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This paper establishes the existence of at least three positive solutions for a coupled system of p-Laplacian fractional order two-
point boundary value problems, Dfi (¢, (D5Lu(t))) = fi(t,u(t),v(t), t € (0,1), Dgf (9, (D) = fr(t,ul), v(t)), t € (0,1),

u(0) = DILu(0) = 0, yu(1) + 8DZu(1) = 0, Dgtu(0) = Dgiu(l) = 0, »(0) = DEw(0) = 0, yv(1) + DEw(1) = 0, D2 v(0) =

ot

1. Introduction

The theory of differential equations offers a broad mathe-
matical basis to understand the problems of modern society
which are complex and interdisciplinary by nature. Fractional
order differential equations have gained importance due to
their applications to almost all areas of science, engineering,
and technology. Among all the theories, the most applicable
operator is the classical p-Laplacian, given by ¢,(s) =

Is|”s, p > 1. These types of problems have a wide
range of applications in physics and related sciences such as
biophysics, plasma physics, and chemical reaction design.

The positive solutions of boundary value problems asso-
ciated with ordinary differential equations were studied by
many authors [1-3] and extended to p-Laplacian boundary
value problems [4-6]. Later, these results are further extended
to fractional order boundary value problems [7-15] by
applying various fixed point theorems on cones. Recently,
researchers are concentrating on the theory of fractional
order boundary value problems associated with p-Laplacian
operator.

In 2012, Chai [16] investigated the existence and mul-
tiplicity of positive solutions for a class of boundary value

0+
D2v(1) = 0, by applying five functionals fixed point theorem.

problem of fractional differential equation with p-Laplacian
operator,

D (¢, (Dyu(®)) + f(tu(®) =0, 0<t<l, o
u(0)=0, u(l)+oD}u(l)=0, Dgu(0)=0,
by means of the fixed point theorem on cones.

This paper is concerned with the existence of positive
solutions for a coupled system of p-Laplacian fractional order
boundary value problems:

Db (¢, (Du(®)) = fi (u(®),v(®), te(©1), @)

Dy (¢, (Div(®)) = frbu®,v(®), te©D, ()
u(0)=DHu0)=0,  yu(1)+8DEu(1)=0,
(4)
DJiu (0) = Dgtu (1) =0,
v(0)=Dgv(0)=0,  yv(1)+dDEv(1) =0,
(5)
D:v(0) = Dgiv (1) =0,
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where ¢,,(s) = [s|"s, p > 1, gb;,l =¢p 1ptl/g=1, y,6are

positive real numbers, 2 < «; <3, 1< 3, ¢; <2, f;: ] x
R? — R" are continuous functions, and D Dgi, Dg;, for

i = 1,2 are the standard Riemann—L10uv1lle fract10na1 order
derivatives.

The rest of the paper is organized as follows. In Section 2,
the Green functions for the homogeneous BVPs correspond-
ing to (2), (4) are constructed and the bounds for the Green
functions are estimated. In Section 3, sufficient conditions
for the existence of at least three positive solutions for a
coupled system of p-Laplacian fractional order BVP (2)-(5)
are established, by using five functionals fixed point theorem.
In Section 4, as an application, the results are demonstrated
with an example.

2. Green Functions and Bounds

In this section, the Green functions for the homogeneous
BVPs are constructed and the bounds for the Green functions
are estimated, which are essential to establish the main
results.

Let G,(t,s) be Greens function for the homogeneous
BVP:

-Dgiu(t) =0, te(0,1), (6)

u(0)=0, DLu(0)=0, yu(l)+6DEu(l)= (7)

Lemma 1. Let d = 6T(«,) + yI'(
then the fractional order BVP

—q,)#0.Ifh € C[0,1],

Dgtu(t) +h(t) =0, te(0,1), (8)
with (7) has a unique solution
1
u(t) = J Gy (t,s)h(s)ds, 9)
0
where
Gy (ts), 0<t<s<l,
G, (ts)= 1 M 10
1 (59) <‘Glz(t,s), 0<s<t<l, 10)

L (o - q5)
T (« 1)

Gy, (t,8) =Gy, (L, 5) - [

Gll(t,s)zé[ +0(1 - )qz][t(l—s)]“ll
5+ yI (o - ‘b)](t_s)al—l

I'()
(1)

Proof. Letu € C [@]+170, 1] be the solution of fractional order
BVP (8), (7). Then

I Dytu(t) = —Igth (b)), (12)
and hence
Mﬂ=—J—JU—Qm%®MS
T (o) 13)
+ ot T ot 4 tM
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Using the boundary conditions (7), ¢;, ¢,, and ¢; are deter-
mined as

111 [yf(ocl—qz)

d T(o)

a= +6(1—s)q2] (1-35)%"h(s)ds,
6 =0, ¢ =0.

