuzzy sets into
fuzzy-target decision-making tables. As an application, we
give a new method to evaluate entropy weights. That is the
second aim in this paper (see Section 4).

2. Basic Concepts of Rough Fuzzy Sets

In order to deal with complicated fuzzy information systems
integrating the rough set theory, Dubois and Prade in [4]
introduced equivalent relations into fuzzy sets and proposed
the concept of rough fuzzy sets.

Let 𝑈 be universe, and let 𝑅 ⊆ 𝑈 × 𝑈 be an equivalent
relation. Then (𝑈, 𝑅) constitutes a Pawlak approximation
space. The set of equivalent classes 𝑈/𝑅 = {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
}

generated by 𝑅 on 𝑈 is called a knowledge. [𝑥]
𝑅
denotes the

equivalent class of the element 𝑥. 𝐹(𝑈) denotes the set of all
fuzzy sets on 𝑈.

Definition 1 (see [3, 10]). Let (𝑈, 𝑅) be a Pawlak approxima-
tion space, and let 𝐴 be a fuzzy set on 𝑈. Then the lower and
upper approximation sets of 𝐴 on (𝑈, 𝑅) are defined by 𝑅(𝐴)

and 𝑅(𝐴), respectively, where

𝑅 (𝐴) (𝑥) = min {𝐴 (𝑦) | 𝑦 ∈ [𝑥]𝑅} , ∀𝑥 ∈ 𝑈,

𝑅 (𝐴) (𝑥) = max {𝐴 (𝑦) | 𝑦 ∈ [𝑥]𝑅} , ∀𝑥 ∈ 𝑈.

(1)

𝑅 and 𝑅 are called the lower and upper approximation
operators.Theordered pair (𝑅(𝐴), 𝑅(𝐴)) is called rough fuzzy
set. If 𝑅(𝐴) = 𝑅(𝐴), 𝐴 is said to be definable. Otherwise, 𝐴 is
said to be rough.

In Definition 1, 𝑅(𝐴)(𝑥) can be understood as the mem-
bership that the element 𝑥 affiliated at lowest level to 𝐴

and 𝑅(𝐴)(𝑥) as the membership that the element 𝑥 affiliated
possibly to 𝐴. If 𝐴 is degenerated to an ordinary set, 𝑅(𝐴)

and 𝑅(𝐴) are degenerated accordingly to the lower and
upper approximation set of traditional Pawlak rough set,
respectively.

Let 𝑈 be a universe and 𝐴 ∈ 𝐹(𝑈). Then the cut sets of
𝑅(𝐴) and 𝑅(𝐴) are given, respectively, as follows:

(𝑅 (𝐴))
𝛼

= {𝑥 ∈ 𝑈 : 𝑅 (𝐴) (𝑥) ≥ 𝛼} ,

(𝑅 (𝐴))
𝛽

= {𝑥 ∈ 𝑈 : 𝑅 (𝐴) (𝑥) ≥ 𝛽} .

(2)

Definition 2 (see [12]). Let 𝑅 and 𝑆 be equivalent relations,
𝑈/𝑅 = {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
}, and 𝑈/𝑆 = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
}. If there

is 𝑌
𝑗

∈ 𝑈/𝑆 for any 𝑋
𝑖

∈ 𝑈/𝑅 such that 𝑋
𝑖

⊆ 𝑌
𝑗
, then it is said

that the knowledge 𝑈/𝑅 is finer than the knowledge 𝑈/𝑆 and
denotes it by 𝑅 ⪯ 𝑆.

If 𝑈/𝑅 is finer than 𝑈/𝑆 and 𝑈/𝑅 ̸= 𝑈/𝑆, then it is said
that 𝑈/𝑅 is strictly finer than 𝑈/𝑆 and denotes it by 𝑅 ≺ 𝑆.

3. Uncertainty Measures of Rough Fuzzy Sets

Two kinds of methods to measure uncertainty of rough fuzzy
sets are often used. One is the rough degree, which is defined

from an algebra point of view. Another is the rough entropy,
which is defined from an information theory point of view.

3.1. Rough Degree of a Rough Fuzzy Set. Since a fuzzy target is
described by use of the lower and upper approximation sets,
the noncoincidence of the lower and upper approximation
sets results in roughness. The larger the boundary region
formed by the lower and upper approximation sets is, the
more the roughness is. In order to quantify the roughness,
rough degree was introduced.

