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We establish convergence theorems of Newton-Kantorovich type for a family of new modified Halley’s method in Banach space
to solve nonlinear operator equations. We present the corresponding error estimate. To show the application of our theorems, two
numerical examples are given.

1. Introduction

Solving the nonlinear operator equation is an important issue
in the engineering and technology field. Finding solutions
of the nonlinear operator equation in Banach spaces also
is a very general subject which is widely used in both
theoretical and applied areas of mathematics for many years.
Many problems may be formulated in terms of finding zeros.
These roots cannot be expressed in closed form generally.
Thus, in order to solve nonlinear equations, we have to use
approximate methods (see [1]). In this study, we consider
establishing the Newton-Kantorovich convergence theorems
for a family of newmodifiedHalley’smethodwith third-order
Banach space by using majorizing function which is used to
solve the nonlinear operator equation. Consider

𝐹 (𝑥) = 0, (1)

where 𝐹 is defined as an open convex Ω of a Banach space𝑋
with values in a Banach space 𝑌.

There are kinds of methods to find a solution of (1).
Iterative methods are often used to solve this problem (see
[1]). If we use the famous Newton’s method, we can do as
follows:

𝑥
𝑛+1

= 𝑥
𝑛
− 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) , (𝑛 ≥ 0) (𝑥

0
∈ Ω) . (2)

Under the reasonable hypothesis, Newton’s method is
second-order convergence.

Since Kantorovich presented the famous convergence
result (see [2]), many Newton-Kantorovich type convergence
theorems were gotten (see [3–11]). To improve the conver-
gence order, many modified methods have been presented
(see [12–15]). The famous Halley’s method is third-order
convergence which was widely discussed (see [16–23]). The
famous Halley’s method is defined as follows:

𝑥
𝑛+1

= 𝑥
𝑛
− [𝐼 +

1

2
𝐿
𝐹
(𝑥
𝑛
) (𝐼 −

1

2
𝐿
𝐹
(𝑥
𝑛
))

−1

]

× 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) , 𝑛 = 0, 1, . . . ,

(3)

where

𝐿
𝐹
(𝑥) = 𝐹



(𝑥)
−1

𝐹


(𝑥) 𝐹


(𝑥)
−1

𝐹 (𝑥) , 𝑥 ∈ Ω. (4)

In the year of 2001, Gutiérrez and Hernández [24]
proposed the Super-Halley method, which is an acceleration
of Newton’s method with third order. Consider

𝑥
𝑛+1

= 𝑥
𝑛
− [𝐼 +

1

2
𝐿
𝐹
(𝑥
𝑛
) (𝐼 − 𝐿

𝐹
(𝑥
𝑛
))
−1

] 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) .

(5)
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Using the majorant principle, the authors also established a
semilocal convergence theorem for the Super-Halley method
under weaker conditions, which is defined as follows:


𝐹


(𝑥
0
)
−1

(𝐹


(𝑥) − 𝐹


(𝑦))

≤ 𝑘

𝑥 − 𝑦
 .

(6)

Extending the family of scalar iterative processes con-
sidered by Hernandez and Salanova in [25], Gutiérrez and
Hernández [26] presented a one-parameter family of iterative
processes

𝑥
𝛼,𝑛+1

= 𝑥
𝛼,𝑛

− [𝐼 +
1

2
𝐿
𝐹
(𝑥
𝛼,𝑛
) (𝐼 − 𝛼𝐿

𝐹
(𝑥
𝛼,𝑛
))
−1

]

× 𝐹


(𝑥
𝛼,𝑛
)
−1

𝐹𝑥
𝛼,𝑛
.

(7)

This family includes, as particular cases, Chebyshev’s method
(𝛼 = 0), Halley’s method (𝛼 = 1/2), and convex acceleration
of Newton’s method (𝛼 = 1). Under Kantorovich-type
assumptions, the authors obtained results on existence and
uniqueness of solution of (1).

The calculation of the second derivative of the function
𝐹 is needed in the above iterative methods. For avoiding the
calculation 𝐹(𝑥

𝑛
) and keeping higher order of convergence

at the same time, some authors have studied the convergence
of the iteration (3) by using difference quotient of the first
derivative to replace the second derivative.

Based on Halley’s method in which the second derivative
is replaced with a finite difference between first derivatives,
that is,

𝐹


(𝑥
𝑛
) ≃

𝐹


(𝑦
𝑛
) − 𝐹


(𝑥
𝑛
)

𝑦
𝑛
− 𝑥
𝑛

, (8)

a class of iterative methods with free second derivative is
obtained [27]. Consider

𝑥
𝑛+1

= 𝑥
𝑛
−

2𝜃𝐹 (𝑥
𝑛
)

(2𝜃 − 1) 𝐹
 (𝑥
𝑛
) + 𝐹 (𝑦

𝑛
)
, (9)

where 𝜃 ∈ (0, 1] and 𝑦
𝑛
= 𝑥
𝑛
− 𝜃𝐹(𝑥

𝑛
)/𝐹


(𝑥
𝑛
).

For 𝜃 = 1, a third-order method is obtained [28]:

𝑥
𝑛+1

= 𝑥
𝑛
−

2𝐹 (𝑥
𝑛
)

𝐹 (𝑥
𝑛
) + 𝐹 (𝑥

𝑛
− 𝐹 (𝑥

𝑛
) /𝐹 (𝑥

𝑛
))
. (10)

For 𝜃 = 1/2, another third-order method is obtained [29,
30]:

𝑥
𝑛+1

= 𝑥
𝑛
−

𝐹 (𝑥
𝑛
)

𝐹 (𝑥
𝑛
− 𝐹 (𝑥

𝑛
) / (2𝐹 (𝑥

𝑛
)))

. (11)

Thesemethods do not require the second derivative although
they can converge cubically.Thus, the approach to remove the
second derivative is important and interesting for deriving
more new high-order iterative methods free from second
derivative from third-order iterative methods with second
derivative.