(14)

Hence, the unique solution of (8), (7) is

o[ [<6

(=M

T(w)

Y1 [yl (e - g5) -4
+L3[—1‘((x1) +8(1—s)q]

- 9] h(s)ds

+0(1 - s)‘b] [t(1—-s)]%"

}h(s)ds

x [t (1

1
:J G, (t,5)h (s)ds
0

(15)
O

Lemma 2. Let y(t) € C[0,1] and 2 <
Then the fractional order BVP

Dy (¢, (Djiu ) =y ®),

with (4) has a unique solution

<3,1<p <2

te(0,1), (16)

u(t) = Ll G, (6,96, (Jol H, (5,7) y (1) dr) ds,  (17)

where
M 0<t<5<1
Hl (t,S) — r(ﬂl) 1 1 -
D) S Gl NN
r(B) ST

(18)
Proof. An equivalent integral equation for (16) is given by
¢, (DEu(t)) = j t-1P "y (r)dr
(.3 ) (19)
+¢ Aty cztﬁl_2
Using the conditions D Tu(0) = 0, D ‘u(l) = 0, ¢, and ¢,

are determined as ¢, = (-1/T(f3,)) _[0 (1- T)‘B1 y(r)dr and
¢, = 0. Then,

¢ (Dyu()) =

_ Bl
rwo]a Py (1) dr

1

(ﬁ)j[ul Py @ dr (20)
1

1
=- L H, (t,7) y (1) dr.
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Therefore,

1
¢,' (¢, (Dfiu()) =—¢;‘(J H, (t,7) y(T)dr). (1)

0

Consequently,

1
Diu(t) + ¢, <J H, (t,7) y (1) dT> =0. (22)

0

Hence, u(t) = |, Gy(t:9)¢,([, Hy(s,7)y(r)dr)ds is the
solution of fractional order BVP (16) and (4). O

Lemma 3. Assume that §(q, — 1) > yI'(a; — q,)/T(«,). Then
Green’s function G, (t, s) satisfies the following inequalities:

(i) Gy (t,s) = 0, for all (t,s) € [0,1] x [0, 1],
(ii) G, (t,5) < G,(1,5), for all (t,s) € [0,1] x [0, 1],
(iii) G, (£, 5) > (1/4%7)G,(1,s), for all (t,s) € I x [0, 1],
where I = [1/4,3/4].

Proof. Green’s function G, (t, s) is given in (10). For 0 < t <
s<1,

1 [T (e, - . o
Gur (t.9) = [%+8(1—5) ‘b] [£(1 = )%~
> 0.
(23)
ForO0<s<t<l,
(e -a) g | [E— 5]
Glz(t,s)—[W+8(l—s) ]T
Y —q,) | (t-s)%7"
- [‘“ (o) ] d
L[l =a) s g | BT (o)
- (o) d
V(- qy) ] (£ —ts)™"
- [‘” M@ ] d
> 2 [A-9) 2 -1][t—ts]" " >0
2~ > 0.

Hence, the inequality (i) is proved. For 0 <t < s < 1,

0G,, (6,5) _ 1| yE (o — )
ot d I(ay)

X (oc1 - 1) 172 > 0.