Definition 3 (see [3, 10]). Let (𝑈, 𝑅) be a Pawlak space and
𝐴 ∈ 𝐹(𝑈). Then for any 𝛼, 𝛽 (0 < 𝛽 ≤ 𝛼 ≤ 1), the accuracy
degree 𝜂

𝑅

𝐴
(𝛼, 𝛽) and rough degree 𝜌

𝑅

𝐴
(𝛼, 𝛽) of 𝐴 under 𝑅 are

defined, respectively, as follows:

𝜂
𝑅

𝐴
(𝛼, 𝛽) =

󵄨󵄨󵄨󵄨(𝑅 (𝐴))
𝛼

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑅 (𝐴))

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨

,

𝜌
𝑅

𝐴
(𝛼, 𝛽) = 1 − 𝜂

𝑅

𝐴
(𝛼, 𝛽) = 1 −

󵄨󵄨󵄨󵄨(𝑅 (𝐴))
𝛼

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑅 (𝐴))

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨

,

(3)

where |⋅| denotes the number of elements belonging to a finite
set. If 𝑅(𝐴)

𝛽
= Φ, then it is stipulated that 𝜌

𝑅

𝐴
(𝛼, 𝛽) = 0.

In Definition 3, rough degree characterizes the roughness
using the lower and upper approximation sets to approach a
fuzzy target and thresholds 𝛼 and 𝛽 make the representation
of rough degree more flexible.

Theorem 4 (see [3]). Let (𝑈, 𝑅) be a Pawlak space and 𝐴 ∈

𝐹(𝑈). For any 𝛼, 𝛽 (0 < 𝛽 ≤ 𝛼 ≤ 1), the rough degree in
Definition 3 satisfies the following properties:

(i) 0 ≤ 𝜌
𝑅

𝐴
(𝛼, 𝛽) ≤ 1;

(ii) 𝜌
𝑅

𝐴
(𝛼, 𝛽) does not decrease with 𝛼 and does not increase

with 𝛽;

(iii) Ifmax
1≤𝑖≤𝑚

min
𝑥∈𝑋𝑖

𝐴(𝑥) < 𝛼, then 𝜌
𝑅

𝐴
(𝛼, 𝛽) = 1;

(iv) If 𝛼 = 𝛽 and 𝐴(𝑥) = 𝑐
𝑖
(𝑐
𝑖
is a constant) for any 𝑥 ∈

𝑋
𝑖

(𝑖 ≤ 𝑟), then 𝜌
𝑅

𝐴
(𝛼, 𝛽) = 1.

Theorem 5 (see [3]). Let (𝑈, 𝑅) and (𝑈, 𝑆) be two Pawlak
spaces, and 𝑅 ⪯ 𝑆. Then, 𝜌

𝑅

𝐴
(𝛼, 𝛽) ≤ 𝜌

𝑆

𝐴
(𝛼, 𝛽).

Theorem 5 describes that the rough degree is a monotone
decrease with finer knowledge. However, this result is not
sufficiently accurate; see an illustrative example.

Example 6. Let (𝑈, 𝑅) be a Pawlak approximation space,
where 𝑈 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑐
1
, 𝑐
2
}, 𝑅 = {𝑟

1
, 𝑟
2
, 𝑟
3
}, and

𝐴 ∈ 𝐹(𝑈). Given a fuzzy-target decision-making decision
table, see Table 1.
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Table 1: Fuzzy-target decision-making table.

𝑈 𝑟
1

𝑟
2

𝑟
3

𝐴

𝑎
1

1 1 1 0.6
𝑎
2

1 1 2 0.7
𝑎
3

1 2 1 0.7
𝑎
4

1 2 2 0.9
𝑏
1

2 3 3 0.5
𝑏
2

2 3 3 0.4
𝑏
3

2 3 3 0.7
𝑐
1

3 4 4 0.8
𝑐
2

3 4 4 0.7

Let 𝑅
1

= {𝑟
1
}, 𝑅
2

= {𝑟
1
, 𝑟
2
}, and 𝑅

3
= {𝑟
1
, 𝑟
2
, 𝑟
3
}. Then

𝑈

𝑅
1

= {{𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
} , {𝑏
1
, 𝑏
2
, 𝑏
3
} , {𝑐
1
, 𝑐
2
}} ,

