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We discuss the linearization problem of third-order ordinary differential equation under the generalized linearizing transformation.
We identify the form of the linearizable equations and the conditions which allow the third-order ordinary differential equation
to be transformed into the simplest linear equation. We also illustrate how to construct the generalized linearizing transformation.
Some examples of linearizable equation are provided to demonstrate our procedure.

1. Introduction

There has been major interest in the nonlinear problems,
since most equations are inherently nonlinear in nature. In
general, the nonlinear problems are very difficult to solve
explicitly. It is of interest to provide general criteria for the
linearizability of nonlinear ordinary differential equations,
as they can then be reduced to easily solvable equations.
Therefore, the approach of investigating nonlinear ordinary
differential equations via transforming to simpler ordinary
differential equations becomes important and has been quite
plentiful in analysis of physical problems. This includes the
classical linearization problem of finding transformations
that linearize a given ordinary differential equation. The
linearization problem has been studied in many aspects. A
short review can be found in [, 2]. The tools commonly
used for solving the linearization problem are the transforma-
tions such as point transformation, contact transformation,
reduction of order, differential substitution, and generalized
Sundman transformation. For this paper, we employ the
extension of the generalized Sundman transformations.

The linearization problem for a second-order ordinary
differential equation was investigated with respect to a gen-
eralized Sundman transformation

X=F(tx), dT=G(tx)dt )

by Duarte et al. [3] earlier. They obtained the form of
the linearizable equations and the conditions which allow
the second-order ordinary differential equation to be trans-
formed into the free particle equation. A characterization of
these equations that can be linearized by means of generalized
Sundman transformations in terms of first integral and
procedure for construction of linearizing transformations has
been given by Muriel and Romero [4]. In [5], Mustafa et
al. gave a new characterization of linearizable equations in
terms of the coefficients of ordinary differential equations
and one auxiliary function. In [6], Nakpim and Meleshko
pointed out that the solution of the linearization problem
for a second-order ordinary differential equation via the
generalized Sundman transformation considered earlier by
Duarte et al. [3] using the Laguerre form is not complete.
The linearization problem for a third-order ordinary
differential equation was also investigated with respect to a
generalized Sundman transformation [7, 8]. Criteria for a
third-order ordinary differential equation to be equivalent
to the linear equation X" (T) = 0 with respect to a Sund-
man transformation were presented in [8]. The generalized
Sundman transformation was also applied for obtaining
necessary and sufficient conditions for a third-order ordinary
differential equation to be equivalent to a linear equation in
the Laguerre form [6]. Some applications of the generalized
Sundman transformation to ordinary differential equations
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were considered in [9] and earlier papers, summarized in the
book [10].

The linearization problem of a fourth-order ordinary
differential equation with respect to generalized Sundman
transformations was studied in [11]. They found the necessary
and sufficient conditions which allow the fourth-order ordi-
nary differential equation to be transformed into the simplest
linear equation.

In this work, we expose a more general transformation,
that is, the extension of the generalized Sundman transfor-
mation

X=F(tx), dT=G(txx")dt )

This transformation was studied in [12-14] where they
designated the transformation as the generalized linearizing
transformation. They showed that this transformation can
be utilized to linearize a wider class of nonlinear ordinary
differential equations and, in particular, certain equations
which cannot be linearized by the nonpoint and invertible
point transformations. If the function G in (2) is independent
of the variable x, then it becomes a nonpoint transformation
(vide (1)). On the other hand, if G is a differentiable function,
then it becomes an invertible point transformation. So (2) is a
unified transformation as it includes nonpoint and invertible
point transformations as special cases. An example of an
equation which can be linearized by a transformation of
the form (2) is given in [13]. It is worth noting that any
second-order equation x" = ft x, x') can be transformed
by a transformation (2) into the free particle equation and
that this is not so for third-order ordinary differential equa-
tions. Hence, the linearization problem using generalized
linearizing transformations becomes interesting for ordinary
differential equations of order greater than 2. In [12], the
authors applied a particular class of transformations (2),
where the function G(t, x, x") is linear with respect to x'.

We are now paying attention to the case where G is a
polynomial function in x’ and in particular where it is linear
in x" with coefficients which are arbitrary functions of t and
x. To be specific, we focus here on the case

X=F(tx), dT=(G (Lx)x'+G,(tx))dt. (3)

Notice that for the case G; = 0, the generalized linearizing
transformation becomes a generalized Sundman transforma-
tion, so that we assume G; # 0.

The paper is organized as follows. In Section 2, the nec-
essary conditions of linearization of a third-order ordinary
differential equation are presented. In Section 3, we get the
theorems that yield criteria for a third-order ordinary differ-
ential equation to be linearizable via generalized linearizing
transformations. Examples which illustrate the procedure of
using the linearization theorems are presented in Section 4.