By directly replacing 𝐿
𝐹
(𝑥
𝑛
) with a new approximation

𝐿
𝐹
(𝑥
𝑛
) =

1

2

𝐹


(𝑥
𝑛
) 𝐹 (𝑥

𝑛
)

𝐹(𝑥
𝑛
)
2

≃
𝐹 (𝑦
𝑛
) + (𝜃 − 1) 𝐹 (𝑥

𝑛
)

𝜃2𝐹 (𝑥
𝑛
)

,

(12)

a class of modifications of Halley’s method free from second
derivative [31] is obtained; that is,

𝑥
𝑛+1

= 𝑥
𝑛
−

𝜃
2

𝐹 (𝑥
𝑛
)

(𝜃2 − 𝜃 + 1) 𝐹 (𝑥
𝑛
) − 𝐹 (𝑦

𝑛
)

𝐹 (𝑥
𝑛
)

𝐹 (𝑥
𝑛
)
, (13)

where 𝜃 ∈ 𝑅, 𝜃 ̸= 0, and 𝑦
𝑛
= 𝑥
𝑛
− 𝜃𝐹(𝑥

𝑛
)/𝐹


(𝑥
𝑛
). This

modified Halley’s method is cubically convergent for any
nonzero real number 𝜃.

Now, we consider a new finite difference approximation
of 𝐹(𝑥):

𝑝𝐹


(𝑥
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) ≃ 𝐹


(𝑥
𝑛
+ 𝑝 (𝑦

𝑛
− 𝑥
𝑛
)) − 𝐹



(𝑥
𝑛
) ,

(14)

where

𝑦
𝑛
= 𝑥
𝑛
− 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) , 𝜆 > 0, (15)

and from Halley’s method (3), we obtain a family of new
modified Halley’s method with parameters 𝑝 and 𝛼:

𝑦
𝑛
= 𝑥
𝑛
− 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) ,

𝐻 (𝑥
𝑛
, 𝑦
𝑛
) =

1

𝑝
𝐹


(𝑥
𝑛
)
−1

[𝐹


(𝑥
𝑛
+ 𝑝 (𝑦

𝑛
− 𝑥
𝑛
)) − 𝐹



(𝑥
𝑛
)] ,

𝛼 ∈ [0, 1] , 𝑝 ∈ (0, 1] ,

𝑥
𝑛+1

= 𝑦
𝑛
−
1

2
𝐻 (𝑥
𝑛
, 𝑦
𝑛
) [𝐼 − 𝛼𝐻 (𝑥

𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
) .

(16)

This includes the modified Chebyshev iteration (see [8,
9]) for 𝑝 = 1/2, 𝛼 = 0 and the Jarratt iteration (see [32, 33])
for 𝑝 = 2/3, 𝛼 = 1. In this paper, we discuss the convergence
of modified Halley’s methods for solving nonlinear operator
equations in Banach spaces and establish convergence theo-
rems of Newton-Kantorovich’s type.The corresponding error
estimate is also given. Finally, two examples are provided to
show the application of our theorem.

2. Convergence Theorem

In the section, we establish a Newton-Kantorovich type
convergence theorem and present the error estimate. Denote
𝑔(𝑡) = ((1/2)𝐾𝑡

2

) − (𝑡/𝛽) + (𝜂/𝛽), where 𝐾, 𝛽, 𝜂 are positive
real numbers. Write ℎ = 𝐾𝛽𝜂, 𝑡∗ = ((1 − √1 − 2ℎ )/ℎ)𝜂, and
𝑡
∗∗

= ((1 + √1 − 2ℎ)/ℎ)𝜂, where 𝑡∗, 𝑡∗∗ are the roots of the
equation 𝑔(𝑡) = 0. Let

𝑠
𝑛
= 𝑡
𝑛
− 𝑔


(𝑡
𝑛
)
−1

𝑔 (𝑡
𝑛
) , 𝑡

0
= 0,

𝐻
𝑔
(𝑡
𝑛
, 𝑠
𝑛
) =

1

𝑝
𝑔


(𝑡
𝑛
)
−1

[𝑔


(𝑡
𝑛
+ 𝑝 (𝑠

𝑛
− 𝑡
𝑛
)) − 𝑔



(𝑡
𝑛
)] ,

𝛼 ∈ [0, 1] , 𝑝 ∈ (0, 1] ,

𝑡
𝑛+1

= 𝑠
𝑛
−
1

2
𝐻
𝑔
(𝑡
𝑛
, 𝑠
𝑛
) [1 − 𝛼𝐻

𝑔
(𝑡
𝑛
, 𝑠
𝑛
)] (𝑠
𝑛
− 𝑡
𝑛
) .

