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We present a new technique for solving numerically stochastic Volterra integral equation based on modified block pulse functions.
It declares that the rate of convergence of the presentedmethod is faster than themethod based on block pulse functions. Efficiency
of this method and good degree of accuracy are confirmed by a numerical example.

1. Introduction

The numerical study and simulation of stochastic Volterra
integral equations (SVIEs) have been an active field of
research for the past years [1–7]. Most SVIEs do not have
analytic solutions and hence it is of great importance to
provide numerical schemes. Numerical schemes to stochastic
differential equations (SDEs) have been well developed [8–
12]. However, there are still few papers discussing the numer-
ical solutions for stochastic Volterra integral equations.

Study in economics, sociology, and various biological
and medical models leads to the stochastic Volterra integral
equations.These systems are dependent on a noise source, on
a Gaussian white noise, so that modeling such phenomena
naturally requires the use of various stochastic Volterra
integral equations.

In this paper, we consider the linear stochastic Volterra
integral equation:

𝑢 (𝑡) = 𝑢
0
(𝑡) + ∫

𝑡

0

𝑘
1
(𝑠, 𝑡) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑘
2
(𝑠, 𝑡) 𝑢 (𝑠) 𝑑𝐵 (𝑠) 𝑡 ∈ [0, 𝑇] ,

(1)

where 𝑢(𝑡), 𝑢
0
(𝑡), 𝑘
1
(𝑠, 𝑡), and 𝑘

2
(𝑠, 𝑡), for 𝑠, 𝑡 ∈ [0, 𝑇), are the

stochastic processes defined on the same probability space
(Ω,F, 𝑃) with a filtration {F

𝑡
, 𝑡 ≥ 0} that is increasing

and right continuous and F
0
contains all 𝑃-null sets.

𝑢(𝑡) is unknown random function and 𝐵(𝑡) is a standard
Brownian motion defined on the probability space and
∫

𝑡

0
𝑘
2
(𝑠, 𝑡)𝑢(𝑠)𝑑𝐵(𝑠) is the Itô integral. Numerous papers have

been focusing on existence solution of (1) [13–15].
The paper [3] solves stochastic Volterra integral equations

by block pulse functions (BPFs) and [4] applies this method
for solving 𝑚-dimensional stochastic Itô Volterra integral
equations. However, BPFs are very common in use; it seems
that their convergence is weak.Maleknejad and Rahimi apply
in [16] 𝜀Modified Block Pulse Functions (𝜀MBPFs) to solve
Volterra integral equation of the first kind numerically. Here,
we use this method for solving SVIEs.

This paper is organized as follows. In the rest of this
section we describe some general concepts concerning the
block pulse functions and epsilon modified block pulse
functions and some concepts related to stochastic and Itô
integral. Section 2 is devoted to stochastic integration oper-
ational matrix. In Section 3, the method is employed to
solve stochastic integral equations. Section 4 discusses error
analysis of this method. Section 5 gives numerical example.
Finally, Section 6 provides the conclusion of this work.

1.1. Block Pulse Functions. BPFs have been variously studied
[16–18] and applied for solving different problems. The goal
of this section is to recall notations and definition of the BPFs
that are used in the next sections.
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The block pulse functions are defined on the time interval
[0, 𝑇) by

𝜓
𝑖
(𝑡) =

{
{

{
{

{

1 (𝑖 − 1)

𝑇

𝑚

≤ 𝑡 < 𝑖

𝑇

𝑚

,

0 elsewhere,
(2)

where 𝑖 = 1, . . . , 𝑚 and for convenience we put ℎ = 𝑇/𝑚.
The block pulse functions on [0, 𝑇) have the following

properties:

(1) disjointness: for 𝑖, 𝑗 = 1, . . . , 𝑚

𝜓
𝑖
(𝑡) 𝜓
𝑗
(𝑡) = 𝛿

𝑖𝑗
𝜓
𝑖
(𝑡) , (3)

where 𝛿
𝑖𝑗
is Kronecker delta;

(2) orthogonality:

∫

𝑇

0

𝜓
𝑖
(𝑡) 𝜓
𝑗
(𝑡) 𝑑𝑡 = 𝛿

𝑖𝑗
ℎ; (4)

(3) completeness: for every 𝑓 ∈ 𝐿
2
([0, 𝑇)) when 𝑚

approaches infinity, Parseval’s identity holds:

∫

𝑇

0

𝑓
2
(𝑡) 𝑑𝑡 = lim

𝑚→∞

𝑚

∑

𝑖=1

(𝑓
𝑖
)
2󵄩
󵄩
󵄩
󵄩
𝜓
𝑖
(𝑡)

󵄩
󵄩
󵄩
󵄩

2
, (5)

where

𝑓
𝑖
=

1

ℎ

∫

𝑇

0

𝑓 (𝑡) 𝜓
𝑖
(𝑡) 𝑑𝑡. (6)

Also the Fourier coefficients 𝑓
𝑖
and the block pulse functions

depend on𝑚.The set of block pulse functionsmay be written
as a vector Ψ(𝑡) of dimension𝑚:

Ψ (𝑡) = [𝜓
1
(𝑡) , . . . , 𝜓

𝑚
(𝑡)]
𝑇

𝑡 ∈ [0, 𝑇) . (7)

From the above representation and disjointness property, it
follows that

Ψ (𝑡)Ψ
𝑇
(𝑡) = (

𝜓
1
(𝑡) 0 0 ⋅ ⋅ ⋅ 0

0 𝜓
2
(𝑡) 0 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝜓
𝑚
(𝑡)

)

𝑚×𝑚

.

Ψ
𝑇
(𝑡) Ψ (𝑡) = 1,

Ψ (𝑡) Ψ
𝑇
(𝑡) 𝐹 = 𝐷

𝐹
Ψ (𝑡) ,

(8)

where 𝐹 is an𝑚-dimensional vector and𝐷
𝐹
= diag(𝐹). Let𝐺

be an𝑚 × 𝑚matrix so that

Ψ
𝑇
(𝑡) 𝐺Ψ (𝑡) = 𝐺

𝑇
Ψ (𝑡) , (9)

where𝐺 is a vectorwith elements equal to the diagonal entries
of 𝐺.

