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We provide an improvement MRILDU to ILUT for general sparse linear systems in the paper. The improvement is based on the
consideration that relatively large elements should be kept down as much as possible. To do so, two schemes are used. Firstly,
incomplete LDU factorization is used instead of incomplete LU. Besides, multiple rows are computed at a time, and then dropping
is applied to these rows to extract the relatively large elements in magnitude. Incomplete LDU is not only fairer when there are
large differences between the elements of factors L and U, but also more natural for the latter dropping in multiple rows. And the
dropping in multiple rows is more profitable, for there may be large differences between elements in different rows in each factor.
The provided MRILDU is comparable to ILUT in storage requirement and computational complexity. And the experiments for
spare linear systems from UF Sparse Matrix Collection, inertial constrained fusion simulation, numerical weather prediction, and
concrete sample simulation show that it is more effective than ILUT in most cases and is not as sensitive as ILUT to the parameter
P> the maximum number of nonzeros allowed in each row of a factor.

1. Introduction

The solving of sparse equations is the core issue of many
scientific and engineering calculations, and the time required
to solve sparse linear systems generally accounts for a large
proportion in the whole numerical simulation. More seri-
ously, with the improvement of the simulation precision,
the spatial resolution becomes higher and higher, the grid
points become more and more dense, and thus, the size
of the linear equations eventually also becomes larger and
larger. For the large-scale sparse linear equations, especially
for the sparse linear system during the simulation of the
three-dimensional problems, the storage requirement and the
amount of computation from the traditional direct solution
methods are very large; besides, the sparsity of the coeflicient
matrix cannot be fully utilized [1] and it is difficult to be
parallelized efficiently.

The iterative method can be controlled easily and the
iterative method can make full use of the sparsity of the

matrix; thus the storage requirement and the amount of
computation are both very small in a single iteration. In
addition, it can solve the corresponding linear equations only
if the computational rule of coeflicient matrix-vector product
is known, not having to know the specific structure or the
specific elements of the coefficient matrix, which is impos-
sible for the direct method. Based on these considerations,
the iterative method, especially the Krylov subspace method,
has drawn more and more attention in recent years. Because
the projection scheme is adopted in the Krylov subspace
method, the convergence rate is relatively quicker. However,
the convergence rate of the Krylov subspace method depends
on the eigenvalue distribution of the coefficient matrix;
the more concentrated the eigenvalues are, the quicker the
convergence will be. To accelerate the convergence rate and
reduce the total computation time, efficient preconditioning
techniques should be used to convert the original sparse
linear equations into another with the same solution, but with
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narrower eigenvalue distribution region of the coefficient
matrix [1, 2].

In general, the narrower the region the eigenvalues are
located in, the more effectively the number of iterations can
be reduced. However, the amount of computation in a single
iteration must also be less so as to make the ultimate solution
process efficient. On the other hand, when preconditioning
is not used, the amount of computation in a single iteration
lies mainly in the operation that the coefficient matrix is
applied to a vector. Therefore, an efficient preconditioner
should ensure that the distribution region of the eigenvalues
is improved significantly, and at the same time, the additional
amount of computation in a single iteration is almost equal to
that of a matrix-vector product. The incomplete factorization
is one kind of such preconditioners, which aims to solve the
general sparse linear equations.

Many incomplete factorizations have been developed
since Meijerink and van der Vorst introduced incomplete
Cholesky factorization into the conjugate gradient as a
preconditioner [3]. The differences among them are mainly
in the dropping rules for the elements in the factors. Fur-
ther, many block forms, diagonal modifications, stabilized
versions, and parallel implementations have been developed.

The simplest incomplete factorization is ILU(0). It
requires that the sparse structure of the incomplete fac-
tor is the same as the original coefficient matrix [3]. The
implementation of ILU(0) can be very cheap, and when the
coefficient matrix is diagonally dominant or a M matrix, it
is effective and robust. However, for more complex issues
encountered in actual applications, ILU(0) is too rough, and
thus it inspires people to design more efficient ones under
the way of allowing more fill-ins. ILU(k) is one of them; it
can be seen as an extension of ILU(0) [1, 2, 4], in which
the fill-ins with level number greater than k are set to zero.
Generally speaking, ILU(1) is quite effective. When the level
threshold k is higher, the improvement is usually very small.
However, with the increase of k, the amount of computation
increases very fast and thus ILU(k) with k greater than 1is not
considered in general.