(17)

Firstly, we get some lemmas.
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Lemma 1. Assume {𝑡
𝑛
} and {𝑠

𝑛
} are the sequences generated

by (17). If ℎ ≤ 1/2, then the sequences {𝑡
𝑛
} and {𝑠

𝑛
} are

monotonically increasing and converge to 𝑡∗. Moreover, one has

0 ≤ 𝑡
𝑛
< 𝑠
𝑛
< 𝑡
𝑛+1

< 𝑠
𝑛+1

< ⋅ ⋅ ⋅ < 𝑡
∗

,

𝑡
∗

− 𝑡
𝑛+1

= (𝑡
∗

− 𝑡
𝑛
)
3

[(𝑡
∗

− 𝑡
𝑛
)
3

+ 4(𝑡
∗

− 𝑡
𝑛
)
2

(𝑡
∗∗

− 𝑡
𝑛
)

+ 5 (𝑡
∗

− 𝑡
𝑛
) (𝑡
∗∗

− 𝑡
𝑛
)
2

+ (2 − 2𝛼) (𝑡
∗∗

− 𝑡
𝑛
)
3

]

× ([(𝑡
∗

− 𝑡
𝑛
) + (𝑡
∗∗

− 𝑡
𝑛
)]
5

)
−1

,

𝑡
∗∗

− 𝑡
𝑛+1

= (𝑡
∗∗

− 𝑡
𝑛
)
3

[(𝑡
∗∗

− 𝑡
𝑛
)
3

+ 4(𝑡
∗∗

− 𝑡
𝑛
)
2

(𝑡
∗

− 𝑡
𝑛
)

+ 5 (𝑡
∗∗

− 𝑡
𝑛
) (𝑡
∗

− 𝑡
𝑛
)
2

+ (2 − 2𝛼) (𝑡
∗

− 𝑡
𝑛
)
3

]

× ([(𝑡
∗

− 𝑡
𝑛
) + (𝑡
∗∗

− 𝑡
𝑛
)]
5

)
−1

.

(18)

Proof. By (17) we can get

𝑔 (𝑡) =
𝐾

2
(𝑡
∗

− 𝑡) (𝑡
∗∗

− 𝑡) ,

𝑔


(𝑡) = −
𝐾

2
[(𝑡
∗

− 𝑡) + (𝑡
∗∗

− 𝑡)] ,

𝑠
𝑛
− 𝑡
𝑛
= −𝑔


(𝑡
𝑛
)
−1

𝑔 (𝑡
𝑛
) =

(𝑡
∗

− 𝑡
𝑛
) (𝑡
∗∗

− 𝑡
𝑛
)

(𝑡∗ − 𝑡
𝑛
) + (𝑡∗∗ − 𝑡

𝑛
)
,

𝐻
𝑔
(𝑡
𝑛
, 𝑠
𝑛
) = 𝑔


(𝑡
𝑛
)
−1

𝐾(𝑠
𝑛
− 𝑡
𝑛
) =

−2 (𝑡
∗

− 𝑡
𝑛
) (𝑡
∗∗

− 𝑡
𝑛
)

[(𝑡∗ − 𝑡
𝑛
) + (𝑡∗∗ − 𝑡

𝑛
)]
2
,

𝑡
𝑛+1

− 𝑠
𝑛
= −

1

2
𝐻
𝑔
(𝑡
𝑛
, 𝑠
𝑛
) [1 − 𝛼𝐻

𝑔
(𝑡
𝑛
, 𝑠
𝑛
)] (𝑠
𝑛
− 𝑡
𝑛
) .

(19)

By a simple calculation andmathematical induction, it is easy
to prove Lemma 1.

Lemma 2. Let 𝐹(𝑥) be a nonlinear operator defined on a
convex domainΩ of a Banach space𝑋with values in a Banach
space 𝑌. Assume that 𝐹 has second-order continuous Frechet
derivatives on Ω. If {𝑥

𝑛
}, {𝑦
𝑛
} are the sequences generated by

(16), then

𝐹 (𝑥
𝑛+1

)

= ∫

1

0

𝐹


(𝑦
𝑛
+ 𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)) (1 − 𝑡) 𝑑𝑡(𝑥

𝑛+1
− 𝑦
𝑛
)
2

+ ∫

1

0

[𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡)

−
1

2
𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
))] 𝑑𝑡(𝑦

𝑛
− 𝑥
𝑛
)
2

−
1 − 𝛼

2
∫

1

0

𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

−
𝛼

2
∫

1

0

[𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
))

−𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
))] 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+
𝛼

2
∫

1

0

𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) .

(20)

Proof. Consider

𝐹 (𝑥
𝑛+1

)

= 𝐹 (𝑥
𝑛+1

) − 𝐹 (𝑦
𝑛
) − 𝐹


(𝑦
𝑛
) (𝑥
𝑛+1

− 𝑦
𝑛
)

+ 𝐹 (𝑦
𝑛
) + 𝐹


(𝑦
𝑛
) (𝑥
𝑛+1

− 𝑦
𝑛
)

= ∫

1

0

𝐹


(𝑦
𝑛
+ 𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)) (1 − 𝑡) 𝑑𝑡(𝑥

𝑛+1
− 𝑦
𝑛
)
2

+ 𝐹 (𝑦
𝑛
) + 𝐹


(𝑦
𝑛
) (𝑥
𝑛+1

− 𝑦
𝑛
) ,

𝐹


(𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)

=
1

𝑝
[𝐹


(𝑥
𝑛
+ 𝑝 (𝑦

𝑛
− 𝑥
𝑛
)) − 𝐹



(𝑥
𝑛
)]

= ∫

1

0

𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
)) 𝑑𝑡 (𝑦

𝑛
− 𝑥
𝑛
) ,

𝐹 (𝑦
𝑛
) + 𝐹


(𝑦
𝑛
) (𝑥
𝑛+1

− 𝑦
𝑛
)