2. Necessary Conditions of Linearization

Here we consider a nonlinear third-order ordinary differen-
tial equation

<" = f (62", @
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Our goal in this section is to describe all equations (4)
which are equivalent with respect to generalized linearizing
transformations

X=F(tx), dT=(G (Lx)x" +G,(tx))dt (5

to a linear equation
x"'(r) =o. (6)

We begin with investigating the necessary conditions for
linearization, that is, the general form of third-order equation
(4) that can be obtained from a linear equation (6) by any
generalized linearizing transformation (5).

Applying a generalized linearizing transformation (5),
one obtains the following transformation of the third-order
derivatives:

D,F F,+x'F,
XM= 6076 " Gx10 =P(bxx'),
1 2 1 2
x" (T)

_ DpP
C Gx' +G,

! i
_ P,+x P, +x Py
G, x' + G,

=" ((szxl +Gyx" + Gy + Gpx + Gltxl) F
- (Ftt + Foex® + 2thx') (Glx’ * GZ)
+(Gpex? = Gpx" + Gy + G 6" + G ) E,)
X (Glx' + GZ)_3
=Q(t.x.xx"),
x"'(T)
= ( (3G3,x" + Gox"" + 3G & + 3G+
+ 3Gix'3 + (x'x'" - 3x”2) GG,
+2 (Glx’ - 2Gz) Gx'x"
- (Gzn + X + 2Gyx" + G
+Gpx' + 2G1txx'2) (Glx' + Gz) x'
+3((Gx' - Gy) x" +2G,,x"*) Gy,

+6 (GZXx'2 - sz" + Gztx’) Glxxl2
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+ ((Glx' - SGZ) £+ 6G2xx'2 + 6G2tx'
+ 6G1xx'3) Gltx') F,
— (3(Gy + Gyox + G X" + Gx' + Gy x"" ) F,
— ((3Fyy + Fopx®) X' + Fyyy + 3F,,, x")
X (Glx’ + Gz)
+3 ((GZt + GZXx' + Glxx'2 + Gltx') x' - sz”)
X Fxxx' +3 (2 (G2t + GZXX’ + Glxx’2 + Gltx') x
+(Gx' - G,)x")F,) (Gx' +G,)
- ( (G + G + 2Gpx’ + G
+ Gmx' + 2G1txx'2)
x (Gx' +G,)
- (3G5,x" - G,G,x"' + 3G, +3G; ™
+ ?;Gftx'2 - (x'x”' - 3x”2) Gf)
— (5G,x' - G,) G x""
—6(Gpx' +Gx") Gy
-3((Gx' - Gy) x" +2G,x"? + 2Gy,x")
X Glxx' -2 ( (ZGlx' - Gz) X+ 3G2Xx'2
#3Gyx' +3G,x") G, ) Ft)
X (Glx' + Gz)_S
=R (t, xx',x", x'”) >
(7)
where D, = 0/dt + x'(0/0x) + x"(0/0x") + x"" (@/0x") + - --
is a total of derivatives. Substituting the resulting expression

in linear equation (6) and setting » = G,/G,, K = F, - F,r,
we arrive at the following equation:

X +r

x [-3x"% + (A + Ajx + Ap) x”

! ! U ! !
+Bsx5+B4x4+B3x3+Bzx2+le +BO]

(8)

where A; (i = 0,1,2) and B; (j=0,1,...,5) are functions of
t and x determined as follows:

A2 = (3 ((th - Fxxr) Gl - FtGlx)
+(2(2G,r - 1,G,) -Gy F,) [ (KG,),

Ay = = ((2Gyr +51,Gy +4Gy,) F,

-3 (Fn - Fxxrz) G, ©)
+ ( (3r, — 4r,1) G,
— 4G, - 2Gltr) FX) / (KG,),
A= = (3F.Gi7” = 3F,Gyr + 4EGyr
- F,G, r* +6F,r,G, - E;r Gr (10)

- 3E,G,r” = 3E,1,Gyr) | (KG,),

((FxxxGl - 3FxxG1x) Gl_ (G Gl - 3G%x) Fx)

1xx
B (KGY) |
(11)
B, = (3(Gy; +2G,,r +1,G,) F,,G,
+ (GG - 3G1,) F,
+ (26,6, — 6G,,Gy, +2G1,,Gyr = 6G,
(12)