When the diagonal dominance of the coefficient matrix is
poor, ILU(k) may drop many relatively large elements,while
retaining many elements with small absolute values, making
the effectiveness of the method degraded greatly for general
sparse matrices. It is due to the fact that ILU(k) completely
starts from the nonzero structure, while the size of element in
the factors is not considered. Based on this consideration, the
researchers put forward another incomplete factorization in
which the dropping is applied based on the magnitude of the
nonzero elements in the factors. However, if the dropping rule
is based only on the magnitude of elements, the total number
of nonzero elements in the derived factors is very difficult
to control; thus the storage requirement and the amount
of computation are very difficult to control. The double
threshold incomplete factorization (ILUT), put forward by
Saad, effectively deals with the above-mentioned problem.
When the factorization is performed at the kth step, the
elements with relatively small absolute value in the kth row
of the factor are dropped according to the threshold value ¢
firstly and then at most p elements with the largest absolute
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value are retained in the nondiagonal elements in each row of
incomplete factors [5].

The LU factorization is not the only way to construct
incomplete factorization preconditioner. Many others can
also be used. Based on A-orthogonal factorization, Benzi
computed a factorization type sparse approximate inverse
preconditioner AINV, and the experimental results show
that it has similar quality as that of ILU preconditioner but
has better potential parallelism [6]. Aiming at the sparse
linear equations needing to be solved in the numerical
simulation of Markov chains, an incomplete WZ factorization
is introduced in reference [7] and the experimental results
show that this method is quicker than the ILU factorization
preconditioner [7, 8]. For the sparse linear systems with
finite element structure, Vannieuwenhoven and Meerbergen
provided an incomplete multiple wave-frontal LU factor-
ization preconditioning process, which is obtained through
dropping in the process, and the computation performance
and the robustness are improved through full use of the dense
structure of the elemental stiffness matrix and the selection of
local efficient principals [9].

Up to now, various incomplete factorizations are pro-
vided. However, ILUT is one of the most widely used incom-
plete factorizations. Although the effectiveness of the ILUT
proposed for the general sparse linear equations is very high,
there is still room for improvement. Recently, Maclachlan,
Osei-kuftuor, and Saad studied the measures to improve its
accuracy and stability through applying compensation [10].
This paper can also be seen as an improvement to ILUT.
Having realized that the dropping rules in ILUT are not fair,
an improvement is proposed in this paper from the following
two aspects. First, the incomplete LDU factorization is used
to replace the incomplete LU factorization, so as to make the
dropping in incomplete factors L and U fairer. Second, when
multiple rows computed at a time for incomplete factors L
and U, the dropping rules are applied, respectively, to L and
U. The elements with maximum magnitude are retained in
the computed rows.

2. Description of MRILDU

The ILUT preconditioner has been widely and effectively used
to solve many difficult sparse linear systems. The specific
descriptions of the double threshold incomplete factorization
ILUT(p, o) are shown in Algorithm 1 [2].

In Algorithm 1, three dropping strategies are used. First,
in the fifth row of the described algorithm, if the absolute
value of some element is less than the threshold o, the element
will be dropped and replaced by zero. Second, in the tenth
row, another rule is applied to drop the elements whose
absolute values are less than o;, where o; is taken as o/t; and
t; is equal to the quotient of the l-norm of the ith row in
the original coefficient matrix to the number of the nonzero
elements in the row. Third, in the eleventh and twelfth rows,
for the ith row of L, namely, the strictly lower triangular part,
at most p largest elements are retained, and at the same time,
for the strictly upper triangular part in the row of U, at most
p largest elements are retained too. In addition, the diagonal
elements are always retained.
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(1) Fori=1,...,nDo

2) w:=ap

(3) Fork=1,...,i—1and when w, # 0 Do
(4) Wy = Wi [Uyy

(5) If lw,| < o thenw, :=0

(6) If wy # 0 then

(7) W= W— Wy * Uy

(8) Endif

(9) Enddo

(10) Iflel<aithenwj:=Oforj=i+1,...,n
(11)  Extract the maximum p elements from [; ;|
(12)  Extract the maximum p elements from v

(13) l,-j = wjforjz 1,...,i—1

ii+1l:n

(14)  u; :=wjforj=i,...,n
15) w:=0
(16) Enddo

ALGoRITHM 1: Algorithm ILUT(p, 0).

(1) Fori=1,...,nDo

2) w:=a;

(3) Fork=1,...,i—1and when w, # 0 Do
(4) o = wy and wy, := oo/d;,
(5) If lw,| < o thenw, =0
(6) If wy # 0 then

(7) W= W— &% U
(8) Endif

(9)  Enddo

(10) Forj=i+1,...,nDo
11) w; = wj/wi

(12) Iflel < o then w; =0
(13)  Endfor

(14) l,-j =w; forj=1,...,i-1

15) d; = w;

(16) uijzzwjforj=i+1,...,n

17) w:=0

(18) If mod(i,b) = 0 then

19) Extract the maximum bp elements from [, .,
(20)  Extract the maximum bp elements from u; ;. ,
(21)  Endif

(22) Enddo

ArcoriTHM 2: Algorithm MRILDU(b, p, 0).