The expansion of a function 𝑓(𝑡) over [0, 𝑇) with respect
to 𝜓
𝑖
(𝑡), 𝑖 = 1, . . . , 𝑚, is given by

𝑓 (𝑡) ≃

𝑚

∑

𝑖=1

𝑓
𝑖
𝜓
𝑖 (
𝑡) = 𝐹

𝑇
Ψ (𝑡) = Ψ

𝑇
(𝑡) 𝐹, (10)

where 𝐹 = [𝑓
1
, . . . , 𝑓

𝑚
]
𝑇 and 𝑓

𝑖
is defined by (6).

Let 𝑘(𝑠, 𝑡) ∈ 𝐿
2
([0, 𝑇
1
) × [0, 𝑇

2
)). It is expanded with

respect to BPFs as

𝑘 (𝑠, 𝑡) ≃ Ψ
𝑇
(𝑠) 𝐾Λ (𝑡) , (11)

where Ψ(𝑠) and Λ(𝑡) are 𝑚
1
- and 𝑚

2
-dimensional BPFs vec-

tors, respectively, and𝐾 is the𝑚
1
×𝑚
2
block pulse coefficient

matrix with the below 𝑘
𝑖𝑗
, 𝑖 = 1, . . . , 𝑚

1
, 𝑗 = 1, . . . , 𝑚

2
:

𝑘
𝑖𝑗
=

𝑚
1
𝑚
2

𝑇
1
𝑇
2

∫

𝑇
1

0

∫

𝑇
2

0

𝑘 (𝑠, 𝑡) 𝜓𝑖 (
𝑠) 𝜆𝑗 (

𝑡) 𝑑𝑠 𝑑𝑡. (12)

For convenience, we put𝑚
1
= 𝑚
2
= 𝑚.

Now, integration operational matrix is considered and
computed:

∫

𝑡

0

𝜓
𝑖
(𝑠) 𝑑𝑠 =

{
{
{
{

{
{
{
{

{

0 0 ≤ 𝑡 ≤ (𝑖 − 1) ℎ,

𝑡 − (𝑖 − 1) ℎ (𝑖 − 1) ℎ ≤ 𝑡 ≤ 𝑖ℎ,

ℎ 𝑖ℎ ≤ 𝑡 < 1.

(13)

Since 𝑡 − 𝑖ℎ is equal to ℎ/2 at midpoint of [𝑖ℎ, (𝑖 + 1)ℎ), we can
approximate 𝑡−(𝑖−1)ℎ, for (𝑖−1)ℎ ≤ 𝑡 < 𝑖ℎ by ℎ/2.Therefore

∫

𝑡

0

𝜓
𝑖
(𝑠) 𝑑𝑠 ≃ (0, . . . , 0,

ℎ

2

, ℎ, . . . , ℎ)Ψ (𝑡) , (14)

where the 𝑖th component is ℎ/2. As a result

∫

𝑡

0

Ψ (𝑠) 𝑑𝑠 ≃ 𝑄Ψ (𝑡) , (15)

where 𝑄 is operational matrix of integration that is given by

𝑄 =

ℎ

2

(

(

(

1 2 2 ⋅ ⋅ ⋅ 2

0 1 2 ⋅ ⋅ ⋅ 2

0 0 1 ⋅ ⋅ ⋅ 2

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 1

)

)

)

. (16)

So,

∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≃ ∫

𝑡

0

𝐹
𝑇
Ψ (𝑠) 𝑑𝑠 ≃ 𝐹

𝑇
𝑄Ψ (𝑡) . (17)

1.2. Epsilon Modified Block Pulse Functions (EMBPFs). A
set of epsilon modified block pulse functions 𝜃

𝑖
(𝑡), 𝑖 =

0, 1, . . . , 𝑚, on the interval [0, 𝑇) are defined as

𝜃
0
(𝑡) =

{
{

{
{

{

1 𝑡 ∈ [0,

𝑇

𝑚

− 𝜀) = 𝐼
0
,

0 otherwise,

𝜃
𝑖
(𝑡) =

{
{

{
{

{

1 𝑡 ∈ [

𝑖𝑇

𝑚

− 𝜀,

(𝑖 + 1) 𝑇

𝑚

− 𝜀) = 𝐼
𝑖
,

0 otherwise,

(18)
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for 𝑖 = 1, .., 𝑚 − 1, and

𝜃
𝑚
(𝑡) =

{

{

{

1 𝑡 ∈ [𝑇 − 𝜀, 𝑇) = 𝐼
𝑚
,

0 otherwise.
(19)

Similar to BPFs, the most important properties of
EMBPFs are

(1) disjointness:

𝜃
𝑖
(𝑡) 𝜃
𝑗
(𝑡) =

{

{

{

𝜃
𝑖
(𝑡) 𝑖 = 𝑗,

0 𝑖 ̸= 𝑗,

(20)

where 𝑖, 𝑗 = 0, . . . , 𝑚;

(2) orthogonality: if we put ℎ = 𝑇/𝑚,

∫

𝑇

0

𝜃
𝑖 (
𝑡) 𝜃𝑗 (

𝑡) 𝑑𝑡 = ℎ𝛿
𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑚 − 1; (21)

(3) completeness:

∫

𝑇

0

𝑓
2
(𝑡) 𝑑𝑡 =

∞

∑

𝑖=0

𝑓
2

𝑖

󵄩
󵄩
󵄩
󵄩
𝜃
𝑖
(𝑡)

󵄩
󵄩
󵄩
󵄩

2
, (22)

where

𝑓
𝑖
=

1

Δ (𝐼
𝑖
)

∫

𝑇

0

𝑓 (𝑡) 𝜃
𝑖
(𝑡) 𝑑𝑡 (23)

and Δ(𝐼
𝑖
) is length of interval 𝐼

𝑖
.