- 4G,,1,G, +1,,G} ) F,
+ (2 (3thG1x - FxxxGlr) - 3thxG1) Gl)
x (KG) ™,
BS = ((3FttGlx - Fxxx(;lr2 - 3Ftl‘xGl - 6thxG1r
+6(Gy +2G,,7 +7,Gy) F,, ) Gy
+(26,,G, — 6G,,Gy,, +2G1,,Gyr = 6G,
~4G,1,G, + 1,,G1 ) F,
+3((Gyr +1,G, +Gy,) r + Gyyr + 1,Gy) F,., G,
+ ( (2G a7 + G1yp) Gy = 3(Gypr + rxGl)z
- 6(Gyr +1,G)) G,
=3(2(Gr +1,G)) +Gy,) Gy,

+ (2G 1y + 144Gy + G 7) Gy



+ 2 (Glxrt + rthl + Gltrx + Gltxr) Gl) Fx)

x (KG2),
(13)

B, = (((2Gyur + Gut) Gy = 3(Grar +7,Gy )
- 6(Gyr +1,G)) Gy,
=3(2(Gpr +1,G)) + Gy,) Gy,
+ (2G 1y + 144Gy + G 7) Gy1

+ 2(Gu1y + 17,Gy + Gty + Gypyr) Gl) F,

- ((6 (Giyr +1,G, +Gy,)
X (Gyr +1,Gy) = G,Gyr
- (2Gy1 + 174Gy + Gyy1) Gy

-2 (Glxrt + rthl + Gltrx + Gltxr) Glr) Fx

+ ( (3, + Fy) G,
-3(Gy +2G,r +1,G,) F,
-3((Gyr +1,G,) F,, - 2F,.,G,) r
- 6((Gyyr +1,G, + Gy,) r+ G+ 1,G))

“Fix)G))

X (KGT)%,
(14)

B, = = ((6(Gpr +1,Gy +Gy) (Gyr +1,Gy)
- GGy — (2Gy 1, + 1,Gy + Gypyr) Gy
= 2(Gy 1y + 1, Gy + Gyyry + Gy ) Gi7) F,
- ( (B3((Gyyr +1,Gy + Gy,) 1 + Gyyr +1,G,) Fy
— ((2F,y + 3F,,,1) G,
-6(Gyr +1,G,)E,,)r)G,
+ ( (2Gy 1, + 14Gy + Gyyr) Gy

=3(Gyr + rtGl)z) Fx))
x (KG?) ™,
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By = ( ( (2Gy 1, + 144Gy + Gyy1) Gy
_3(G1tr + rtGl)z) F,

+ (3(Gyr +1,Gy) Fy — FGyr) Gyr) | (KGY).
(15)

Thus, we proved the theorem.

Theorem 1. Any third-order ordinary differential equation (4)
obtained from a linear equation (6) by a generalized linearizing
transformation (5) has to be in the form (8).

3. Formulation of the Linearization Theorem

We have shown in the previous section that every linearizable
third-order ordinary differential equation belongs to the class
of equations (8). In this section, we formulate the main
theorems containing necessary and sufficient conditions for
linearization as well as the methods for constructing the
linearizing transformations.

For obtaining sufficient conditions, one has to solve the
compatibility problem. Consider the representations of the
coefficients A; and B; through the unknown functions F and
G;. According to our notation K = F, — F,r, we define the
derivative F, as

F,=Fr+K. (16)
From (9), one can find the derivatives

. - (F.G,, - F.G,,r - F,r.G, + 3G, K + A,G,K)
* (3G)) ’

K, = <FXG”r - F,G, r* - Fr,G,r +4G,,K - G, Kr

+ G K (5r, + A, — A,r) > /(3G,).
17)
From (10), one obtains the condition

r\r— Ay 17 = z2
(6 Ay +Ar Ar)
c )

(18)

1y =
Equation (11) defines the derivative

. (3FG,,G, + F,G,,,G, - 3F,G;, - B;GiK)

XXX G%

(19)
So that equation (12) becomes
2
6FxxG1tGl - 6FxxG1xGlr - 6FxxrxG1
+3F,G,,G, — 12F,G,,G,,,

2
- F.G;A,G,| - 3F,G,,,G,r + 12F, G|, r
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+ F,.G,, G, (6r, + A,r)
+ F.G} (=31 + 1 A,) — 6G, G, K + 9G], K
+GiK (-34,, — A} - 3B, + 15B5r) = 0.

(20)

The compatibility analysis depends on the value of F,. A
complete study of all cases is given here.