𝑈

𝑅
2

= {{𝑎
1
, 𝑎
2
} , {𝑎
3
, 𝑎
4
} , {𝑏
1
, 𝑏
2
, 𝑏
3
} , {𝑐
1
, 𝑐
2
}} ,

𝑈

𝑅
3

= {{𝑎
1
} , {𝑎
2
} , {𝑎
3
} , {𝑎
4
} , {𝑏
1
, 𝑏
2
, 𝑏
3
} , {𝑐
1
, 𝑐
2
}} .

(4)

We may see that

𝑅
3

≺ 𝑅
2

≺ 𝑅
1
. (5)

By Definition 1, we have

𝑅
1

(𝐴) = {
0.6

𝑎
1

,
0.6

𝑎
2

,
0.6

𝑎
3

,
0.6

𝑎
4

,
0.4

𝑏
1

,
0.4

𝑏
2

,
0.4

𝑏
3

,
0.7

𝑐
1

,
0.7

𝑐
2

} ,

𝑅
1

(𝐴) = {
0.9

𝑎
1

,
0.9

𝑎
2

,
0.9

𝑎
3

,
0.9

𝑎
4

,
0.7

𝑏
1

,
0.7

𝑏
2

,
0.7

𝑏
3

,
0.8

𝑐
1

,
0.8

𝑐
2

} ,

𝑅
2

(𝐴) = {
0.6

𝑎
1

,
0.6

𝑎
2

,
0.7

𝑎
3

,
0.7

𝑎
4

,
0.4

𝑏
1

,
0.4

𝑏
2

,
0.4

𝑏
3

,
0.7

𝑐
1

,
0.7

𝑐
2

} ,

𝑅
2

(𝐴) = {
0.7

𝑎
1

,
0.7

𝑎
2

,
0.9

𝑎
3

,
0.9

𝑎
4

,
0.7

𝑏
1

,
0.7

𝑏
2

,
0.7

𝑏
3

,
0.8

𝑐
1

,
0.8

𝑐
2

} ,

𝑅
3

(𝐴) = {
0.6

𝑎
1

,
0.7

𝑎
2

,
0.7

𝑎
3

,
0.9

𝑎
4

,
0.4

𝑏
1

,
0.4

𝑏
2

,
0.4

𝑏
3

,
0.7

𝑐
1

,
0.7

𝑐
2

} ,

𝑅
3

(𝐴) = {
0.6

𝑎
1

,
0.7

𝑎
2

,
0.7

𝑎
3

,
0.9

𝑎
4

,
0.7

𝑏
1

,
0.7

𝑏
2

,
0.7

𝑏
3

,
0.8

𝑐
1

,
0.8

𝑐
2

} .

(6)

Let 𝛼 = 𝛽 = 0.6. Then

𝑅
𝑖
(𝐴)
0.6

= {𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑐
1
, 𝑐
2
} , 𝑖 = 1, 2, 3,

𝑅
𝑖
(𝐴)
0.6

= {𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑐
1
, 𝑐
2
} , 𝑖 = 1, 2, 3.

(7)

We have

𝜌
𝑅𝑖

𝐴
(0.6, 0.6) =

1

3
, 𝑖 = 1, 2, 3. (8)

It is possible that the values of rough degree are invariant
under the finer knowledge from Example 6. This reveals that
rough degree is not equipped with strict monotone with the
finer knowledge. It implies the limitations of rough degree in
Definition 3. Hence, it is necessary to find a more accurate
measure to characterize the roughness of rough fuzzy sets.

3.2. Rough Entropy of a Knowledge. Entropy is an important
notion measuring uncertainty of information systems in
the information theory; see [17]. A knowledge in rough set
theory is regarded as a division of universe. This implies
that knowledge itself is granular and uncertain. The bigger
the knowledge granules are, the rougher the division is, and,
accordingly, the bigger the uncertainty of knowledge is. In
order to quantify the uncertainty that resulted in knowledge
granules, Liang and Shi in [11] introduced a definition of
rough entropy for a knowledge.