+8(1 - s)‘b] (1-s)4t

(25)

Therefore, G,,(t,s) is increasing with respect to ¢, which
implies that G, (t,s) < G;;(1,s). Now, for0 < s <t < 1,

9Gy, (t,s) _ [yl" (o~ q,)
ot I (o)

+8(1- s)“h]

o =2 _
y (= 1) [t—ts]™*(1-5)

d
YL (o —q,) | (& — 1) (2~ s)4 72
- [‘“ M) ] d
yI (0‘1 - ‘12) —qz]
> [—I‘(ocl) +6(1 —s)
(ay = 1) [t—ts]" 2 (1-5)
d
YL (o —q,) | (& = 1) (2 - ts)M?
- [‘“ M) ] d
(1) (E—ts)?
- d
Y (2 —g5) -4,
X[(—F(ocl) +8(1—s)q)(l—s)
yI (0‘1 _42)
- (5 ") )]
(-1~ ts) 2
- d

)

(g -1) (- ts)n?
d

X [6<(q2— 1)s+ @sﬂ...)
_yf(al—qz)s]
r(“l)
(g -1 -te)n
d
(- ) o

> 0.
(26)



Therefore, Gy,(t,s) is increasing with respect to ¢, which

implies that G,(t,s) < Gi,(1,s). Hence, the inequality (ii)

is proved. Now, the inequality (iii) can be established.
Let0<t<s<landt €I Then

Gy, (t5) = [W +8(1- s)“b] [t(1— )"
1
_ tle—l [YF iﬂ“(l(xz)qz) +8(1 _S)q2:| a1 _s)al—l

=t%7'G,, (1,9)

1
o 7Gu (L,s).

>
- 4ocrl
(27)

Let0<s<t<landt €I. Then

YL () — q,)
[(o)

_[5+

[t

Gy, (t,s) = [ +6(1 - s)‘%] [t(1-s)]47"

YL (0 — q5) o -1
F () ] =9

+6(1 - s)‘%] [£(1-s)]47"

B [8+ ¥ (o “12)] (t — ts)8~!
(ery)

r (28)
(o —
— tocl—l |:V ((Xl qZ) +6(1 _S)—qz
T (o)
T (o, —
- <5+ ¥ (o ‘12))] (1 o]
T (o)
= t‘xl_lGlz (1,s)
1
> FGIZ (1,s).
Hence the inequality (iii) is proved. O

Lemma 4. Fort,s € [0, 1], Greens function H,(t, s) satisfies
the following inequalities:

(i) Hy(t,s) = 0,

(ii) H,(t,s) < H,(s,s).

Proof. Green’s function H, (t, s) is given in (18). Clearly, it is
observed that, for 0 <t <s < 1, H,(t,s) = 0.
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ForO0<s<t<l,

H; (t5) = r(}s ) (B (1 - 9P — (= 7]
1
1 pi-1 Bi-1 Bi-1
= e (1= -(t—t
T (B) A= (t=t9"7]
1 Bi-1 Bi-1 _ Bi-1 Bi-1
= t 1- —t 1-—
gy 110 (-9

=0.
(29)

Hence, the inequality (i) is proved. Now we establish the
inequality (ii), for 0 < t < s < 1,

O0H, (t,s) _ 1
ot (A1)

[(B,-1) P -9 > 0. (30)

Therefore, H, (t, s) is increasing with respect to ¢, for s € [0, 1),
which implies that H,(t,s) < H,(s,s). Similarly, it can be
proved that H,(¢,s) < H,(s,s) for 0 < s < t < 1. Hence
the inequality (ii) is proved. O

Lemma 5. Greens function H\(t,s) satisfies the following
inequality: (A) there exists a positive function y,'(s) € C(0,1)
such that

min H, (¢, 5) >y (9 H, (s,8), for0<s<1l. (3]
te

Proof. Since H,(t,s) is monotonic function, for all ¢,s €
[0, 1], we have

max H, (5) = Hy (59) = — [0 -9 (32)

T (B)

From (i) of Lemma4, H,(t,s) > 0, for t,s € [0,1].
For s € (0,1/4), H,(t,s) is increasing with respect to t
fort € (0,s/(1 — (1- s)(ﬁlfl)/(ﬁrz))) and decreasing with
respect to t for t € (s/(1 - (1 - s)([;l_l)/(ﬁl_z)), 1/4). For s €
(1/4,1), H,(t, s) is decreasing with respect to t for s < t and
increasing with respect to t for s > t. If we define

[t -9 - (- 9h

h, (t,s) = ,
1&9) ()
. (33)
[t(1 -9
hy(ts) = -
209 = )
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Then,
( 3 1
hl(—,s), 56(0,—],

4 4

3 1 13

min H, (t,s) = <min{h1<—,s>,h2<—,s>}, s€ [—,—],
tel 4 4 4 4
( ’S) >
( ,S), s €(0,¢],