= 𝐹 (𝑦
𝑛
) − 𝐹 (𝑥

𝑛
) − 𝐹


(𝑥
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

−
1

2
𝐹


(𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) [𝐼 − 𝛼𝐻 (𝑥

𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
)

= ∫

1

0

𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡) 𝑑𝑡(𝑦

𝑛
− 𝑥
𝑛
)
2

−
1

2
[𝐹


(𝑦
𝑛
) − 𝐹


(𝑥
𝑛
)]𝐻 (𝑥

𝑛
, 𝑦
𝑛
) [𝐼 − 𝛼𝐻 (𝑥

𝑛
, 𝑦
𝑛
)]

× (𝑦
𝑛
− 𝑥
𝑛
)

−
1

2
𝐹


(𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) [𝐼 − 𝛼𝐻 (𝑥

𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
)

= ∫

1

0

𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡) 𝑑𝑡(𝑦

𝑛
− 𝑥
𝑛
)
2

−
1

2
∫

1

0

𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
)) 𝑑𝑡(𝑦

𝑛
− 𝑥
𝑛
)
2

+
𝛼

2
∫

1

0

𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
)) 𝑑𝑡 (𝑦

𝑛
− 𝑥
𝑛
)
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× 𝐻 (𝑥
𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

−
1

2
∫

1

0

𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡 (𝑦

𝑛
− 𝑥
𝑛
)

× 𝐻 (𝑥
𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+
𝛼

2
∫

1

0

𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡 (𝑦

𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)

× 𝐻 (𝑥
𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) .

(21)

Hence,

𝐹 (𝑥
𝑛+1

)

= ∫

1

0

𝐹


(𝑦
𝑛
+ 𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)) (1 − 𝑡) 𝑑𝑡(𝑥

𝑛+1
− 𝑦
𝑛
)
2

+ ∫

1

0

[𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡)

−
1

2
𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
))] 𝑑𝑡(𝑦

𝑛
− 𝑥
𝑛
)
2

−
1 − 𝛼

2
∫

1

0

𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

−
𝛼

2
∫

1

0

[𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
))

− 𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
))] 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+
𝛼

2
∫

1

0

𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) .

(22)

This completes the proof.

Theorem 3. Let 𝑋 and 𝑌 be Banach space and let Ω ⊂ 𝑋 be
an open convex domain. Assume 𝐹 : Ω ⊂ 𝑋 → 𝑌 has second-
order continuous Frechet derivatives. For an initial value 𝑥

0
∈

Ω and fixed parameters 𝛼 ∈ [0, 1), 𝑝 ∈ (0, 1], if 𝐹(𝑥
0
)
−1 exists

and the conditions

𝐹


(𝑥
0
)
−1

≤ 𝛽,
𝑦0 − 𝑥0

 =

𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)

≤ 𝜂,


𝐹


(𝑥)

≤ 𝑀,


𝐹


(𝑥) − 𝐹


(𝑦)

≤ 𝑁

𝑥 − 𝑦
 ,

𝑥, 𝑦 ∈ Ω,

max
{

{

{

𝑀√1 +
(2 + 3𝑝)𝑁

6𝛽 (1 − 𝛼)𝑀
2
,𝑀

3
√1 +

(1 − 𝑝)𝑁

2𝛽𝑀2

}

}

}

≤ 𝐾,

𝑆 (𝑥
0
, 𝑡∗) ⊂ Ω,

(23)

are satisfied and ℎ = 𝐾𝛽𝜂 ≤ 1/2, then the sequence {𝑥
𝑛
}
𝑛≥0

generated by (16) is well defined and converges to a unique
solution 𝑥∗ of (1) in 𝑆(𝑥

0
, 𝑡
∗∗

).

Theorem 4. Assume 𝐹 satisfies conditions in Theorem 3.
Denoting 𝜃 = (𝑡

∗

/𝑡
∗∗

) = (1 − √1 − 2ℎ)/(1 + √1 − 2ℎ), one
has the following:

(i) when ℎ = 𝐾𝛽𝜂 < 6√2 − 8 = 0.4852 ⋅ ⋅ ⋅ ,

‖ 𝑥
𝑛
− 𝑥
∗

‖≤ 𝑡
∗

− 𝑡
𝑛
≤

(1 − 𝜃
2

) 𝜂

(1 − (1/√2)) [√2𝜃]
3
𝑛 [√2𝜃]

3
𝑛
−1

,

(24)

(ii) when 𝛼 ≥ 3/8, ℎ ≤ 4 (9√5 − 20) = 0.4984 ⋅ ⋅ ⋅ ,

𝑥𝑛 − 𝑥
∗ ≤ 𝑡

∗

− 𝑡
𝑛

≤

(1 − 𝜃
2

) 𝜂

(1 − (2/√5)) [(√5/2) 𝜃]
3
𝑛 [

√5

2
𝜃]

3
𝑛
−1

.

(25)

3. Proof of Theorem

Proof of Theorem 3. To prove Theorem 3, we first prove that
following items are true for all 𝑛 ≥ 0:

(I
𝑛
) 𝑥
𝑛
∈ 𝑆(𝑥
0
, 𝑡
𝑛
);

(II
𝑛
) ‖𝐹(𝑥

𝑛
)
−1

‖ ≤ −𝑔


(𝑡
𝑛
)
−1;

(III
𝑛
) ‖𝑦
𝑛
− 𝑥
𝑛
‖ ≤ 𝑠
𝑛
− 𝑡
𝑛
;

(IV
𝑛
) 𝑦
𝑛
∈ 𝑆(𝑥
0
, 𝑠
𝑛
);

(V
𝑛
) ‖𝑥
𝑛+1

− 𝑦
𝑛
‖ ≤ 𝑡
𝑛+1

− 𝑠
𝑛
.