Definition 7 (see [11]). Let (𝑈, 𝑅) be a Pawlaw space and
𝑈/𝑅 = {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
}. Then rough entropy of the knowl-

edge 𝑈/𝑅 is defined as follows:

𝐸 (𝑅) = −

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨

|𝑈|
log
2

1

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨

. (9)

Theorem 8 (see [11]). Let (𝑈, 𝑅) and (𝑈, 𝑆) be two Pawlak
spaces. Then 𝑅 ≺ 𝑆 implies that 𝐸(𝑅) < 𝐸(𝑆).

FromTheorem 8, one can see that the finer the division of
𝑈 under 𝑅 is, the smaller the rough entropy of a knowledge
is.

3.3. Rough Entropy of a Rough Fuzzy Set. The uncertainty
of a rough fuzzy set not only depends on the roughness of
the fuzzy target itself, but also depends on the uncertainty
of a knowledge. From the discussion in Section 3.1, we know
that although rough degree 𝜌

𝑅

𝐴
(𝛼, 𝛽) can reflect the roughness

of a fuzzy target which is characterized approximately by
lower and upper approximation sets, 𝜌

𝑅

𝐴
(𝛼, 𝛽) is not strictly

monotone and cannot reflect the influence with the changes
of knowledge granules. From the discussion in Section 3.2, we
know that the rough entropy 𝐸(𝑅) of a knowledge can reflect
the roughness of the knowledge and is strictly monotone, but
it cannot reflect the roughness of a fuzzy target itself. Based
on these deficiencies, we propose a new rough entropy of a
rough fuzzy set.

Definition 9. Let (𝑈, 𝑅) be a Pawlak approximation space,
𝐴 ∈ 𝐹(𝑈), and 𝑈/𝑅 = {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
}. Rough entropy of

𝐴 under 𝑅 is defined as follows:

𝐸
𝑅

rough (𝐴) = 𝜌
𝑅

𝐴
(𝛼, 𝛽) 𝐸 (𝑅) . (10)

Theorem 10. Rough entropy of 𝐴 defined in Definition 9 has
the following properties.

(i) For any given 𝛼, 𝛽(min
𝑥∈𝑈

{𝐴(𝑥)} < 𝛽 ≤ 𝛼 < max
𝑥∈𝑈

{𝐴(𝑥)}),𝐸𝑅
𝑟𝑜𝑢𝑔ℎ

(𝐴) reaches themaximum log
2
|𝑈|when

𝑈/𝑅 = {𝑈}.
(ii) 𝐸
𝑅

𝑟𝑜𝑢𝑔ℎ
(𝐴) reaches the minimum 0 when 𝑈/𝑅 = {{𝑥

1
},

{𝑥
2
}, . . . , {𝑥

𝑛
}}.

Proof. (i) Let 𝑈/𝑅 = {𝑈}. Then for any 𝑥 ∈ 𝑈, we have

𝑅 (𝐴) (𝑥) = min {𝐴 (𝑦) | 𝑦 ∈ [𝑥]𝑅} = min {𝐴 (𝑦) | 𝑦 ∈ 𝑈} ;

𝑅 (𝐴) (𝑥) = max {𝐴 (𝑦) | 𝑦 ∈ [𝑥]𝑅} = max {𝐴 (𝑦) | 𝑦 ∈ 𝑈} .

(11)
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Obviously, 𝑅(𝐴)(𝑥) < 𝛼, 𝑅(𝐴)(𝑥) > 𝛽. Then 𝑅(𝐴) = Φ and
𝑅(𝐴)
𝛽

= 𝑈. By Definition 3, we have

𝜌
𝑅

𝐴
(𝛼, 𝛽) = 1 −

󵄨󵄨󵄨󵄨𝑅(𝐴)
𝛼

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑅(𝐴)
𝛽

󵄨󵄨󵄨󵄨󵄨

= 1. (12)

In addition, by Definition 7, we have

𝐸 (𝑅) = −
|𝑈|

|𝑈|
log
2

1

|𝑈|
= log
2

|𝑈| . (13)

Hence, we obtain

𝐸
𝑅

rough (𝐴) = 𝜌
𝑅

𝐴
(𝛼, 𝛽) 𝐸 (𝑅) = log

2
|𝑈| . (14)

(ii) If 𝑈/𝑅 = {{𝑥
1
}, {𝑥
2
}, . . . , {𝑥

𝑛
}}, we have

𝐸 (𝑅) = −

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨{𝑥
𝑖
}
󵄨󵄨󵄨󵄨

|𝑈|
log
2

1

󵄨󵄨󵄨󵄨{𝑥
𝑖
}
󵄨󵄨󵄨󵄨

= 0. (15)

Hence, we obtain 𝐸
𝑅

rough(𝐴) = 0.