3.1. Case F,=0. In this case, the forms of derivatives F,, K,
and K, become
F, =K,

~ (3G, + A,G)) K
o (3G,)

>

(4G, =G r + G, (57, + A - Ayr)) K
o (3G)) '
Substituting F, into F,,,, one arrives at the condition
B; =0. (22)

Comparing the mixed derivatives (F,), = (F,),, one gets the
derivative

-(A,G
6,. = 246

In this case, (F,,,); = (F,),y, is satisfied. Equations (12) and
(13) give the conditions

(23)

—2A2 -9B
Ag = (3—)

(—9A,, +6A, +3r,Ay —3A,A, — 2A%r - 9B;)
rxx = 36 *

(24)

Comparing the mixed derivative (K,), = (K,),, one obtains
the condition

(-6A, —3r, Ay —5A, A, +2A5r — 15B; + 24B,r)

A, = . :
(25)

Equation (14) provides the derivative
(2250G}, + 150G,,G, h, + Gih,) 26)

G =
e (1350G, )

where

hy =157, +3A, - 2A,r,
h, = —225A,, — 13504, — 1350A,,7 — 1050A,A,
— 477A% +516A, A, + 33Ah, — 432A%7°

— 57A,h,r — 4050B, + 4275B,r — 4275B,r" — 8h..
27)

The relation (r,), = r,, gives the condition
Iy = 44y (28)

Comparing the mixed derivative (G,,,), =
arrives at the condition

(Gyy)> One

(SOAZthl - th)
450 ’

(29)

Solving (15), one finds the conditions
AOt
= (159304, + 15930A,,r* — 1260h, r
— 1575A4A, + 11970A,A,r + 5517A%r
~5697A,A,r” — 558A h,r + 4986 A%r°
+ 504 A, 7> — 8100B, + 48600B,7

— 48600B,7” + 48600B,r° + 148hr + 8hyr) /1350,
(30)

BO

= (-3240A,,r* - 3240A,," + 180h,r’
—135A% + 270A (A, r — 24304 A,
—1107A%7% + 1134A, A,r° + 108A b,
~999A%r* —108A,h, 7" + 1620B,r — 9720B,r
+ 9720B;r” — 9720B,r* — 28hjr” — 2h,r*) /1620.

(31)

3.2. Case F, # 0. From (20) and (13), one obtains the
derivatives

G = ( - 6F, GG, +6F,, GG + 6Fxxrfo

+12F,G,G,, + F,G,A,G, + 3F,G,,.G,r

- 12F,G: 1 + F,.G,,G, (=61, — A,r)

+ F,G: (31, — 1,A,) + 6G, .G, K

~9G7,K + GIK (3A,, + A + 3B, — 15B,r))

X (3FxG1)_1’
(32)

Gy = (- 24F, F,G,Gr + 24F, . F,G,,G,1’

+24F__F r

xXXT X' X

Gir - 24FG,,G,K + 24F G, G,Kr

2 2 2 2
+24F,  r G{K + 14F, G}, + 20F G,G, . r

xXxX'x



+2F2G, G, (ry + A}) + 6F.G G, r° — 34F.GL 17
+ F1G, G, (=26r,r — Ay — Ayr — Ayr?)
+ FiG% (—AOx + A - A2xr2 +12r,,.1r

- 4r)zc 1A - 2rxA2r)
+24F,G,,G, K + 24F,G, .G, Kr - 60F,G; Kr
- 24F G,,r,G,K
+2F.GIK (3A,, +18r,, —3r,A,

+A A, +3B; - 6B,r) + 24G,_ G, K’

— 36G1,K* +4G;K” (3A,, + A% + 3B, — 15Bs7))

X (6F§G1)71.
(33)

Comparing the mixed derivative (K,), = (K,);, one obtains
Glxx = (6FxxG1tG1K - 6FxxG1xGlKr
- 6F,, .G K — F,G}, + 2F:G,,G, r
+2F.Gyr, G, - F2G; 1r* = 2F.G,,1,Gr
2,22 2
- F.r.G| - 6F,G,G,, K + 6F, G| Kr
+6F,G,,r,G K
FEGIK (=345 +3A57 — AAy + 2457
2
~ 3B, + 12B,r - 30B,1”)

+9G; K* + G{K* (-3A,, — A% — 3B, + 15Br))

x (6G,K2) .
(34)
Equation (14) becomes
F.s; +2Ks, =0, (35)
where
S = —6A, +6A r+12A,r - 12A2xr2
—5A0A, - 2A% +13A,A,r — 13A%7°
— 18B, + 54B,r — 108B,r” + 180Bs1”, (36)

Sy = —3A +6A, —18r, +3r A,
+ A, A, - 2A%r + 3B; — 12B,r + 30Bsr".