With defining Θ
𝑚+1

(𝑡) = [𝜃
0
(𝑡), . . . , 𝜃

𝑚
(𝑡)]
𝑇, we have

Θ
𝑚+1

(𝑡) Θ
𝑇

𝑚+1
(𝑡)

= (

𝜃
0
(𝑡) 0 0 ⋅ ⋅ ⋅ 0

0 𝜃
1
(𝑡) 0 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝜃
𝑚 (

𝑡)

)

𝑚+1×𝑚+1

,

Θ
𝑇

𝑚+1
(𝑡) Θ𝑚+1 (

𝑡) = 1,

Θ
𝑚+1

(𝑡) Θ
𝑇

𝑚+1
(𝑡) 𝐹 = 𝐷

𝐹
Θ
𝑚+1

(𝑡) ,

Θ
𝑇

𝑚+1
(𝑡) 𝐺Θ

𝑚+1
(𝑡) = 𝐺

𝑇
Θ
𝑚+1

(𝑡) .

(24)

Similar to BPFs,

∫

𝑡

0

Θ
𝑚+1

(𝑠) 𝑑𝑠 ≃ 𝑃Θ
𝑚+1

(𝑡) , (25)

where the operational matrix 𝑃 of EMBPFs is given by

𝑃 =

(

(

(

(

(

(

(

(

(

ℎ − 𝜀

2

ℎ − 𝜀 ⋅ ⋅ ⋅ ℎ − 𝜀 ℎ − 𝜀

0

ℎ

2

ℎ ⋅ ⋅ ⋅ ℎ

0 0

ℎ

2

⋅ ⋅ ⋅ ℎ

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅

𝜀

2

)

)

)

)

)

)

)

)

)𝑚+1×𝑚+1

, (26)

and we have the following approximation:

∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≃ ∫

𝑡

0

𝐹
𝑇
Θ
𝑚+1

(𝑠) 𝑑𝑠 ≃ 𝐹
𝑇
𝑃Θ
𝑚+1

(𝑠) . (27)

1.3. Stochastic Concepts of Itô Integral

Definition 1 (Brownian motion process). A real-valued sto-
chastic process {𝐵(𝑡), 𝑡 ≥ 0} is called Brownian motion, if it
satisfies the following properties:

(i) independence of increments: 𝐵(𝑡) − 𝐵(𝑠), 𝑡 > 𝑠, is
independent of the past, that is, of 𝐵(𝑢), 0 ≤ 𝑢 ≤ 𝑠, or
ofF
𝑠
, the 𝜎-field generated by 𝐵(𝑢), 𝑢 ≤ 𝑠;

(ii) normal increments: 𝐵(𝑡) − 𝐵(𝑠) has normal distribu-
tion with mean 0 and variance 𝑡 − 𝑠;

(iii) continuity of paths: 𝐵(𝑡), 𝑡 ≥ 0, are continuous
functions of 𝑡.

Definition 2. Let {𝑁(𝑡)}
𝑡≥0

be an increasing family of 𝜎-alge-
bras of subsets ofΩ. A process 𝑔(𝑡, 𝜔) from [0,∞)×Ω to𝑅

𝑛 is
called𝑁(𝑡)-adapted if for each 𝑡 ≥ 0 the function𝜔 󳨃→ 𝑔(𝑡, 𝜔)

is𝑁(𝑡)-measurable [19].

Definition 3 (see [19]). Let ] = ](𝑆, 𝑇) be the class of functions
𝑓(𝑡, 𝜔) : [0,∞) × Ω → 𝑅 such that

(i) (𝑡, 𝜔) 󳨃→ 𝑓(𝑡, 𝜔) is𝐵×F-measurable, where𝐵denotes
the Borel 𝜎-algebra on [0,∞) andF is the 𝜎-algebra
onΩ;

(ii) 𝑓(𝑡, 𝜔) is F
𝑡
-adapted, where F

𝑡
is the 𝜎-algebra

generated by the random variables 𝐵(𝑠), 𝑠 ≤ 𝑡;

(iii) 𝐸[∫

𝑇

𝑆
𝑓
2
(𝑡, 𝜔)𝑑𝑡] < ∞.

Definition 4 (the Itô integral, [19]). Let 𝑓 ∈ ](𝑆, 𝑇); then the
Itô integral of 𝑓 (from 𝑆 to 𝑇) is defined by

∫

𝑇

𝑆

𝑓 (𝑡, 𝜔) 𝑑𝐵 (𝑡) (𝜔) = lim
𝑛→∞

∫

𝑇

𝑆

𝜙
𝑛
(𝑡, 𝜔) 𝑑𝐵 (𝑡) (𝜔) ,

(limit in 𝐿
2
(𝑃)) ,

(28)
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where 𝜙
𝑛
is a sequence of elementary functions such that

𝐸[∫

𝑇

𝑆

(𝑓 (𝑡, 𝜔) − 𝜙
𝑛 (

𝑡, 𝜔))
2
𝑑𝑡] 󳨀→ 0, as 𝑛 󳨀→ ∞. (29)

Theorem 5 (the Itô isometry). Let 𝑓 ∈ ](𝑆, 𝑇); then

𝐸[(∫

𝑇

𝑆

𝑓 (𝑡, 𝜔) 𝑑𝐵 (𝑡) (𝑤))

2

]

= 𝐸[∫

𝑇

𝑆

𝑓
2
(𝑡, 𝜔) 𝑑 (𝑡)] .

(30)

Proof. See [19].

Definition 6 (1-dimensional Itô processes, [19]). Let 𝐵(𝑡) be 1-
dimensional Brownianmotion on (Ω,F, 𝑃). A 1-dimensional
Itô process (stochastic integral) is a stochastic process𝑋(𝑡) on
(Ω,F, 𝑃) of the form

𝑋 (𝑡) = 𝑋 (0) + ∫

𝑡

0

𝑢 (𝑠, 𝜔) 𝑑𝑠 + ∫

𝑡

0

V (𝑠, 𝜔) 𝑑𝐵 (𝑠) , (31)

or

𝑑𝑋 (𝑡) = 𝑢𝑑𝑡 + V𝑑𝐵 (𝑡) , (32)

where

𝑃[∫

𝑡

0

V2 (𝑠, 𝜔) 𝑑𝑠 < ∞, ∀𝑡 ≥ 0] = 1,

𝑃 [∫

𝑡

0

|𝑢 (𝑠, 𝜔)| 𝑑𝑠 < ∞, ∀𝑡 ≥ 0] = 1.