< ,s), sel&),

[3/4) (1 =)1P = (3/9) - 9
L'(B) ’
] s € (0,¢],
I I G S
L(B,) 4b1 ’
se&),
([3/9) Q-9 = (3/4) -9
[s(1-5)]P"
xH, (s,s), s€(0,&],
> 3
1
Mflm“g
€[&),
=y, (s)H, (s,9),
(34)
where
RN T YIRS
[(3/4) (1 -5)] l(;(i/‘l) s) L se(0,8],
)/1* (s) = [s (1 -39
(AI.S)T se&),
(35)
and & € (1/4,3/4) satisfy the equation [(3/4)(1 - E)]ﬁ"1

((3/4) = &)P! = (1 - )/4)P" . In particular, & = 0.5 if B, =
2§ - 05asf3; — 2;and& — 0.76 as f; — 1. Hence the
inequality in (31) holds. O

In a similar manner, the results of the Green functions
G,(t,s) and H,(t, s) for the homogeneous BVPs correspond-
ing to the fractional order BVP (3) and (5) are obtained.

Remark 6. Consider the following.
G, (t,s) = 7G,(1,5) and G, (¢, s) = nG,(1,s), forall (t, s) €
I'x [0) 1]; Where I/I = min{l/4"‘1_1’ 1/40(2—1}.

Remark 7. Consider the following.
H,(t,s) = y"(s)H,(s,s) and H,(t,s) > y"(s)H,(s,s), for
all (t,s) € I x [0, 1], where y*(s) = min{y; (s), y; (s)}.

3. Existence of Multiple Positive Solutions

In this section, the existence of at least three positive solutions
for a coupled system of p-Laplacian fractional order BVP
(2)-(5) is established by using five functionals fixed point
theorem.

Let y, 3, 0 be nonnegative continuous convex functionals
on P and let o, ¥ be nonnegative continuous concave
functionals on P; then for nonnegative numbers /', a’,b’, d’,
and ¢’, convex sets are defined:

P(y.d)={yeP:y(y) <},
P(pad.d)={yeP:d <a(y)sy(y) <<},
Q(y.p.d )= {yeP:p(y) <diy(y) <},

P(y.0,0a,b,c")= {yeP:a' <a(y);0(y)

<biy(y)<c},
= {yeP:H <y(y):B()

<d;y(y)<c'}.

Q (% ﬁ’ v, h,, d’, CI)

(36)

In obtaining multiple positive solutions of the
p-Laplacian fractional order BVP (2)-(5), the following
so-called five functionals fixed point theorem is fundamental.

Theorem 8 (see [17]). Let P be a cone in the real Banach space
B. Suppose that « and y are nonnegative continuous concave
functionals on P andy, 3, 0 are nonnegative continuous convex
functionals on P, such that, for some positive numbers ¢' and

e, a(y) < B(y)and |yl < e'y(y),for all y € P(y,c’). Suppose
further that T : P(y,c') — P(y,c') is completely continuous
and there exist constantsh', d', a', andb' > 0with0 < d' < d’
such that each of the following is satisfied:

(Bl) {y € P(y,0,a,a’,b',c") : a(y) > a'} #0 and a(Ty) >
a fory € P(y,0,a,a’,b',c),

(B2) {y € Qy, B, v, W,d', - B(y) > d'} +0 and B(Ty) >
d' for y € Qy, By, h',d', "),

(B3) a(Ty) > a provided that y € P(y,(x,a',c') with
0(Ty) > b/,

(B4) B(Ty) < d' provided that y € Q(y, By, h',d', c") with
w(Ty) <}

Then, T has at least three fixed points y,, y,, y; € P(y,c') such
that B(y;) < d,a < a(y,) and d < Bys) with a(y;) < a.