Further analysis of the compatibility depends on value of s,

in (35): it is separated into two cases; thatis, s, = 0 and s; # 0.
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3.2.1. Case s, # 0. From (35), one finds

F, = _(Ks). (37)
S1

Since this case F,, # 0, then s, # 0 too. Comparing the mixed
derivatives (F,), = (F,),, one gets the derivative

_ (3Gy,s; (275, = 51) + Gy53)

G = (65152) ’ (38)

where

S3 = — 67,55y + 65,5, — 65,ISy — 6555,
RREY)
+65,,rs; — 2A 55, + 4A,rs;s, — Ajs).

Substituting F, into F,.,, Gy, into Gy,, and G,,,, one arrives
at the conditions
Syex = (—12A2tsfs§ + 12A2xrsf5§ - 6A2xsi'52
+ 36rxslxsls§ - 361’,652xsfs2 - 12rxAzs%s§
2 2 2
+ 188,575y — 3651818, + 3655, 5]
2 3
+ 125, A,s]s) — 651,5,85 — 125, A,s]
22 2,22
+65,,8,83 —4A | A,s]s, + 8ALrss)
2 22
- 2Azsi's2 +2A,5,5,55 — 12B;3ss)
22 222 4
+ 48Byrs|s; — 120Bsr7s|s; + 93551)
-1
X (185?) ,
3 3 3
S3, = (—6A1xsls2 —6A,;5]s, + 18A,,1s]s,
- 9A2xs‘11 + 361'32{5%55 - 36rxslxsf52 + 36rx52xsi
+ 6rxA25f52 —12r,5;5,85 + 125,553
- 4A1Azsfs2 + 8A22rs?s2 - 3A22511 - 12B3sfs2
3 4 23
+ 48B,rs|s, — 9Bys; — 120B5r7s|s,
4 2, 2 2
+ 45Byrs) — 25755 + 53) / (651) ,
3 4 3 4
Sy = (—6A0xsls2 —3As, —6A,rsis) —12A s,

23 4 222
+12A,,r7s]s, + 9A, rs| + 36,7575,
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- 361')255%52 - 36rx51xrsf52 + 36rx52xrsi'
3 3 4
—6r A s|s, +18r, A,rs|s, — 3r, A,s,
= 12r,rs 5,85 + 125,555 — 4A1A21’sis2
- 5A1Azs‘11 + 8A22r25f52 + 7A221's‘11 - 12331'5?52
- 1533511 + 4SB4r25i'52 + 51B4rs‘1l
- 120351’35?52 - 105357*25‘11 - 2rsfs§
+rss + 55‘1152) / (65%) .

(40)

Equation (15) provides the conditions

Ag = (6Agr + 64517 — 64,1 —TA A,
+9A,A,r +5A%r — 8A A1’ + ASr’ — 36B,

+ 54B,r — 54B,r” + 36B,r” — rs,) /6,

jos]
S
Il

(—A] +240A 1 —2A,A 1" - AYr
+2A,A,r° — A3r* + 12B,r — 12B,r* + 12B,r”
- 12B,r* + 12B5r°) [12.
(41)

Comparing the mixed derivatives (G,,;), = (G.)p (Giyi) =
(G and (F,..,.); = (F,) x> One gets the conditions

xx)t

A

2 2
e = (233A1,A,8] — 18A,,57 — 108A,7,5;5,
+24A,A,8; + 18A s, + 54A,, 15
+ 108A,, 7,155, + 18A2xrxsf - 30A2xAlsf
+ 1024, A,rs, — 18A,,rs; — 90B5,s.
+ 54By,s] + 306B,,rs. — 270Bs,rs; — 630Bs, 1’5
—36r, A A,ss, + 721’XA221’5152 + 27rXA223f
— 1087, Bs,s, + 4321, B,rs;s, + 2527, B,s
- IOSOrXBSrzsls2 - 1260pr5rsf + 36rxsls§
2 2 22
— 185,,5;5, + 30s,,5] + 45A(Bss; — 5A | ASs]
+6AA,s; — 45AlBsrsf + 10A32rsf - 12A22rs3
2 2 22
— 15A,B;s] + 60A,B,rs] — 105A,Bsr"s)
+ SAzsfs2 + 18B3s; — 72B,rs; + 180351’253