It is easy to check for the case 𝑛 = 0 by the initial conditions.
By using mathematical induction, assume that the above
statements are true for some fixed 𝑛 ≥ 0. Then we have

(I
𝑛+1

):

𝑥𝑛+1 − 𝑥0
 ≤

𝑥𝑛+1 − 𝑦𝑛
 +

𝑦𝑛 − 𝑥0


≤ 𝑡
𝑛+1

− 𝑠
𝑛
+ 𝑠
𝑛
= 𝑡
𝑛+1

,

(26)

(II
𝑛+1

):


𝐹


(𝑥
𝑛+1

) − 𝐹


(𝑥
0
)

≤ 𝑀

𝑥𝑛+1 − 𝑥0


≤ 𝑀𝑡
𝑛+1

< 𝐾𝑡
∗

= 𝐾𝜂
1 − √1 − 2ℎ

ℎ

≤
1

𝛽
=

1


𝑓(𝑥
0
)
−1

.

(27)
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By Banach Lemma, we get that 𝐹(𝑥
𝑛+1

)
−1 exists and


𝐹


(𝑥
𝑛+1

)
−1


≤


𝐹


(𝑥
0
)
−1


1 −

𝐹(𝑥
0
)
−1

⋅
𝐹
 (𝑥
𝑛+1

) − 𝐹 (𝑥
0
)


≤
𝛽

1 − 𝛽𝑀
𝑥𝑛+1 − 𝑥0



≤
1

(1/𝛽) − 𝐾
𝑥𝑛+1 − 𝑥0



≤
1

(1/𝛽) − 𝐾𝑡
𝑛+1

= −𝑔


(𝑡
𝑛+1

)
−1

;

(28)

(III
𝑛+1

):



∫

1

0

[𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡)

−
1

2
𝐹


(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
))] 𝑑𝑡



≤



∫

1

0

[𝐹


(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) − 𝐹



(𝑥
𝑛
)] (1 − 𝑡) 𝑑𝑡



+
1

2



∫

1

0

[𝐹


[(𝑥
𝑛
+ 𝑝𝑡 (𝑦

𝑛
− 𝑥
𝑛
)) − 𝐹



(𝑥
𝑛
)] 𝑑𝑡



≤
(2 + 3𝑝)𝑁

12

𝑦𝑛 − 𝑥𝑛
 ,

𝐻 (𝑥
𝑛+1

, 𝑦
𝑛+1

)


=
1

𝑝



𝐹


(𝑥
𝑛+1

)
−1

∫

1

0

𝐹


(𝑥
𝑛+1

+ 𝑝𝑡 (𝑦
𝑛+1

− 𝑥
𝑛+1

))

× 𝑝 (𝑦
𝑛+1

− 𝑥
𝑛+1

) 𝑑𝑡



≤ −
𝑀

𝑔 (𝑡
𝑛+1

)

𝑦𝑛+1 − 𝑥𝑛+1
 .

(29)

By Lemma 2 and 0 < −𝑔


(𝑡
𝑛
) ≤ 1/𝛽,

𝐹 (𝑥𝑛+1)


≤
𝑀

2

𝑥𝑛+1 − 𝑦𝑛


2

+
(2 + 3𝑝)𝑁

12

×
𝑦𝑛 − 𝑥𝑛



3

+
(1 − 𝛼)𝑀

2

−2𝑔 (𝑡
𝑛
)

𝑦𝑛 − 𝑥𝑛


3

+
𝛼𝑀
3

2[𝑔 (𝑡
𝑛
)]
2

𝑦𝑛 − 𝑥𝑛


4

+
𝛼𝑀𝑁(1 − 𝑝)

−4𝑔 (𝑡
𝑛
)

𝑦𝑛 − 𝑥𝑛


4

≤
𝐾

2

𝑥𝑛+1 − 𝑦𝑛


2

+ [1 +
𝑁 (1 − 𝑝)

2𝛽𝑀2
]
𝛼𝑀
3𝑦𝑛 − 𝑥𝑛



4

2[𝑔 (𝑡
𝑛
)]
2

+ [1 +
(2 + 3𝑝)𝑁

6𝛽 (1 − 𝛼)𝑀
2
]
(1 − 𝛼)𝑀

2

−2𝑔 (𝑡
𝑛
)

𝑦𝑛 − 𝑥𝑛


3

≤
𝐾

2
(𝑡
𝑛+1

− 𝑠
𝑛
)
2

+
𝛼𝐾
3

2

(𝑠
𝑛
− 𝑡
𝑛
)
4

[𝑔 (𝑡
𝑛
)]
2
−
(1 − 𝛼)𝐾

2

2𝑔 (𝑡
𝑛
)
(𝑠
𝑛
− 𝑡
𝑛
)
3

= 𝑔 (𝑡
𝑛+1

) .

(30)

Hence, we deduce that
𝑦𝑛+1 − 𝑥𝑛+1

 ≤

−𝐹


(𝑥
𝑛+1

)
−1

𝐹 (𝑥𝑛+1)


≤ −𝑔


(𝑡
𝑛+1

)
−1

𝑔 (𝑡
𝑛+1

) = 𝑠
𝑛+1

− 𝑡
𝑛+1

.