Consider the Banach space B= EXE, where E ={u:u €

C[0, 1]} equipped with the norm [[(u, V)| = llul, + lIvl,, for
(u,v) € B and the norm, is defined as

Jully = ma u ()] 37)



Define a cone P C B by

~{wveBlumzorm=orep,
(38)
min {1 6) + v (0] > 7 s W1}

Define the nonnegative continuous concave functionals «, ¥
and the nonnegative continuous convex functionals f3, 6, y on
P by

o (u,v) = min {|u| + |v|},
tel
v (u,v) = lgéll?{lul + v},
y () = max {jul + v}, (39)

B (u,v) = max{Ju + [vI},
0@w,v) =

max {|u| + |v|},
tel

where I, = [1/3,2/3]. For any (u,v) € P,

o (u,v) = min {|u| + |v|} < max {|u| + |v|}
tel tel;

=Bwv),

1 . 1 1
I, V)| < —min {[u] + [v[} < — max {[u| + [v]} = —y (4, v).
n tel r]te[o,l] n

(40)

L = min <|<J’01 1 (Ls) ¢, (Ll H, (7,7) d‘l’) ds>_1 ,
<Ll G, (1, s)qbq(LlH (, T)dT) ds>_l},
Mzmax{(l nG, (1, s)qu(

-1
y*(r) H,(1,7) dr) ds> ,

X (LEI y* (r)H, (1, 7) dT) ds)_ll> .

Theorem 9. Suppose that there exist 0 < a' < b <b'/n <
such that f;, fori = 1,2 satisfies the following conditions:

(41)

(AD) fi(t,u(t),v(t)) < ¢,(a'L/2),t € [0,1] and u,v €
[na',a'l,

(A2) fi(t,u(t),v()) > ¢P(b'M/2), t € I and u,v €
(b',b'/n),

(A3) fi(t,u(t),v(t)) < gbp(c'L/Z), t € [0,1] and u,v €
[0,c'].
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Then, the fractional order BVP (2)-(5) has at least three positive
solutions, (x1,x,), (V1> ¥,), and (z,, z,) such that B(x,, x,) <
a, b <aly,y,)anda' < B(z,,z,) with a(z,,z,) < .

Proof. LetT,, T, : P — Eand T : P — B be the operators
defined by

1
T, (u,v) (t) = L G, (t,s) gbq
X (_Ll H, (s,7) fi (z,u(),v(1)) d‘l’) ds,
1
T, (u,v) (t) = .[o G, (t,s) gbq

X (Ll H, (s,7) f, (r,u(1),v (1)) dT) ds,

T (u,v) ()= (Ty (u,v) @), T, (w,v)(t)), for (u,v)€ B.

(42)

It is obvious that a fixed point of T is the solution of the
fractional order BVP (2)-(5). Three fixed points of T are
sought. First, it is shown that T : P — P. Let (u,v) € P.
Clearly, T (u, v)(t) = 0 and T,(u,v)(t) > 0, fort € [0,1].
Also, for (u,v) € P,

1
|mmmmquu@%
1
X (J H,(s,7)f; (r,u(r),v(r))dr)ds,
0
1
| T, @, v)|, < L G, (L,s)¢,
1
y (J H, (s, 7)f, (t,u (1), v (1)) dr)ds,
0
ntlEiIn T, (u,v) (t) = mmJ G, (t,5) ¢,
1
X <J H,(s,7) fi(t,u (1), v (1)) dT)ds
0
1
> nL G, (L9 ¢,

X (JIH1 (s, 1) f (r,u (1), v (1)) dT)ds
0

> r]"T1 (u, v)||0. )
43
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Similarly, min,; T, (u, v)(t) > #lIT,(u, v)|l,. Therefore,
min {T (u,v) (1) + T (,v) (1)}
€

2 [Ty )y + 1l T 0]y
=n (T @]y + T2 (e »y) (44)
= (T, @), T, ()|

=T (V).

Hence, T(u,v) € PandsoT : P — P. Moreover, T is
completely continuous operator. From (40), for each (u,v) €
P, a(u,v) < B(u,v), and [|(u, v)|| < (1/1)y(u, v). It is shown
that T : P(y,c’) — P(y,c'). Let (u,v) € P(y,c’). Then
0 < |u| + |v| < ¢’. Condition (A3) is used to obtain

Y (T (u,v) (1))

1
= tlg%oa)l(] |:L G, (t,s) ¢q
X <J-1 H, (s,7) f1 (T,u(T),V(T))dT) ds
0
1
+ L G, (t,9) ¢,

y (Ll H, (5,7) f, (u (1), v (1) dT) ds]

_JIGI (t,s)(pq(J H, (s,‘r)¢>p( ,L)dr>ds
0
J G, (t,s) ¢q<J H, (s,7) ¢p<C’TL)dT>dS
'L
7