(33)

Theorem 7 (the 1-dimensional Itô formula). Let 𝑋(𝑡) be an
Itô process given by (1) and 𝑔(𝑡, 𝑥) ∈ 𝐶

2
([0,∞) × 𝑅); then

𝑌 (𝑡) = 𝑔 (𝑡, 𝑋 (𝑡)) (34)

is again an Itô process, and

𝑑𝑌 (𝑡) =

𝜕𝑔

𝜕𝑡

(𝑡, 𝑋 (𝑡)) 𝑑𝑡 +

𝜕𝑔

𝜕𝑥

(𝑡, 𝑋 (𝑡)) 𝑑𝑋 (𝑡)

+

1

2

𝜕
2
𝑔

𝜕𝑥
2
(𝑡, 𝑋 (𝑡)) (𝑑𝑋 (𝑡))

2
,

(35)

where (𝑑𝑋(𝑡))
2
= (𝑑𝑋(𝑡))(𝑑𝑋(𝑡)) is computed according to the

rules

𝑑𝑡 ⋅ 𝑑𝑡 = 𝑑𝑡 ⋅ 𝑑𝐵 (𝑡) = 𝑑𝐵 (𝑡) ⋅ 𝑑𝑡 = 0,

𝑑𝐵 (𝑡) ⋅ 𝑑𝐵 (𝑡) = 𝑑𝑡.

(36)

Proof. See [19].
Moreover, ‖ ⋅ ‖ is notation of

󵄩
󵄩
󵄩
󵄩
𝑓(𝑡)

󵄩
󵄩
󵄩
󵄩

2
= ∫

1

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡. (37)

Lemma 8 (the Gronwall inequality). Let 𝛼, 𝛽 ∈ [𝑡
0
, 𝑇] → 𝑅

be integral with

0 ≤ 𝛼 (𝑡) ≤ 𝛽 (𝑡) + 𝐿∫

𝑡

𝑡
0

𝛼 (𝑠) 𝑑𝑠 (38)

for 𝑡 ∈ [𝑡
0
, 𝑇], where 𝐿 > 0. Then

𝛼 (𝑡) ≤ 𝛽 (𝑡) + 𝐿∫

𝑡

𝑡
0

𝑒
𝐿(𝑡−𝑠)

𝛽 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇] . (39)

For more details see [19, 20].

2. Stochastic Integral Operational
Matrix for EMBPFs

In this section stochastic integral operational matrix
for EMBPFs is considered. For finding vector form of
∫

𝑡

0
𝜃
𝑖
(𝑠)𝑑𝐵(𝑠), with EMBPFs, the Itô integral of each single

EMBPF 𝜃
𝑖
(𝑡) can be computed as follows. It is clear that the

integrals are stochastic and nondeterministic:

∫

𝑡

0

𝜃
0
(𝑠) 𝑑𝐵 (𝑠) =

{

{

{

𝐵 (𝑡) − 𝐵 (0) 0 ≤ 𝑡 < ℎ − 𝜀,

𝐵 (ℎ − 𝜀) − 𝐵 (0) ℎ − 𝜀 ≤ 𝑡 < 𝑇.

∫

𝑡

0

𝜃
𝑖
(𝑠) 𝑑𝐵 (𝑠)

=

{
{
{
{

{
{
{
{

{

0 0 ≤ 𝑡 < 𝑖ℎ − 𝜀,

𝐵 (𝑡) − 𝐵 (𝑖ℎ − 𝜀) 𝑖ℎ − 𝜀 ≤ 𝑡 < (𝑖 + 1) ℎ − 𝜀,

𝐵 ((𝑖 + 1) ℎ − 𝜀) − 𝐵 (𝑖ℎ − 𝜀) (𝑖 + 1) ℎ − 𝜀 ≤ 𝑡 < 𝑇,

(40)

for 𝑖 = 1, . . . , 𝑚, and

∫

𝑡

0

𝜃
𝑚
(𝑠) 𝑑𝐵 (𝑠)

= {

0 0 ≤ 𝑡 < 𝑇 − 𝜀,

𝐵 (𝑡) − 𝐵 (𝑇 − 𝜀) 𝑇 − 𝜀 ≤ 𝑡 < 𝑇.

(41)

We approximate

(1) 𝐵(𝑡) − 𝐵(𝑖ℎ − 𝜀), by 𝐵((𝑖 + 0.5)ℎ − 𝜀) − 𝐵(𝑖ℎ − 𝜀), at
midpoint of [𝑖ℎ − 𝜀, (𝑖 + 1)ℎ − 𝜀);

(2) 𝐵(𝑡)−𝐵(0) by𝐵((ℎ−𝜀)/2) in 𝜃
0
(𝑡) atmidpoint of [0, ℎ−

𝜀);

(3) 𝐵(𝑡) − 𝐵(𝑇 − 𝜀) by 𝐵(𝑇 − (𝜀/2)) − 𝐵(𝑇 − 𝜀) in 𝜃
𝑚
(𝑡), at

midpoint of [𝑇 − 𝜀, 𝑇).
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As a result, vector form of ∫

𝑡

0
𝜃
𝑖
(𝑠)𝑑𝐵(𝑠), with EMBPFs, is

given by

∫

𝑡

0

𝜃
0
(𝑠) 𝑑𝐵 (𝑠)

≃ (𝐵(

ℎ − 𝜀

2

) , 𝐵 (ℎ − 𝜀) , . . . , 𝐵 (ℎ − 𝜀))Θ (𝑡) ,

∫

𝑡

0

𝜃
𝑖
(𝑠) 𝑑𝐵 (𝑠)

≃ (0, 0, . . . , 0, 𝐵 ((𝑖 + 0.5) ℎ − 𝜀) − 𝐵 (𝑖ℎ − 𝜀) ,

𝐵 ((𝑖 + 1) ℎ − 𝜀) − 𝐵 (𝑖ℎ − 𝜀) , . . . ,

𝐵 ((𝑖 + 1) ℎ − 𝜀) − 𝐵 (𝑖ℎ − 𝜀)) Θ (𝑡) ,

(42)

in which the (𝑖+1)th component is 𝐵((𝑖+0.5)ℎ−𝜀)−𝐵(𝑖ℎ−𝜀),

∫

𝑡

0

𝜃
𝑚
(𝑠) 𝑑𝐵 (𝑠)

≃ (0, 0, . . . , 𝐵 (𝑇 −

𝜀

2

) − 𝐵 (𝑇 − 𝜀))Θ (𝑡) .