(31)

Moreover, we have (IV
𝑛+1

):
𝑦𝑛+1 − 𝑥0

 ≤
𝑦𝑛+1 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑥0



≤ (𝑠
𝑛+1

− 𝑡
𝑛+1

) + 𝑡
𝑛+1

= 𝑠
𝑛+1

,

(32)

(V
𝑛+1

):

𝑥𝑛+2 − 𝑦𝑛+1


=


−
1

2
𝐻 (𝑥
𝑛+1

, 𝑦
𝑛+1

) [𝐼 − 𝛼𝐻 (𝑥
𝑛+1

, 𝑦
𝑛+1

)] (𝑦
𝑛+1

− 𝑥
𝑛+1

)



≤
1

2

𝑀
𝑦𝑛+1 − 𝑥𝑛+1



−𝑔 (𝑡
𝑛+1

)
[1 + 𝛼

𝑀
𝑦𝑛+1 − 𝑥𝑛+1



−𝑔 (𝑡
𝑛+1

)
]

×
𝑦𝑛+1 − 𝑥𝑛+1



≤ −
1

2

𝐾 (𝑠
𝑛+1

− 𝑡
𝑛+1

)

𝑔 (𝑡
𝑛+1

)
[1 − 𝛼

𝐾 (𝑠
𝑛+1

− 𝑡
𝑛+1

)

𝑔 (𝑡
𝑛+1

)
] (𝑠
𝑛+1

− 𝑡
𝑛+1

)

= 𝑡
𝑛+2

− 𝑠
𝑛+1

.

(33)

By Lemma 1, if ℎ ≤ 1/2, then the sequence {𝑥
𝑛
, }
𝑛≥0

generated
by (16) is well defined, remains in 𝑆(𝑥

0
, 𝑡∗) for all 𝑛 ≥ 0, and

converges to a solution 𝑥∗ of (1).
To show uniqueness, let us assume that there exists a

second solution 𝑦∗ of (1) in 𝑆(𝑥
0
, 𝑡
∗∗

). Then


𝐹


(𝑥
0
)
−1

∫

1

0

𝐹


(𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)) 𝑑𝑡 − 𝐼



≤

𝐹


(𝑥
0
)
−1



∫

1

0

𝐹


[𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)] − 𝐹


(𝑥
0
) 𝑑𝑡



≤ 𝛽𝑀∫

1

0

𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

) − 𝑥
0

 𝑑𝑡

≤ 𝛽𝑀∫

1

0

[(1 − 𝑡)
𝑥
∗

− 𝑥
0

 + 𝑡
𝑦
∗

− 𝑥
0

] 𝑑𝑡

<
𝛽𝑀

2
(𝑡
∗

+ 𝑡
∗∗

) ≤ 1.

(34)
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By Banach Lemma, we can obtain that the inverse of the
linear operator ∫1

0

𝐹


[𝑥
∗

+ 𝑡(𝑦
∗

− 𝑥
∗

)]𝑑𝑡 exists and

𝐹 (𝑦
∗

) − 𝐹 (𝑥
∗

) = ∫

1

0

𝐹


[𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)] 𝑑𝑡 (𝑦
∗

− 𝑥
∗

) .

(35)

We conclude that 𝑥∗ = 𝑦
∗. The proof of Theorem 3 is

completed.

Proof of Theorem 4. By Lemma 1, we have

𝑡
∗

− 𝑡
𝑛+1

= (𝑡
∗

− 𝑡
𝑛
)
3

[(𝑡
∗

− 𝑡
𝑛
)
3

+ 4(𝑡
∗

− 𝑡
𝑛
)
2

(𝑡
∗∗

− 𝑡
𝑛
)

+ 5 (𝑡
∗

− 𝑡
𝑛
) (𝑡
∗∗

− 𝑡
𝑛
)
2

+ (2 − 2𝛼)

× (𝑡
∗∗

− 𝑡
𝑛
)
3

]

× ([(𝑡
∗

− 𝑡) + (𝑡
∗∗

− 𝑡)]
5

)
−1

< (𝑡
∗

− 𝑡
𝑛
)
3

[5(𝑡
∗

− 𝑡
𝑛
)
2

(𝑡
∗∗

− 𝑡
𝑛
)

+5 (𝑡
∗

− 𝑡
𝑛
) (𝑡
∗∗

− 𝑡
𝑛
)
2

+ 2(𝑡
∗∗

− 𝑡
𝑛
)
3

]

× ([(𝑡
∗

− 𝑡) + (𝑡
∗∗

− 𝑡)]
5

)
−1

.

(36)

Similarly,

𝑡
∗∗

− 𝑡
𝑛+1

= (𝑡
∗∗

− 𝑡
𝑛
)
3

[(𝑡
∗∗

− 𝑡
𝑛
)
3

+ 4(𝑡
∗∗

− 𝑡
𝑛
)
2

(𝑡
∗

− 𝑡
𝑛
)

+ 5 (𝑡
∗∗

− 𝑡
𝑛
) (𝑡
∗

− 𝑡
𝑛
)
2

+ (2 − 2𝛼) (𝑡
∗

− 𝑡
𝑛
)
3

]

× ([(𝑡
∗

− 𝑡) + (𝑡
∗∗

− 𝑡)]
5

)
−1

> (𝑡
∗∗

− 𝑡
𝑛
)
3

[(𝑡
∗∗

− 𝑡
𝑛
)
3

+ 4(𝑡
∗∗

− 𝑡
𝑛
)
2

(𝑡
∗

− 𝑡
𝑛
)

+ 5 (𝑡
∗∗

− 𝑡
𝑛
) (𝑡
∗

− 𝑡
𝑛
)
2

]

× ([(𝑡
∗

− 𝑡) + (𝑡
∗∗

− 𝑡)]
5

)
−1

.