Theorem 11. Let (𝑈, 𝑅) and (𝑈, 𝑆) be Pawlak approximation
spaces, and 𝐴 ∈ 𝐹(𝑈). If 𝑅 ≺ 𝑆, one has

𝐸
𝑅

𝑟𝑜𝑢𝑔ℎ
(𝐴) < 𝐸

𝑆

𝑟𝑜𝑢𝑔ℎ
(𝐴) . (16)

Proof. Assuming that 𝑅 ≺ 𝑆, we have 𝜌
𝑅

𝐴
(𝛼, 𝛽) ≤ 𝜌

𝑆

𝐴
(𝛼, 𝛽) by

Theorem 5 and 𝐸(𝑅) < 𝐸(𝑆) by Theorem 8. Then we obtain
𝐸
𝑅

rough(𝐴) < 𝐸
𝑆

rough(𝐴).

Theorem 11 implies that the rough entropy of a rough
fuzzy set in Definition 9 is strictly monotone.

Example 12. For the fuzzy set 𝐴 given in Example 6, we
compute the rough entropy as follows:

𝐸
𝑅1

rough (𝐴)

= 𝜌
𝑅1

𝐴
(𝛼, 𝛽) 𝐸 (𝑅

1
)

=
1

3
[− (

4

9
× log
2

1

4
+

3

9
log
2

1

3
+

2

9
log
2

1

2
)]

=
10

27
+

2

9
log
2
3,

𝐸
𝑅2

rough (𝐴)

= 𝜌
𝑅2

𝐴
(𝛼, 𝛽) 𝐸 (𝑅

2
)

=
1

3
[− (

2

9
× 2 × log

2

1

2
+

3

9
log
2

1

3
+

2

9
log
2

1

2
)]

=
6

27
+

2

9
log
2
3,

𝐸
𝑅3

rough (𝐴)

= 𝜌
𝑅3

𝐴
(𝛼, 𝛽) 𝐸 (𝑅

3
)

=
1

3
[− (

1

9
× 4 × log

2
1 +

3

9
log
2

1

3
+

2

9
log
2

1

2
)]

=
2

27
+

2

9
log
2
3.

(17)

Then we obtain 𝐸
𝑅3

rough(𝐴) < 𝐸
𝑅2

rough < 𝐸
𝑅1

rough(𝐴) when 𝑅
3

≺

𝑅
2

≺ 𝑅
1
.

This example validates that the rough entropy in
Definition 9 is more accurate than the rough degree in
Definition 3, since it is equipped with strict monotonicity.

4. Entropy Weight for a Fuzzy-Concept
Decision-Making Table

4.1. Weight of an Attribute. Given a fuzzy-target decision-
making table 𝑆 = (𝑈, 𝑅, 𝐴, 𝑉, 𝑊), where 𝑈 is an object set,
𝑅 is a conditional attribute set whose value set 𝑉 is a crisp
set, and 𝐴 is a fuzzy target whose value set 𝑊 is a fuzzy set.
Using the rough fuzzy set theory in Section 3, the fuzzy target
𝐴 can be described approximately by the lower and upper
approximation sets 𝑅(𝐴), 𝑅(𝐴) under the attribute set 𝑅, and
the rough entropy of the fuzzy target𝐴 under the attribute set
𝑅 is

𝐸
𝑅

rough (𝐴) = 𝜌
𝑅

𝐴
(𝛼, 𝛽) 𝐸 (𝑅) . (18)

The significance of an attribute is obtained by the change
value of rough degree when the attribute is removed from
the attribute set. The larger the change is, the more the
significance of the attribute is. The significance sig(𝑟