(43)

Therefore

∫

𝑡

0

Θ (𝑠) 𝑑𝐵 (𝑠) ≃ 𝑃
𝑆
Θ (𝑡) , (44)

where stochastic operational matrix of integration is given by

𝑃
𝑆
=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝐵(

ℎ − 𝜀

2

) 𝐵(ℎ − 𝜀) 𝐵(ℎ − 𝜀) ⋅ ⋅ ⋅ 𝐵(ℎ)

0 𝐵(

3ℎ

2

− 𝜀) − 𝐵(ℎ − 𝜀) 𝐵(2ℎ − 𝜀) − 𝐵(ℎ − 𝜀) ⋅ ⋅ ⋅ 𝐵(2ℎ − 𝜀) − 𝐵(ℎ − 𝜀)

0 0 𝐵(

5ℎ

2

− 𝜀) − 𝐵(2ℎ − 𝜀) ⋅ ⋅ ⋅ 𝐵(3ℎ − 𝜀) − 𝐵(2ℎ − 𝜀)

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝐵 (

(2𝑚 − 1) ℎ

2

− 𝜀) − 𝐵((𝑚 − 1)ℎ − 𝜀)

0 0 0 ⋅ ⋅ ⋅ 𝐵 (𝑇 −

𝜀

2

) − 𝐵(𝑇 − 𝜀)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)
𝑚+1×𝑚+1

.

(45)

So, the Itô integral of every function𝑓(𝑡) can be approximated
as follows:

∫

𝑡

0

𝑓 (𝑠) 𝑑𝐵 (𝑠) ≃ ∫

𝑡

0

𝐹
𝑇
Θ (𝑠) 𝑑𝐵 (𝑠) ≃ 𝐹

𝑇
𝑃
𝑆
Θ (𝑡) . (46)

3. Numerical Solution of SVIEs by EMBPFs

Here, we modify the method that has been used in [16] by
EMBPFs. In the below equation:

𝑢 (𝑡) = 𝑢
0 (

𝑡) + ∫

𝑡

0

𝑘
1 (

𝑠, 𝑡) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑘
2
(𝑠, 𝑡) 𝑢 (𝑠) 𝑑𝐵 (𝑠) 𝑡 ∈ [0, 𝑇] , (47)

we approximate functions 𝑢(𝑡), 𝑢
0
(𝑡), 𝑘
1
(𝑠, 𝑡), and 𝑘

2
(𝑠, 𝑡) by

EMBPFs:

𝑢 (𝑡) ≃ 𝑈
𝑇
Θ (𝑡) = Θ

𝑇
(𝑡) 𝑈,

𝑢
0 (

𝑡) ≃ 𝑈
𝑇

0
Θ (𝑡) = Θ

𝑇
(𝑡) 𝑈0

,

𝑘
1 (

𝑠, 𝑡) ≃ Θ
𝑇
(𝑠) 𝐾1

Θ (𝑡) = Θ
𝑇
(𝑡) 𝐾
𝑇

1
Θ (𝑠) ,

𝑘
2 (

𝑠, 𝑡) ≃ Θ
𝑇
(𝑠) 𝐾2

Θ (𝑡) = Θ
𝑇
(𝑡) 𝐾
𝑇

2
Θ (𝑠) ,

(48)

where the vectors 𝑈, 𝑈
0
and matrices 𝐾

1
, 𝐾
2
are EMBPFs

coefficient of 𝑢, 𝑢
0
, 𝑘
1
, and 𝑘

2
, respectively.

Substituting (3) into (47) and using previous relations,

𝑈
𝑇
Θ (𝑡) ≃ 𝑈

𝑇

0
Θ (𝑡)

+ 𝑈
𝑇
(∫

𝑡

0

Θ (𝑠)Θ
𝑇
(𝑠) 𝑑𝑠)𝐾

1
Θ (𝑡)

+ 𝑈
𝑇
(∫

𝑡

0

Θ (𝑠)Θ
𝑇
(𝑠) 𝑑𝐵 (𝑠))𝐾

2
Θ (𝑡) .

(49)

Finally

𝑈
𝑇
Θ (𝑡) ≃ 𝑈

𝑇

0
Θ (𝑡) + 𝑈

𝑇
𝐵Θ (𝑡) + 𝑈

𝑇
𝐵
𝑠
Θ (𝑡) , (50)

where
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𝐵 =

(

(

(

(

(

(

(

(

(

(

𝑘
1

00
(
ℎ − 𝜀

2
) 𝑘
1

01
(ℎ − 𝜀) 𝑘

1

02
(ℎ − 𝜀) ⋅ ⋅ ⋅ 𝑘

1

0𝑚
(ℎ − 𝜀)

0 𝑘
1

11
(
ℎ

2
) 2𝑘

1

12
ℎ ⋅ ⋅ ⋅ 2𝑘

1

1𝑚
ℎ

0 0 𝑘
1

33

ℎ

2
⋅ ⋅ ⋅ 2𝑘

1

3𝑚
ℎ

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑘
1

𝑚𝑚

𝜀

2

)

)

)

)

)

)

)

)

)

)𝑚+1×𝑚+1

,

𝐵
𝑠
=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑘
2

00
𝐵(
ℎ − 𝜀

2
) 𝑘

2

01
𝐵 (ℎ − 𝜀) 𝑘

2

02
𝐵 (ℎ − 𝜀) ⋅ ⋅ ⋅ 𝑘

2

0𝑚
𝐵 (ℎ − 𝜀)