(37)

Hence,

𝑡
∗

− 𝑡
𝑛+1

𝑡∗∗ − 𝑡
𝑛+1

< 2[
𝑡
∗

− 𝑡
𝑛

𝑡∗∗ − 𝑡
𝑛

]

3

< 2 ⋅ 2
3

[
𝑡
∗

− 𝑡
𝑛−1

𝑡∗∗ − 𝑡
𝑛−1

]

3
2

< ⋅ ⋅ ⋅ < 2 ⋅ 2
3

⋅ ⋅ ⋅ 2
3
𝑛

[
𝑡
∗

− 𝑡
0

𝑡∗∗ − 𝑡
0

]

3
𝑛+1

= √2
3
𝑛+1
−1

𝜃
3
𝑛+1

.

(38)

Because 𝑡∗∗ − 𝑡
𝑛
= 𝑡
∗

− 𝑡
𝑛
+ 𝑡
∗∗

− 𝑡
∗

= 𝑡
∗

− 𝑡
𝑛
+ ((1 − 𝜃

2

)𝜂)/𝜃,
we obtain

𝑡
∗

− 𝑡
𝑛
≤

(1 − 𝜃
2

) 𝜂

(1 − (1/√2)) [√2𝜃]
3
𝑛 [√2𝜃]

3
𝑛
−1

. (39)

Table 1: Error computing results of (42).

𝑛 Newton method Method (16) with 𝑝 = 2/3, 𝛼 = 1/2

1 5.215 × 10
−1

2.2371 × 10
−3

2 6.610 × 10
−2

1.3667 × 10
−9

3 14.017 × 10
−4

3.1229 × 10
−28

When 𝛼 ≥ 3/8,
𝑡
∗

− 𝑡
𝑛+1

= (𝑡
∗

− 𝑡
𝑛
)
3

[(𝑡
∗

− 𝑡
𝑛
)
3

+ 4(𝑡
∗

− 𝑡
𝑛
)
2

(𝑡
∗∗

− 𝑡
𝑛
)

+ 5 (𝑡
∗

− 𝑡
𝑛
) (𝑡
∗∗

− 𝑡
𝑛
)
2

+ (2 − 2𝛼) (𝑡
∗∗

− 𝑡
𝑛
)
3

]

× ([(𝑡
∗

− 𝑡) + (𝑡
∗∗

− 𝑡)]
5

)
−1

< (𝑡
∗

− 𝑡
𝑛
)
3

[5(𝑡
∗

− 𝑡
𝑛
)
2

(𝑡
∗∗

− 𝑡
𝑛
)

+ 5 (𝑡
∗

− 𝑡
𝑛
) (𝑡
∗∗

− 𝑡
𝑛
)
2

+ (
5

4
) (𝑡
∗∗

− 𝑡
𝑛
)
3

]

× ([(𝑡
∗

− 𝑡) + (𝑡
∗∗

− 𝑡)]
5

)
−1

=
5

4
(𝑡
∗

− 𝑡
𝑛
)
3

[4(𝑡
∗

− 𝑡
𝑛
)
2

(𝑡
∗∗

− 𝑡
𝑛
)

+ 4 (𝑡
∗

− 𝑡
𝑛
) (𝑡
∗∗

− 𝑡
𝑛
)
2

+ (𝑡
∗∗

− 𝑡
𝑛
)
3

]

× ([(𝑡
∗

− 𝑡) + (𝑡
∗∗

− 𝑡)]
5

)
−1

.

(40)

Hence, we get

𝑡
∗

− 𝑡
𝑛+1

𝑡∗∗ − 𝑡
𝑛+1

<
5

4
[
𝑡
∗

− 𝑡
𝑛

𝑡∗∗ − 𝑡
𝑛

]

3

< (
√5

2
)

3
𝑛+1
−1

𝜃
3
𝑛+1

,

𝑥𝑛 − 𝑥
∗ ≤ 𝑡

∗

− 𝑡
𝑛
≤

(1 − 𝜃
2

) 𝜂

1 − (2/√5) [(√5/2) 𝜃]
3
𝑛 [

√5

2
𝜃]

3
𝑛
−1

.

(41)

The proof of Theorem 4 is completed.

4. Applications

Example 1. Consider the case as follows:

𝑥 (𝑠) = 1 +
1

4
𝑥 (𝑠) ∫

1

0

𝑠

𝑠 + 𝑡
𝑥 (𝑡) 𝑑𝑡, (42)

where the space is𝑋 = 𝐶[0, 1] with norm

‖𝑥‖ = max
0≤𝑠≤1

|𝑥 (𝑠)| . (43)

This equation arises in the theory of the radiative transfer,
neutron transport, and kinetic theory of gasses. Let us define
the operator 𝐹 on𝑋 by

𝐹 (𝑥) =
1

4
𝑥 (𝑠) ∫

1

0

𝑠

𝑠 + 𝑡
𝑥 (𝑡) 𝑑𝑡 − 𝑥 (𝑠) + 1. (44)
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Table 2: Error computing results (|𝑥
𝑛
− 𝑥
∗

|).