J G, (1, s)¢q<J H, (T,T)dT>d5

N

AN

’L 1 1
+ L G, (1,5) 4, (L H, (r,7) d‘r> ds

Cc
+ —
2

SUNOLE

(45)

Therefore T : P(y,c’) — P(y,¢'). Now conditions (B1) and
(B2) of Theorem 8 are to be verified. It is obvious that

v'+(b'/n)

!
€ {(u, v) € P(y, 0,a,b, %

c') o (u,v)> b'}#@,

na' +a’
2

E{(u, V) € Q(y, By, r]a',a',c') B (u,v)< a’} +0.
(46)

Next, let (u,v) € P(y,@ocb b/11,c) or (u,v) €
Qy, B, v, na a,c). Then, b < |u@®)| + ()] < b'/r] and

r]a' < |lu(®)| + |v(t)|] < a’. Now, condition (A2) is applied to
get

a (T (u,v) (1))

= I’BEIIII H:Gl (t,s) ¢q<J01H1 (1) f, (r,u(1),v(1)) d‘r) ds

1
+ L G, (1,5) ¢,

X (Jl H, (s,7) f, (t,u (1), v (1)) d‘l’) ds]
0

1
211“0 Gl(l,s)%(j Y (0 H, (m)%(bf)dr)ds

1
+ L G, (Ls) ¢,

- b'M
X (L y" (t)H, (T,T)¢P< 5 )d‘r) ds]
b'M

2 LGI 161 (1,9) ¢q <Le1 v @ ®D) dT> ds

>

!

+ M J 1nG, (1,5) ¢, (J y" (r)H, (1,7) d'r) ds
sel Tel
! !
> li + v b’
2 2

(47)
Clearly, condition (Al) leads to
B(T (u,v) (1))

= max [J:Gl(t, s) gbq(LlHl (1) f; (r,u(r),v (1)) d‘l) ds

tel;
1
+ Jo G, (t,5) ¢,

x (Jol H, (5,7) f, (t,u (1), v (1)) dT) ds]

1 1 /L
< L G, (1,s)¢q<L H, (s,r)qﬁP(%)dT)ds
1 1 ’L
+ JO c;2(1,s)<,sq(J0 H, (s,'r)qu(aT)dT)ds
al

1 1
< - J-o G, (1,s) </5q (JO H, (1,7) d‘r> ds

’L 1 1
+ % L G, (1,s)</>q (J'O H, (1,7) dr) ds

!
=a.

IN
| R
+
YN

(48)
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To see that (B3) is satisfied, let (u,v) € P(y,a, b',c') with
O(T (u, v)(t)) > b' /5. Then

(T (u,v) ()

- min UOIGI (0595 LIHI (50, (10 (1), (0) ) ds
v jol G, (£:9)¢,
([ o n ooy ar ) |
20| 6099, ([ B 60 fu (.o ) ds
+ jol G, (1,5)¢,
([ matsn @ @) as)

1
> 7 max H G, (t,5) ¢,

te[0,1] 0

1
« (J H, (s,7) f, (T,u(T),v(T))dT) ds
0

1

+ L G, (t,5) ¢,
X <Ll H, (s,7) f, (1, u (1), v (1)) dT> ds]
2], v,

1
X (J H, (s,7) f (r,u(1), v(r))dr) ds
0

1

+ L G, (1.5) ¢,

X <J01 H, (s,7) f, (t,u(1),v (1)) dT) ds]

=70 (T (u,v) (t)) > b'.
(49)

Finally, it is shown that (B4) holds. Let (1, v) € Q(y, S, a,c)
with (T (u,v)) < qa'. Then, we have

B(T (u,v) ()
1 1
- mgx HO G, (t,s) ¢q<L H, (s,7) fy(r,u (1), v (7)) dT) ds

1

+ JO G, (1.5) ¢,
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X (Ll H, (s,7) f, (r,u(1),v (1)) d1> ds]

< max[JIG1 (t,s)¢q<J1Hl(s,T) fl(T,u(T),v(T))d‘r> ds

te[0,11L Jo 0

1

+ Jo G, (t,s) ¢,
X <J'O1 H, (s,7) f, (T,u(T),V(T))dT) ds]
< Ll G, (1,s) ¢q<J01 H, (s,7) fi(t,u (1), V(T))d‘[‘) ds