0 𝑘
2

11
(𝐵(
3ℎ

2
− 𝜀) − 𝐵 (ℎ − 𝜀)) 𝑘

2

12
(𝐵 (2ℎ − 𝜀) − 𝐵 (ℎ − 𝜀)) ⋅ ⋅ ⋅ 𝑘

2

1𝑚
(𝐵 (2ℎ − 𝜀) − 𝐵 (ℎ − 𝜀))

0 0 𝑘
2

22
(𝐵(
5ℎ

2
− 𝜀) − 𝐵 (2ℎ − 𝜀)) ⋅ ⋅ ⋅ 𝑘

2

2𝑚
(𝐵 (3ℎ − 𝜀) − 𝐵 (2ℎ − 𝜀))

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑘
2

𝑚−1,𝑚
(𝐵(
(2𝑚 − 1) ℎ

2
− 𝜀) − 𝐵 ((𝑚 − 1) ℎ − 𝜀))

0 0 0 ⋅ ⋅ ⋅ 𝑘
2

𝑚𝑚
(𝐵(𝑇 −

𝜀

2
) − 𝐵 (𝑇 − 𝜀))

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(51)

Then

𝑈
𝑇
(𝐼 − 𝐵 − 𝐵

𝑠
) ≃ 𝑈
0
. (52)

With replacing ≃ by =, we have a linear system of equations.
Now if 𝜀

𝑗
= 𝑗ℎ/𝑘, 𝑗 = 0, 1, . . . , 𝑘 − 1, there will be 𝑘

numerical answers ̂
𝑓
𝑗ℎ/𝑘

. Solution is approximated by

𝑓 (𝑡) =

1

𝑘

𝑘−1

∑

𝑖=0

̂
𝑓
𝑖ℎ/𝑘

(𝑥) . (53)

4. Error Analysis

In this section, error analysis is studied. In the following the-
orems, for simplicity, we assume 𝑇 = 1 and ℎ = 1/𝑚.

Theorem 9. If ̂
𝑓
𝑚
(𝑥) = ∑

𝑚

𝑖=0
𝑓
𝑖
𝜃
𝑖
(𝑥) and 𝑓

𝑖
= (1/

Δ(𝐼
𝑖
)) ∫

1

0
𝑓(𝑥)𝜃

𝑖
(𝑡)𝑑𝑡, 𝑖 = 0, . . . , 𝑚, then

(1) 𝛿 = ∫

1

0
(𝑓(𝑥) − ∑

𝑚

𝑖=0
𝑓
𝑖
𝜙
𝑖
(𝑥))
2
𝑑𝑥 achieves its minimum

value;

(2) ̂
𝑓
𝑚
(𝑥) approach 𝑓(𝑥) pointwise;

(3) ∫

1

0
𝑓
2
(𝑥)𝑑𝑥 = ∑

∞

𝑖=0
𝑓
2

𝑖
‖𝜙
𝑖
‖
2.

Proof. See [16].

Theorem 10. Assume the following.

(1) 𝑓(𝑥) is continuous and differentiable in [−ℎ, 1+ℎ], with
bounded derivative; that is, |𝑓󸀠(𝑥)| < 𝑀.

(2) ̂
𝑓
𝑖ℎ/𝑘

(𝑥), 𝑖 = 0, 1, . . . , 𝑘 − 1, are correspondingly BPFs.
ℎ/𝑘MBPFs,. . . , (𝑘 − 1)ℎ/𝑘MBPFs expansions of 𝑓(𝑥)

base on 𝑚 + 1 EMBPFs over interval [0, 1).
(3) 𝑓(𝑡) = (1/𝑘)∑

𝑘−1

𝑖=0
̂
𝑓
𝑖ℎ/𝑘

(𝑥).

Then
󵄩
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) −

̂
𝑓
𝑖ℎ/𝑘

(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
= 𝑂 (ℎ) ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝑓 (𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
= 𝑂(

ℎ

𝑘

) 𝑖𝑛 [ℎ, 1 − ℎ] .

(54)

Proof. Trapezoidal rule for integral is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =

𝑏 − 𝑎

2

(𝑓 (𝑎) + 𝑓 (𝑏)) −

(𝑏 − 𝑎)
3
𝑓
󸀠󸀠
(𝜂)

12

=

𝑏 − 𝑎

2

(𝑓 (𝑎) + 𝑓 (𝑏)) + 𝐸, 𝜂 ∈ [𝑎, 𝑏] ,

(55)

where𝐸 is error of integration. Suppose 𝑡
𝑖
= 𝑖/𝑚 = 𝑖ℎ and 𝐼

𝑖
=

[𝑡
𝑖−1

, 𝑡
𝑖
]. The representation error when 𝑓(𝑥) is represented

by a series of BPFs over every subinterval [𝑡
𝑖
, 𝑡
𝑖
+ ℎ/𝑘], 𝑖 =

0, . . . , 𝑚 − 1, is

𝑒
𝑖
(𝑥) = 𝑓 (𝑥) − 𝑓

𝑖
𝜙
𝑖
(𝑥) = 𝑓 (𝑥) − 𝑓

𝑖
, (56)
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where

𝑓
𝑖
=

1

ℎ

∫

(𝑖+1)ℎ

𝑖ℎ

𝑓 (𝑥) 𝑑𝑥. (57)

From (55),

𝑓
𝑖
=

1

2

(𝑓 (𝑡
𝑖
) + 𝑓 (𝑡

𝑖
+ ℎ)) + 𝐸. (58)

It is obvious that if 𝑓(𝑥) = 𝐶(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), then 𝑒
𝑖
(𝑥) = 0.

So, this error is computed for 𝑓(𝑥) = 𝑥 in interval [𝑡
𝑖
, 𝑡
𝑖
+

ℎ/𝑘], 𝑖 = 1, . . . , 𝑚 − 1.
For this function 𝐸 = 0, so

𝑒
𝑖
(𝑥)
[𝑡
𝑖
,𝑡
𝑖
+ℎ/𝑘]

=
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑓
𝑖

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 −

𝑡
𝑖
+ 𝑡
𝑖+1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 − (𝑡
𝑖
+

ℎ

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

ℎ

2

.