- 63253) / (185?) ,

Ay =

Ath =

(36A2txrs1 +72A,,1,8, — 18A2xxr251
—72A,,r,rs; —3A,, Ay +3A, A rs,
—3A, A,r’s; — 18By,s, + 18B,, s,
+72B,rs, — 72B,, r’s, — 180B,r’s,
+ 1803er351 +24r, A | A,s, — 481'XA221’5l
+ 72r,Bss, — 288r, Byrs; + 720pr5r251 — 61,55,
= 35,8, + 3A0A2251 - 12A(B,s; + 60A(Bsrs;
+4A%Ays, — 194, A%rs, + 6A | Bys, — 12AB,rs,
+19A51%s, + 18A,B,s,
— 66A,B,rs, + 144A,B,1’s,
— 240A,B5r’s) + 24,5 +55) / (185,)
(—6A1XAzsfs2 - 72A2trxsls§ +90A,,5,,5:5,
—90A 5,5 — 244, A 505, + 12A,,5,5,
+18A,, 5.5, — 9A, S, + T2A, 1,75 50
2xx" °1°2 2xx°1 2x"x"°1°2
+ 18A2xrxs?s2 —90A,,5,7s;S, + 90A2x52xr5f
- 6A2xAlsfs2 + 48A2,CA21'sfs2 - 18A2xA25‘;’
—12A,,18,55 — 18B3xsfs2 + 7ZB4xrsfs2
— 27B,,s) + 54Bs,s; — 180Bs,r’s}s,
+81Bg,rs, — 24r, A | A,s, s> + 48r Alrs s>
5x"°1 x411432°1°2 x4220°1°2
22 2 2
+ 12r, A5sys, — 721, Bss,s, + 2881, B,rs; s,

2 2.2 2
+72r,B,s|s, — 7207, Bsr”s;s;, — 3607, Bsrsis,
+ 135prss‘;’ + 305, A A,ys;s, — 6051xA221’5152
+ 90s,,B3s;s, — 360s,,B,rs;s,

2 2 2.2
+900s,, Bsr”s;s, — 30s,, A A,s] + 60s, A’rs]

2 2 22
—90s,,B3s] + 360s,, B,rs; — 900s,, Bsr"s]
- 8A1A225fs2 +4A A ,s,85 + 18A1355f
+ 16A32rsfs2 - 4A325i - 8A22r5253
- 24A2B3s%s2 + 96A2B4rsfs2 - 18AZB45?
- 240A235r25f52 + 54A2B5rsf + 12B;s,5s5

— 48B,7s,55 + 12035r25253) / (185?52).
(42)



3.2.2. Case s;=0. From (35), one finds the condition
s, =0. (43)
Equation (15) gives the conditions
Ag = (6Agr + 64517 —6A,,r° —TAGA,
+9AA,r +5A%r —8A Ay + AL
— 36B, + 54B,r — 54B,r” + 36B,1”) /6,
(44)
By = (—AQ +240A,r —2A,A, 1" - ATr
+24, A, — A3r* + 12B,r - 12B,r
+ 12Byr° — 12B,r* + 12B5r° ) /12.

From the mixed derivative (G,,,); = (G;..),> one finds the
condition

Ay = (36A2txr +72A,7, — 18A, 1

—72A,,r,r —=3A, Ay +3A, AT
~3A,,A,r" — 18By, + 18B,,7 + 72B,,r
—72B,,r* — 180B,r* + 180Bs,
+24r A\ A, — 48r A’y + 72r, B, — 2887, B,r
+ 7207, Bsr” + 3AA% — 12A,B, + 60A (Bsr
+4A%A, —19A A’r + 6A B, — 12A,B,r

3.2
+19A5r" + 18A,B, — 66A,B,r

+ 144A,B,r* — 240A235r3> /18.
(45)
The relation (G,,), = (G,,,); becomes

18 (F,G,; — F,G,,r - F,1,G, - G, K) s, + G;Ks5 = 0,
(46)
where
sy = 3A, —3A,r+ A A, — 245 + 3B,
— 12B,r + 30Byr?,
s; = 18A

+27A A, —36A,, 1 +24A, A,

1xx 2xx

~102A,,A,r + 72B,, — 54B,, — 234B,
+270Bs,r + 450Bs, 1> — 157, A — 1807, B,
+ 9007, Bsr + 65, — 45ABs + 13A, A}
+45A,Bsr — 26A%r + 39A,B; — 156A,B,r

+345A,B.r” — 8A,s,.
(47)
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The relation (A,,), — A,,;, = 0 provides the condition

(1215, + 354,17 + Aysy = 2A,75,)

St 3 (48)
Further study depends on s,.
(i) Casesy # 0
From (46), one gets the derivative
(18 (F,G,,r + F,1,G, + G|,,K) s, — G;Ks5)
it = . (49)

(18Fx54)

Differentiating g,, with respect to x, one obtains the deriva-
tive

_ (Ks) (50)
* (108s3)°
where
S¢ = 324A,, 57 — 365,55 + 36555, + 108A%s] o

+324B,s; — 1620Bsrs; — s..