𝑖
, 𝑅, 𝐴)

of the attribute 𝑟
𝑖
is

sig (𝑟
𝑖
, 𝑅, 𝐴) = 𝜌

𝑅−{𝑟𝑖}

𝐴
(𝛼, 𝛽) − 𝜌

𝑅

𝐴
(𝛼, 𝛽) . (19)

Then the weight of the condition attribute 𝑟
𝑖

∈ 𝑅 is

𝑤 (𝑟
𝑖
, 𝑅, 𝐴) =

sig (𝑟
𝑖
, 𝑅, 𝐴)

∑
𝑛

𝑗=1
sig (𝑟
𝑖
, 𝑅, 𝐴)

. (20)

We can see that sig(𝑟
𝑖
, 𝑅, 𝐴) and 𝑤(𝑟

𝑖
, 𝑅, 𝐴) may equal

zero since 𝜌
𝑅

𝐴
(𝛼, 𝛽) is not strictly monotone with finer

knowledge 𝑅. Nevertheless, for a certain decision table, each
attribute is significant in a way [18]. That is to say, each
attribute’s weight may be tiny but could not be equivalent
to zero. In order to avoid the deficiency of sig(𝑟

𝑖
, 𝑅, 𝐴) and

𝑤(𝑟
𝑖
, 𝑅, 𝐴) above, we propose a new method to calculate the

weight.

Definition 13. Let 𝑆 = (𝑈, 𝑅, 𝐴, 𝑉, 𝑊) be a fuzzy-target deci-
sion-making table and 𝑅 = {𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑝
}. The significance of

𝑟
𝑖

(𝑖 = 1, 2, . . . , 𝑝) is defined by

sig∗ (𝑟
𝑖
, 𝑅, 𝐴) = 𝐸

𝑅−{𝑟𝑖}

rough (𝐴) − 𝐸
𝑅

rough (𝐴) ; (21)



Journal of Applied Mathematics 5

Table 2: Fuzzy-target decision-making table.

𝑈 Outlook (𝑟
1
) Temperature (𝑟

2
) Humidity (𝑟

3
) Windy (𝑟

4
) Decision (𝐴)

𝑥
1

Sunny Hot High False 0.4
𝑥
2

Sunny Hot High True 0.5
𝑥
3

Overcast Hot High False 0.6
𝑥
4

Rain Mild High False 0.8
𝑥
5

Rain Cool Normal False 0.7
𝑥
6

Rain Cool Normal True 0.7
𝑥
7

Overcast Cool Normal True 0.5
𝑥
8

Sunny Mild High False 0.6
𝑥
9

Sunny Cool Normal False 0.6
𝑥
10

Rain Mild High False 0.9
𝑥
11

Sunny Mild Normal True 0.5
𝑥
12

Overcast Mild High True 0.7
𝑥
13

Overcast Hot Normal False 0.6
𝑥
14

Rain Mild High True 0.8
𝑥
15

Sunny Hot High True 0.6

and weight of 𝑟
𝑖
is defined by

𝑤
∗

(𝑟
𝑖
, 𝑅, 𝐴) =

sig∗ (𝑟
𝑖
, 𝑅, 𝐴)

∑
𝑛

𝑗=1
sig∗ (𝑟

𝑖
, 𝑅, 𝐴)

. (22)

Theorem 14. Let 𝑆 = (𝑈, 𝑅, 𝐴, 𝑉, 𝑊) be a fuzzy-target
decision-making table and 𝑅 = {𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑝
}. Then for any

integers 𝑖 (1 ≤ 𝑖 ≤ 𝑝), one has 𝑤
∗

(𝑟
𝑖
, 𝑅, 𝐴) > 0.

Proof. Since 𝑅 ≺ 𝑅 − {𝑟
𝑖
} holds, byTheorem 11, we have

𝐸
𝑅−{𝑟𝑖}

rough (𝐴) > 𝐸
𝑅

rough (𝐴) . (23)

Then

sig∗ (𝑟
𝑖
, 𝑅, 𝐴) > 0. (24)

Hence, we obtain

𝑤
∗

(𝑟
𝑖
, 𝑅, 𝐴) =

sig∗ (𝑟
𝑖
, 𝑅, 𝐴)

∑
𝑛

𝑗=1
sig∗ (𝑟

𝑖
, 𝑅, 𝐴)

> 0. (25)

Theorem 14 shows that the weight of attribute defined in
Definition 13 cannot be equivalent to zero. This is what we
expect.