(59)

Then this error with BPFs is (ℎ/2)𝑀.
Similarly, the error when𝑓(𝑥) is represented in a series of

EMBPFs over every subinterval [𝑡
𝑖
, 𝑡
𝑖
+ ℎ/𝑘] is

𝑒
𝑖
(𝑥)
[𝑡
𝑖
,𝑡
𝑖
+ℎ/𝑘]

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 − (

∑
𝑘−1

𝑗=0
(𝑡
𝑖
− (𝑗ℎ/𝑘) + 𝑡

𝑖+1
− 𝑗ℎ/𝑘)

2𝑘

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 − (

∑
𝑘−1

𝑗=0
(𝑡
𝑖
− 𝑗ℎ/𝑘 + 𝑡

𝑖
+ ℎ − 𝑗ℎ/𝑘)

2𝑘

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 − (𝑡
𝑖
+

ℎ

2

) −

(𝑘 − 1) ℎ

2𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

ℎ

2𝑘

.

(60)

So, the error with EMBPFs is (ℎ/2𝑘)𝑀.
For 𝐼
0
in [0, ℎ/𝑘] we have

𝑒
𝑖 (
𝑥) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 −

𝑘−1

∑

𝑗=0

ℎ − 𝑗ℎ/𝑘

2𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 − (

ℎ

2

−

(𝑘 − 1) ℎ

4𝑘

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 − (

ℎ

4

+

ℎ

4𝑘

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝑂(

ℎ

4

) .

(61)

So, the error is 𝑂(ℎ/4) also for 𝐼
𝑛
.

Now,

󵄩
󵄩
󵄩
󵄩
𝑒
𝑖
(𝑥)

󵄩
󵄩
󵄩
󵄩

2
= ∫

𝑡
𝑖
+ℎ/𝑘

𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
𝑒
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

= ∫

𝑡
𝑖
+ℎ/𝑘

𝑡
𝑖

ℎ
2

4𝑘
2
𝑀
2
𝑑𝑥 =

ℎ
3

4𝑘
3
𝑀
2
,

‖𝑒‖
2
= ∫

1

0

𝑒
2
(𝑥) 𝑑𝑥 = ∫

1

0

(

𝑚

∑

𝑖=1

𝑘−1

∑

𝑗=0

𝑒
𝑖
(𝑥))

2

𝑑𝑥

=

𝑚

∑

𝑖=1

𝑘−1

∑

𝑗=0

∫

1

0

𝑒
2

𝑖
(𝑥) 𝑑𝑥 =

𝑚

∑

𝑖=1

𝑘−1

∑

𝑗=0

󵄩
󵄩
󵄩
󵄩
𝑒
𝑖 (
𝑥)

󵄩
󵄩
󵄩
󵄩

2

=

1

ℎ

⋅ 𝑘 ⋅

ℎ
3

4𝑘
3
𝑀
2
=

ℎ
2

4𝑘
2
𝑀
2
.

(62)

We define the representation error between 𝑓(𝑥, 𝑦) and
its 2D-EMBPFs expansion, 𝑓

𝑖,𝑗
, over every subregion 𝐷

𝑖𝑗
, is

defined as

𝑒
𝑖𝑗
(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) − 𝑓

𝑖𝑗
, (63)

where

𝐷
𝑖𝑗
:= {(𝑥, 𝑦) | 𝑡

𝑖
≤ 𝑥 ≤ 𝑡

𝑖
+

ℎ

𝑘

, 𝑡
𝑗
≤ 𝑥 ≤ 𝑡

𝑗
+

ℎ

𝑘

} . (64)

With Taylor’s expansion and similarity to the above
discussion,

󵄩
󵄩
󵄩
󵄩
𝑒 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
=

ℎ

2𝑘

𝑀. (65)

Theorem 11. Assume that

(1) 𝑃(𝑤 ∈ Ω : ‖𝑢(𝜔, 𝑡)‖ < 𝐶) = 1,

(2) ‖𝑘
𝑖
‖ < 𝐶 𝑖 = 1, 2.

Then

sup
0≤t≤𝑇

(𝐸(‖(𝑢 − 𝑢)‖)
2
)

1/2

= 𝑂(

ℎ

𝑘

) , 𝑡 ∈ [ℎ, 1 − ℎ] . (66)

Proof. Consider

𝑢 (𝑡) − 𝑢 (𝑡) = 𝑢
0
(𝑡) − 𝑢

0
(𝑡)

+ ∫

𝑡

0

𝑘
1
(𝑠, 𝑡) 𝑢 (𝑠) − 𝑘

1
(𝑠, 𝑡) 𝑢 (𝑠)𝑑𝑠

+ ∫

𝑡

0

𝑘
2 (

𝑠, 𝑡) 𝑢 (𝑠) − 𝑘
2 (

𝑠, 𝑡) 𝑢(𝑠)𝑑𝐵 (𝑠) .

(67)
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Table 1: Mean, standard deviation, and confidence interval for error mean in Example 1 with 𝑚 = 4, 𝑘 = 4.

𝑛 𝑥
𝐸

𝑠
𝐸

%95 confidence interval for mean of 𝐸
Lower Upper

30 3.5678 × 10
−3

4.5802 × 10
−3

1.9287 × 10
−4

5.2068 × 10
−3

50 5.0234 × 10
−3

7.5849 × 10
−3

2.9209 × 10
−3

7.1258 × 10
−3

100 3.3467 × 10
−3

4.7983 × 10
−3

2.4062 × 10
−3

4.2871 × 10
−3

125 4.3526 × 10
−3

6.3657 × 10
−3

3.2367 × 10
−3

5.4685 × 10
−3

Table 2: Mean, standard deviation, and confidence interval for error mean in Example 1 with 𝑚 = 8, 𝑘 = 4.