(Fo (Gr): = G (Frea)s
= F,,., provide the conditions

The relations (F,), =
(Ft)xxx’ and (Fx)xx

Set = (3>Orxs6 + 356, + 2A 5g — 4A,rsg + 108Azsi
+ 18s7s5) /3,
s = (—108A,,s; — 108A,,rs; + 1087, A,
+ 18075455 + 3654, 1S5 — 36A1Azsi
+12A 5485 — 36A22rsi —24A,rs,ss
— 108B;s; + 108B,rs, + 540Bsr’s; + rs2
+ rsg — 144s;) / (36s,) ,
Ay = (—5832A,,A,s; - 8748B,, s + 17496By,s;
+26244Bs, 15, + 437407 Bss, — 126554
+ 455,54 + 58324, Bss, — 1296 A3,
— 5832A,B,s, + 17496, Bsrs,
+ 124,5,5 — 5556) / (291653 ),
Sexx = (—324A,,5356 + 291655455 — 11664s],.5¢
+ 5832s,,.56,5, + 1944s,, A,5,55 — 1625,,.5554
- 64856xAzsi + 5454,.5,55 — 108Azzsis6

+ 18A,5,555, — 104976Bss; +s¢) / (972s]) .
(52)
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(ii) Cases, =0

From (46), one gets the condition

s =0. (53)

Comparing the mixed derivative (F,,.);
arrives at the condition

(F)xx> ONE

Ay = (-18A,, A, —27B,, + 54B;,

2xx
+81Bs,r + 1357 Bs + 18A,B; —4A3  (54)

— 18A,B, + 54A,B.r) /9.

All obtained results can be summarized in the following
theorems.

Theorem 2. Sufficient conditions for (8) to be linearizable via
the generalized linearizing transformation (5) with F,, = 0 are
equations (18), (22), (24), (25), (28), (29), (30), and (31).

Corollary 3. Provided that the sufficient conditions in
Theorem 2 are satisfied, the transformation (5) mapping equa-
tion (8) to a linear equation (6) is obtained by solving the
compatible system of equations (21), (23), and (26) for the
functions F(t), G, (t, x), and G,(t, x).

Theorem 4. Sufficient conditions for equation (8) to be lin-
earizable via the generalized linearizing transformation (5)
with F,. # 0 are as follows.

(a) If s, # 0, then the conditions are (18), (40), (41), and
(42).

(b) Ifs; = 0,s, # 0, then the conditions are (18), (43), (44),
(48), and (52).

(c) Ifs; = 0,s, = 0, then the conditions are (18), (43), (44),
(53), and (54).

Corollary 5. Provided that the sufficient conditions in
Theorem 4 are satisfied, the transformation (5) mapping equa-
tion (8) to a linear equation (6) is obtained by solving the
following compatible system of equations for the functions
F(t, x), G, (t, x), and G,(t, x):

(a) (16), (17), (34), (37), and (38);
(b) (16), (17), (34), (49), and (50);

(c) (16), (17), (19), (32), (33), and (34).

4. Examples

For understanding the procedure of using the linearization
theorems, we consider the following examples.

Example 1. Consider the nonlinear third-order ordinary
differential equation

3x* + 25 (3t + 2x) + 3x"2 P x

+x? (3-t2 + 8tx + 3x2) +2x 5" tx (t + 2x)
(55)

—x' X"+ 2x (2t +3x) + 3x"2

+xtx (—t + 4x) — X" x 4357 = 0.

It is an equation of the form (8) in Theorem1 with the
coefficients

3 2(t+2
A, =-3  a = 2x20
X tx
t—4x 3
Ag=—— Bs =0, By=-—,
B 20t+2x) 37+ 8tx +3x° (56)
T e 2T g
2 (2t +3x) 3
b= R
12 450
r=1  m=-—  h=-—F

One can check that these coefficients obey the conditions
in Theorem 2. Thus, (55) is linearizable via a generalized
linearizing transformation. For finding the functions F, G,
and G,, we have to solve equations in Corollary 3, which
become

F,=0, F =K, (57)
G, (5G,t* —4G,,Gt - G}) (58)
Gi=—> Gy = > >
x (3G,#?)
(4KG,t - G)
K,=0, K =-—21* "1 (59)

(3G1)

From the first equation of system (58), we get G; = xf (), and
choosing f(t) = t, we have

Gy = xt (60)

and this solution satisfies the second equation. Since = 1,
then we obtain

G, = xt. (61)
System (59) becomes
K,=0, K, =0, (62)
and one can take the simplest solution
K=1 (63)
System (90) becomes

F, =0, F =1, (64)
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so that we get the particular solution
F=t. (65)
Thus, one obtains the linearizing transformation

X=t  dT=tx(x'+1)dt. (66)
Hence, (55) is mapped by the transformation of (66) into the
linear equation (6).