4.2. Numerical Example.

Example 15. Given a fuzzy-target decision-making table for
people’s trip in an area influenced by weather conditions, see
Table 2. Using two different methods, we analyze the weight
of every weather condition which affects people’s decision for
a trip.

Let 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

15
} and 𝑅 = Outlook (𝑟

1
), Tempera-

ture (𝑟
2
), Humidity (𝑟

3
), Windy (𝑟

4
). Then we have

𝑈

𝑅
= {{𝑥

1
} , {𝑥
2
, 𝑥
15

} , {𝑥
3
} , {𝑥
4
, 𝑥
10

} ,

{𝑥
5
} , {𝑥
6
} , {𝑥
7
} ,

{𝑥
8
} , {𝑥
9
} , {𝑥
11

} , {𝑥
12

} , {𝑥
13

} , {𝑥
14

}} ,

𝑈

(𝑅 − {𝑟
1
})

= {{𝑥
1
, 𝑥
3
} , {𝑥
2
, 𝑥
15

} , {𝑥
4
, 𝑥
8
, 𝑥
10

} , {𝑥
5
, 𝑥
9
} ,

{𝑥
6
, 𝑥
7
} , {𝑥
11

} , {𝑥
12

, 𝑥
14

} , {𝑥
13

}} ,

𝑈

(𝑅 − {𝑟
2
})

= {{𝑥
1
, 𝑥
8
} , {𝑥
2
, 𝑥
15

} , {𝑥
3
} , {𝑥
4
, 𝑥
10

} , {𝑥
5
} ,

{𝑥
6
} , {𝑥
7
} , {𝑥
9
} , {𝑥
11

} , {𝑥
12

} , {𝑥
13

} {𝑥
14

}} ,

𝑈

(𝑅 − {𝑟
3
})

= {{𝑥
1
} , {𝑥
2
, 𝑥
15

} , {𝑥
3
, 𝑥
13

} , {𝑥
4
, 𝑥
10

} , {𝑥
5
} ,

{𝑥
6
} , {𝑥
7
} , {𝑥
8
} , {𝑥
9
} , {𝑥
11

} , {𝑥
12

} , {𝑥
14

}} ,

𝑈

(𝑅 − {𝑟
4
})

= {{𝑥
1
, 𝑥
2
, 𝑥
15

} , {𝑥
3
} , {𝑥
4
, 𝑥
10

, 𝑥
14

} , {𝑥
5
, 𝑥
6
} ,

{𝑥
7
} , {𝑥
8
} , {𝑥
9
} , {𝑥
11

} , {𝑥
12

} , {𝑥
13

}} .

(26)

Let 𝛼 = 0.7, 𝛽 = 0.6; we obtain

𝜌
𝑅

𝐴
(0.7, 0.6) = 0.5,

𝜌
𝑅−{𝑟1}

𝐴
(0.7, 0.6) = 0.857,

𝜌
𝑅−{𝑟2}

𝐴
(0.7, 0.6) = 0.538,

𝜌
𝑅−{𝑟3}

𝐴
(0.7, 0.6) = 0.5,

𝜌
𝑅−{𝑟4}

𝐴
(0.7, 0.6) = 0.538.

(27)
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Then, by computation using rough degree, the signifi-
cance sig(𝑟

𝑖
, 𝑅, 𝐴) of attribute 𝑟

𝑖
(𝑖 = 1, 2, 3, 4) is, respectively,

sig (𝑟
1
, 𝑅, 𝐴) = 𝜌

𝑅−{𝑟1}

𝐴
(0.7, 0.6) − 𝜌

𝑅

𝐴
(0.7, 0.6) = 0.357,

(28)

sig (𝑟
2
, 𝑅, 𝐴) = 𝜌

𝑅−{𝑟2}

𝐴
(0.7, 0.6) − 𝜌

𝑅

𝐴
(0.7, 0.6) = 0.038,

(29)

sig (𝑟
3
, 𝑅, 𝐴) = 𝜌

𝑅−{𝑟3}

𝐴
(0.7, 0.6) − 𝜌

𝑅

𝐴
(0.7, 0.6) = 0, (30)

sig (𝑟
4
, 𝑅, 𝐴) = 𝜌

𝑅−{𝑟4}

𝐴
(0.7, 0.6) − 𝜌

𝑅

𝐴
(0.7, 0.6) = 0.038,

(31)

and the weight of 𝑟
𝑖

(𝑖 = 1, 2, 3, 4) is, respectively,

𝑤 (𝑟
1
, 𝑅, 𝐴) = 0.824, (32)