Step Newton’s method Halley’s method (3) Method (16) with 𝑝 = 2/3, 𝛼 = 1 Method (16) with 𝑝 = 1/2, 𝛼 = 0

𝑛 = 1 2.56574 × 10
−2

2.13749 × 10
−3

1.58011 × 10
−3

5.74362 × 10
−3

𝑛 = 2 4.8337 × 10
−4

3.04697 × 10
−9

1.19327 × 10
−11

1.98875 × 10
−7

𝑛 = 3 1.75164 × 10
−7

8.84002 × 10
−27

3.90354 × 10
−44

8.35734 × 10
−21

𝑛 = 4 2.30119 × 10
−14

2.15878 × 10
−79

4.47038 × 10
−174

6.20201 × 10
−61

Then, for 𝑥
0
= 1, we can obtain

𝑀 = 2 ⋅
1

4
max
0≤𝑠≤1



∫

1

0

𝑠

𝑠 + 𝑡
𝑑𝑡



=
ln 2
2

= 0.3465,

𝑁 = 0, 𝐾 = 𝑀 = 0.3465, 𝛽 =

𝐹


(𝑥
0
)
−1

= 1.5304,

𝜂 =

𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)

= 0.2652,

ℎ = 𝐾𝛽𝜂 = 0.1406 < 0.4852, 𝑡
∗

= 0.2870,

𝑡
∗∗

= 3.485, 𝜃 = 0.08240.

(45)

That means the hypotheses of the theorem are satisfied
and for 𝛼 = 1/2 > 3/8 the error bound becomes

𝑥𝑛 − 𝑥
∗

≤ 𝑡
∗

− 𝑡
𝑛
≤

(1 − 𝜃
2

) 𝜂

(1 − (2/√5)) [(√5/2) 𝜃]
3
𝑛 [

√5

2
𝜃]

3
𝑛
−1

=
0.2634

1 − 0.8944 ⋅ (0.07370)
3
𝑛 (0.07370)

3
𝑛
−1

.

(46)

For 𝑛 = 1, 2, 3, we get
𝑥1 − 𝑥

∗ ≤ 𝑡
∗

− 𝑡
1
≤ 2.2371 × 10

−3

,

𝑥2 − 𝑥
∗ ≤ 𝑡

∗

− 𝑡
2
≤ 1.3667 × 10

−9

,

𝑥3 − 𝑥
∗ ≤ 𝑡

∗

− 𝑡
3
≤ 3.1229 × 10

−28

.

(47)

In practical computation, we use a discretization process.
By Gauss-Legendre quadrature formula with 8 nodes:

∫

1

0

𝜑 (𝑡) 𝑑𝑡 ≃

8

∑

𝑗=1

𝜔
𝑗
𝜑 (𝑡
𝑗
) , (48)

we approximate the integral equation (42), where the nodes
𝑡
𝑗
and the weights 𝜔

𝑗
are known. Denote 𝑥(𝑡

𝑖
) by 𝑥

𝑖
, 𝑖 =

1, 2, . . . 8, so we can transform (42) into the following system
of nonlinear equations:

𝑥
𝑖
= 1 +

1

4
𝑥
𝑖

8

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
, (49)

where 𝑎
𝑖𝑗
= 𝑤
𝑗
(𝑡
𝑖
/(𝑡
𝑖
+𝑡
𝑗
)).Then, we rewrite the above system

in the matrix form. Consider

𝐹 (𝑋) = 𝑋 − 𝑉 −
1

4
𝐴𝑊, (50)

where 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

8
)
𝑇

, 𝑉 = (1, 1, . . . , 1)
𝑇

, 𝐴 =

(𝑎
𝑖𝑗
)
8

𝑖,𝑗=1

, and𝑊 = (𝑥
2

1
, 𝑥
2

2
, . . . , 𝑥

2

8
)
𝑇. We also get

𝐹


(𝑋) = 𝐼 −
1

2
𝐴 diag {𝑥

1
, 𝑥
2
, . . . , 𝑥

8
} . (51)

After 3 iterative steps, we can obtain the numerical
solution of (42) by method (16) with 𝑝 = 2/3, 𝛼 = 1/2, and
the solution 𝑋

∗
= (1.2751, 1.4418, 1.5595, 1.6486, 1.7189,

1.7761, 1.8236, 1.8638)
𝑇, and we present the error computing

result of (42) in Table 1.

Example 2. Now we employ iterative methods (16) to solve
the equation and compare these methods with Newton’s
method, Halley’s method, and modified Halley’s methods
(16). We define as follows:

𝑓 (𝑥) = 𝑥
𝑛

− 𝑅, 𝑛 > 2, 𝑅 ∈ (0, +∞) . (52)

Denote 𝑥∗ = 𝑛
√𝑅, by (16) 𝑥

𝑛+1
= V(𝑥

𝑛
), where V(𝑥) = 𝑥 −

[1−(1/2)𝐻(𝑥)+ (𝛼/2)𝐻
2

(𝑥)](𝑓(𝑥))/(𝑓


(𝑥)),𝐻(𝑥) = (𝑓


(𝑥−

𝑝𝑓(𝑥)/𝑓


(𝑥)) − 𝑓


(𝑥))/(𝑝𝑓


(𝑥)). We have V(𝑥∗) = V(𝑥∗) =
V(𝑥∗) = 0 if

𝑝 =
2

3
, 𝛼 = 1. (53)

So, we get the convergence of the sequence {𝑥
𝑛
} generated

by modified Halley’s method (16) with four orders when 𝑝 =

2/3, 𝛼 = 1.
Now, we compare some of these methods for the calculus

of 𝑥∗ = 4
√16 = 2. We analyze the errors 𝑥

𝑛
− 𝑥
∗ for these

methods with Newton’s method, Halley’s method, and the
family of new modified Halley’s methods (16). In these cases,
we have taken 𝑛 = 4, 𝑥

0
= 2.2 (see Table 2).
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