Example 2. Consider the nonlinear third-order ordinary
differential equation

15,2

3x"t + Xt (3t + 4x) + xx (4t + 3x)

+xx"tx (3t + x) + 3x"2x? + 4x %" tx? (67)

o2 2 n2,2 2
—xx t°x"+3x “t°x" =0.

It is an equation of the form (8) in Theorem1 with the
coeflicients

3t + 4
A, =8N Ay,
tx

3 (3t + 4x)

B =—-—, B =,
> x2 4 txc?

(4t + 3x) 3 (68)
B=—"p— B
B,=0, B,=0, r=0,

2 1 _12(t-x)
NTTR T ST T

One can check that these coefficients obey the conditions
in Theorem 4(a). Thus, (67) is linearizable via a generalized
linearizing transformation. For finding the functions F, G,
and G,, we have to solve equations in Corollary 5(a), which
become

F,=K, F=K, (69)

_ (Gyptx — Gyt + Gy x)

Gy )

>

Gie = (Gt +4G, G tx - 4G, G TV

- 5Git +4G;x) [ (3G,tx?),

_ (4K (Glxx - Gl))
o (3G,x)

>

(71)
_ (4K (Glxx - Gl))‘

' (3G,x)

From the first equation of system (70), one can take the
particular solution

G, =tx (72)

Journal of Applied Mathematics
and this solution satisfies the second equation. Since » = 0,
then we obtain
G, =0. (73)
System (71) becomes
K, =0, K, =0, (74)
and one can take the simplest solution
K=1 (75)
System (69) becomes
F,=1, F =1, (76)
so that we get the particular solution
F=t+x. (77)
Thus, one obtains the linearizing transformation
dT = txx'dt. (78)

X=t+x,

Hence, (67) is mapped by the transformation of (78) into the
linear equation (6).

Example 3. Consider the nonlinear third-order ordinary
differential equation

"2 2

22 n o2
3x “x =

3x™ = 3x"x" x - x'x""x* = 0. (79)

Note that this equation can be reduced to an autonomous
equation by the substitution

x =tv(s), s=In(t), (80)
and then to the second-order ordinary differential equation
y'2y (z+)
= y?2y (22 + y) - 3y'zy (z2 + yz) (81)
— 32" —142°y - 202°y* — 152° - 3y,

where y = y(z). However, the latter equation is not
linearizable by point transformations.

Equation (79) is an equation of the form (8) in Theorem 1
with the coefficients

A2=§, A, =0, Ay=0,
B; =0, B, = %, B; =0, B, =0, (82)
B, =0, B, =0, r=0,
5 =0, s, =0, s, =0, s5=0

One can check that these coefficients obey the conditions
in Theorem 4(c). Thus, (79) is linearizable via a generalized
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linearizing transformation. For finding the functions F, G;,
and G,, we have to solve equations in Corollary 5(c), which
become

F, =K,
Foy = (6FF,G,,G,Kx* + 18F,,G,,G, K’ x*
(83)
- F)G,x* - 6F.G,,G, Kx* - 9F,G: K’x’
- 9F,G{K*) / (6G1K’x?),
(5G3,)
G = GG,
1
G - (G (E,Gy,x + 6G,, Kx + 3G, K))
th (3G,Kx) (84
Giex = (6F GG Kx* - FiG} %" — 6F,G,G, Kx*
+ 9G1, K*x* - 9G1K?) [ (6G,K*x%),
K - (F,Gyex + 3G, Kx + 3G, K)
) (3G, x) ’ -
85
_(46,K)
b(6G)

From the first equation of system (84), one can take the
particular solution

G =x (86)

and this solution satisfies the second and third equations.
Since r = 0, then we obtain

G, =0. (87)
System (85) becomes
k= ko (88)
x

and one can take the particular solution
K =" (89)
System (83) becomes

_ (3 (Fxxx B Fx)) (90)

2
E, = x", F, .. 3 R
X

X

so that one obtains the particular solution of the first equation
as

F=tx (91)

and this solution satisfies the second equation. Then we get
the linearizing transformation
X =t dT = xx'dt. (92)

Hence, equation (79) is mapped by the transformation of (92)
into the linear equation (6).

1

5. Conclusion

This paper is devoted to find the conditions which allow the
third-order ordinary differential equation to be transformed
into the simplest linear equation. Necessary conditions which
guarantee that the third-order ordinary differential equation
can be linearized are found in Theorem 1. Theorems 2 and
4 are sufficient conditions for the linearization problem.
The linearizing transformation can be found by solving the
compatible system in Corollaries 3 and 5. Finally, some
examples are provided to demonstrate our procedure.
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