1 1
+J G2(1,5)¢q<J HZ(S,T)f2(T,u(T),V(T))dT)dS
0 0

1 1 1
E [;1 Jo G, (1,s) gbq(J.o H,(s,7) fi(t,u(1),v (1)) dT) ds
1

+7 Jo G, (Ls)¢,
X (Ll H, (s,7) f, (t,u (1), v (1)) dT) ds]

1 ) 1 1
< Emén“o Gy (t,s) ¢q<j H,(s,1) fl(‘r,u(‘r),v(r))d‘r> ds

tel 0

1

, L G, (6,9 ¢,
1

y <j H, (s,7) f, (‘r,u(‘r),v(‘r))d‘r) ds]
0

< %rtrel}InHOIGl (t,s) (/)q(Ll H, (s,7) fi(t,u (1), v (7)) dT> ds

1
+ L G, (t,5) ¢,
X (Jol H, (s,7) f, (t,u(1),v (1)) dr) ds]

_ %W(T () (1) <d'.
(50)

It has been proved that all the conditions of Theorem 8 are
satisfied. Therefore, the fractional order BVP (2)-(5) has at
least three positive solutions, (x;,x,), (¥, ¥,), and (z;,2,)
such that B(x;,x,) < a, b < a(y,y) and @ <
B(z,,z,) with a(z,, z,) < b'. This completes the proof of the
theorem. O

4. Example

In this section, as an application, the result is demonstrated
with an example.
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Consider a coupled system of p-Laplacian fractional
order BVP:

Dy’ (¢, (Dgfu(®))) = fi (bu(®),v(®), te(0,1),
Dy (¢, (D5v(0)) = £ (b u(®),v (1), te(0,1),

u(0) = DY?u(0) =0, 5u(l)+8DYu(1)=0,

(51)
Dfu(0) = DFu(1) = 0,
v(0) = Dg?v(0) =0, 5v(1)+8Dy v(1) =0,
D:v(0) = DI*v(1) =0,
where
(¢ N sin (1 + v)
99 10
87
+%, 0<u+v<10,
t) bl =
htwy) <e_t+87000
99 10
+—sm(u+v)’ u+v>10.
10
(52)
[ 3¢ N cos (u +v)
159 10,
93(u +
+—(”10 D o<u+v<lo,
t,u,v) = 3
fa ) 3_et+ 93000
159 10
+M, u+v> 10,
10

Then the Green functions G;(t, s) and H;(¢, s), fori = 1,2, are
given by

1 [5r(1.9) L8 s)_0'7]
1624 | T(2.6)
x[t(1-9)]"°, t<s,
G (ts)=9 1 [5F(l.9) +8(1 _S),OJ]
16.24 | T (2.6)
e (=9
X[t (1 -5s)] —m, s<t,
1 [sr CAI I _s)_oj]
18.64 | T(2.6)
x[t(1-9)]"%, t<s,

G,(ts)=4 1 [5r(2.1)

007
18.64 | T'(2.6) +8-3) ]

(t _ $)1.8

1.8
x[t(1-5)]"°- r2s)

9
ES ST LA
H, (ts) = 4 '
L(&s) (- 5)]0.7 .
r(7) =9
ES LT LR
H, (t,s) = 4 '
5 (t, ) (- 5)]0'9 .
r(19) =5
(53)

Clearly, the Green functions G;(t, s) and H;(t,s), fori = 1,2,
are positive and f,, f, are continuous and increasing on
[0, 00). By direct calculations, = 0.08, p = 2, L = 33.16,
and M = 1677.73. Choosinga' = 1, = 10and ¢ = 900
andthen 0 < a' <b' <b'/y < and f, fori = 1,2 satisfies

(i) fi(t,u,v) < 16.5845 = ¢,(a'L/2), t € [0,1] and u, v €
[0.08, 1],

(ii) f;(t,u,v) > 8388.65 = (/)P(b'M/Z), t € [1/4,3/4] and
u,v € [10, 125],

(iii) fi(t,u,v) < 14926.09 = ¢P(C'L/2),t € [0,1] and
u,v € [0,900].

Then, all the conditions of Theorem 9 are satisfied. Therefore,
it follows from Theorem 8 that the p-Laplacian fractional
order BVP (51) has at least three positive solutions.
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