𝑤 (𝑟
2
, 𝑅, 𝐴) = 0.088, (33)

𝑤 (𝑟
3
, 𝑅, 𝐴) = 0, (34)

𝑤 (𝑟
4
, 𝑅, 𝐴) = 0.088. (35)

On the other hand, we compute themodified significance
sig∗(𝑟

𝑖
, 𝑅, 𝐴) and weight 𝑤

∗
(𝑟
𝑖
, 𝑅, 𝐴) given in Definition 13.

According to Definition 7, we compute

𝐸 (𝑅) = 0.267,

𝐸 (𝑅 − {𝑟
1
}) = 0.984,

𝐸 (𝑅 − {𝑟
2
}) = 0.400,

𝐸 (𝑅 − {𝑟
3
}) = 0.400,

𝐸 (𝑅 − {𝑟
4
}) = 0.767,

(36)

and according to Definition 9, we have

𝐸
𝑅

rough = 0.133,

𝐸
𝑅−{𝑟1}

rough (𝐴) = 0.843,

𝐸
𝑅−{𝑟2}

rough (𝐴) = 0.215,

𝐸
𝑅−{𝑟3}

rough (𝐴) = 0.200,

𝐸
𝑅−{𝑟4}

rough (𝐴) = 0.413.

(37)

Hence, according to Definition 13, we obtain

sig∗ (𝑟
1
, 𝑅, 𝐴) = 𝐸

𝑅−{𝑟1}

rough (𝐴) − 𝐸
𝑅

rough (𝐴) = 0.610,

sig∗ (𝑟
2
, 𝑅, 𝐴) = 𝐸

𝑅−{𝑟2}

rough (𝐴) − 𝐸
𝑅

rough (𝐴) = 0.082,

sig∗ (𝑟
3
, 𝑅, 𝐴) = 𝐸

𝑅−{𝑟3}

rough (𝐴) − 𝐸
𝑅

rough (𝐴) = 0.067,

sig∗ (𝑟
4
, 𝑅, 𝐴) = 𝐸

𝑅−{𝑟4}

rough (𝐴) − 𝐸
𝑅

rough (𝐴) = 0.280,

(38)

and the weight 𝑤
∗

(𝑟
𝑖
, 𝑅, 𝐴) of attribute 𝑟

𝑖
(𝑖 = 1, 2, 3, 4) is,

respectively,

𝑤
∗

(𝑟
1
, 𝑅, 𝐴) = 0.587, (39)

𝑤
∗

(𝑟
2
, 𝑅, 𝐴) = 0.080, (40)

𝑤
∗

(𝑟
3
, 𝑅, 𝐴) = 0.064, (41)

𝑤
∗

(𝑟
4
, 𝑅, 𝐴) = 0.269. (42)

By contrasting two kinds of weights above, we find that
the latter method involving the rough entropy of a fuzzy set
given in Definition 13 keeps basically identical trend with the
former one only using the rough degree.Thatmeans the latter
method is effective. However, it is unpractical that the weight
of attribute 𝑟

3
is zero in the former case. The latter method

avoids this case. This implies that the latter method is better
than the former one. Moreover, the weights of attributes 𝑟

2

and 𝑟
4
are equivalent in the former result. It does not reflect

the influence of knowledge’s roughness. The latter method
makes up for this deficiency. According to these results, we
can conclude that our method involving new rough entropy
of a fuzzy set is superior to the method only using rough
degree.

5. Conclusion

A new rough entropy for measuring uncertainty in the rough
fuzzy set theory has been proposed. Using it, we can measure
not only the rough degree induced by the boundary region
of a fuzzy target in an approximation space, but also the
roughness from the classification of a knowledge. In a fuzzy-
target decision-making table, we have established a new
method based on the new rough entropy to evaluate attribute
weights.
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