𝑛 𝑥
𝐸

𝑠
𝐸

%95 confidence interval for mean of 𝐸
Lower Upper

30 3.0924 × 10
−3

5.1132 × 10
−3

2.6266 × 10
−3

4.9221 × 10
−3

50 2.0598 × 10
−3

6.1477 × 10
−3

3.5574 × 10
−4

3.7635 × 10
−3

100 1.9728 × 10
−3

2.2587 × 10
−3

1.5300 × 10
−3

2.4155 × 10
−3

125 1.7054 × 10
−3

2.6547 × 10
−3

1.2400 × 10
−3

2.1707 × 10
−3

So,

𝐸 (‖𝑢 − 𝑢‖
2
) ≤ 3 [𝐸 (

󵄩
󵄩
󵄩
󵄩
(𝑢
0
− 𝑢
0
)
󵄩
󵄩
󵄩
󵄩

2
)

+ 𝐸(

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

(𝑘
1
𝑢 − 𝑘
1
𝑢) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+𝐸(

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

(𝑘
2
𝑢 − 𝑘
2
𝑢) 𝑑𝐵 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

)]

≤ 3 [𝐸 (
󵄩
󵄩
󵄩
󵄩
(𝑢
0
− 𝑢
0
)
󵄩
󵄩
󵄩
󵄩

2
)

+ (∫

𝑡

0

𝐸(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
1
𝑢 − 𝑘
1
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝑠)

+∫

𝑡

0

𝐸(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
2
𝑢 − 𝑘
2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝑠] ,

(68)

by theCauchy-Schwartz inequality, Itô isometry formula, and
the linearity of Itô integrals in their integrands.

The first term is satisfied by last theorem:

𝐸 (
󵄩
󵄩
󵄩
󵄩
𝑢
0
− 𝑢
0

󵄩
󵄩
󵄩
󵄩

2
) ≤ 𝐸(

𝐶
2
ℎ
2

𝑘
2

) = 𝑂(

ℎ
2

𝑘
2
) . (69)

Now,

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑘
𝑖
(𝑠, 𝑡)𝑢(𝑡) − 𝑘

𝑖
(𝑠, 𝑡)𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 2

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑘
𝑖
− 𝑘
𝑖
) 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
𝑖
(𝑢 − 𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶 ⋅ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
𝑖
− 𝑘
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

) + 𝐶 ⋅ (‖(𝑢 − 𝑢)‖
2
) .

(70)

Furthermore,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
𝑖
− 𝑘
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝑂(

ℎ
2

𝑘
2
) , 𝑖 = 1, 2. (71)

Hence

𝐸 (‖𝑢 − 𝑢‖
2
) ≤ 3 [𝐸 (

󵄩
󵄩
󵄩
󵄩
(𝑢
0
− 𝑢
0
)
󵄩
󵄩
󵄩
󵄩

2
)

+ ∫

𝑡

0

𝐸(

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑘
1
𝑢 − 𝑘
1
𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)

+∫

𝑡

0

𝐸(

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑘
2
𝑢 − 𝑘
2
𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝑠]

≤ 𝐶
0
𝐸 (

󵄩
󵄩
󵄩
󵄩
𝑢
0
− 𝑢
0

󵄩
󵄩
󵄩
󵄩

2
) + 𝐶
1
∫

𝑡

0

𝐸(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
1
− 𝑘
1

󵄩
󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝑠

+ 𝐶
2
∫

𝑡

0

𝐸(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑘
2
− 𝑘
2

󵄩
󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝑠

+ 𝐶
3
∫

𝑡

0

𝐸 (‖(𝑢 − 𝑢)‖
2
) 𝑑𝑠.

(72)

Then by Gronwall’s inequality, we get

𝐸 (

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑢 − 𝑢)

2󵄩󵄩
󵄩
󵄩
󵄩
) ≤ 𝐶

ℎ
2

𝑘
2
. (73)

5. Numerical Example

In this section, we present an example for showing the fea-
tures of the EMBPFs method in this paper. Let𝑋

𝑖
denote the

EMBP coefficient of exact solution of the given example and
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Table 3: Mean, standard deviation, and confidence interval for error mean in Example 1 with𝑚 = 32.

𝑛 𝑥
𝐸

𝑠
𝐸

%95 confidence interval for mean of 𝐸
Lower Upper

30 0.02308947 0.00442835 0.02150480 0.02467413
50 0.02341165 0.00511389 0.02199415 0.02482915
100 0.02364843 0.00524000 0.02262139 0.02467548
125 0.02345691 0.00477156 0.02262042 0.02429340

let 𝑌
𝑖
be the EMBP coefficient of computed solution by the

presented method. In this example error is defined as

‖𝐸‖∞
= max
1≤𝑖≤𝑚

󵄨
󵄨
󵄨
󵄨
𝑋
𝑖
− 𝑌
𝑖

󵄨
󵄨
󵄨
󵄨
. (74)

Example 1 (see [3]). Consider the following linear stochastic
Volterra integral equation:

𝑢 (𝑡) =

1

12

+ ∫

𝑡

0

cos (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

sin (𝑠) 𝑢 (𝑠) 𝑑𝐵 (𝑠) 𝑠, 𝑡 ∈ [0, 0.5) ,

(75)

with the exact solution 𝑢(𝑡) =

(1/12)𝑒
−𝑡/4+sin(𝑡)+sin(2𝑡)/8+∫𝑡

0
sin(𝑠)𝑑𝐵(𝑠), for 0 ≤ 𝑡 < 0.5.

The numerical results are shown in Tables 1 and 2. In the
tables, 𝑛 is the number of iterations, 𝑥

𝐸
is error mean, and 𝑠

𝐸

is standard deviation of error.
Table 3 is from [3] for comparison.
In some examples by applying BPFs when 𝑚 increases,

accuracy decreases, but in EMBPFswe achieve good accuracy
by increasing 𝑘.

6. Conclusion

As some SVIEs cannot be solved analytically, in this paper
we present a new technique for solving SVIEs numerically.
Here, we consider amodification of the block pulse functions.
Some theorems show that if EMBPFs are used for achieving
numerical expansions with 𝑘 times more precision, there is
no need to increase the number of BPFs, 𝑘 times, which
leads to solving a system of equations with 𝑘 times more
equations and unknowns. But the results of BPFs solution
can be combined with solutions of 𝑘 − 1 systems of equations
with one more unknown and nearly achieve 𝑘 times more
precision. Parallel programming is so useful for this method.
Efficiency of this method and good degree of accuracy are
confirmed by a numerical example.
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