The effectiveness of ILUT preconditioner originates from
the following two aspects. First, the number of the nonzero
elements in the incomplete factors is reduced through drop-
ping the elements whose relative magnitude is less than ¢
and retaining at most p nonzero elements in each row of the
factors. This reduces not only the time used in incomplete fac-
torization, but also the preconditioned iteration time greatly.
Second, when the diagonal dominance of the matrix is poor,
the quality of the incomplete factors can be improved through
increasing the parameter p and decreasing the parameter o,
especially if o is equal to zero and p is equal to the order of
the matrix and the related incomplete factorization is just the
LU factorization.

Although ILUT is effective, it still has deficiencies in
practical applications. First, it is very difficult to specify the
best values for the parameters in ILUT. If p is too small or
o is too large, the effectiveness of the preconditioner will be
very poor. However, when p is very large and o is very small,
although the effectiveness of the obtained preconditioner is
good, the cost of the construction of the preconditioner and
the overhead in a single iteration are both very large, which
is unbearable. Second, when the magnitudes of the elements
in each row of the matrix differ greatly, the magnitudes of the
elements in each row of the incomplete factors L and U may
also differ greatly. However, ILUT almost averagely retains
the same number of nonzero elements in each row and this
may drop some relatively large elements while retaining many
relatively small elements. Although the scheme to retain
relatively large elements is not always superior to that to retain
relatively small elements, the existing experiments show that
it has more advantages to retain relatively large elements in
general, especially for diagonally dominant matrices.

Based on the above considerations, here we propose an
improvement to ILUT, which is multirow ILDU (MRILDU).
The idea can be outlined as follows. Perform incomplete LDU
factorization for the matrix, compute multiple rows of factors
L and U every time, and then apply dropping strategy to the
obtained rows of L and U. It has the following two advantages
to use the incomplete LDU factorization to replace the
incomplete LU factorization. First, when LDU factorization
is applied, the elements in L and the elements in U have been,
respectively, proportioned to the diagonal elements in the
same column or same row and thus it is more equitable to use
the same dropping strategy in L and U. Second, because the
elements in L have already been scaled, it is more equitable
for each row when the dropping strategy is used for multiple
rows. Furthermore, when multiple rows are computed at a
time and then dropping rule is applied, the unified rule can
be used to drop nonzero elements in these rows. Compared
to the algorithm that one row is computed at a time and
simultaneously the dropping strategy is applied, MRILDU is
more favorable in retaining the elements with relatively large
magnitudes in the incomplete factors. Assuming that every
time b rows of the matrix are factorized and then the dropping
strategy is used for them, MRILDU(b, p, 0) can be specifically
described in Algorithm 2.

During the implementation, the algorithm MRILDU
(b, p,0) needs to efliciently solve the following three prob-
lems. The first one is the linear combination of the sparse
vectors on step 7. The second one is to select several elements
with the largest magnitude from the given vectors on step
19 and step 20, and the third one is that the elements in ith
row of L must be accessed in ascending order on step 3. It
can be found from the comparison of the steps in Algorithms
2 and 1 that the first problem encountered in the algorithm
MRILDU(b, p, o) is the same as that of ILUT(p, o). Therefore,
the same technology can be used. See literatures [2, 4] for
specific implementation details.

For the second problem, we adopt the quick sort method
which is slightly different from that in ILUT(p, o). When the
sorting is applied to step 19 and step 20 in MRILDU(b, p, 0),
the exchange operation is not applied in deed, while another



integer array is used to track the sorting process, and
ultimately its first bp elements are used to record the positions
of the elements with the largest magnitude. After the end of
the sorting, the elements on other positions in the column
number array are set to zero, and those elements are dropped
accordingly. In this way, the remaining elements can be
preserved directly without having to spend too much time to
determine the row numbers of the nonzero elements.

For the third problem, from its appearance, it should be
completely identical in MRILDU and in ILUT. However, it
needs to note that, in MRILDU, b rows are taken as a whole
at a time to use the dropping strategy. We may as well assume
that the dropping strategy is used to the rows from the kth
to the k + b — 1th altogether, when the kth row is computed,
similar to ILUT; the elements in the final incomplete factor U
are used. However, when the rows from k + 1th to kK + b — 1th
are computed, the elements in the k — 1th row as well as
the rows in front of it in the factor U are the elements in
the eventual incomplete factor. But when the elements in the
rows from the kth to k + b — 2th are used, these elements
are only temporary values, and the drooping strategy has
not been applied yet. In order to facilitate the calculation,
initially, bn additional storage units are allocated in advance
for each incomplete factor and in the calculation the elements
of continuous b rows are stored according to the format of the
k—1th and the previous rows to facilitate the implementation
of the algorithm. When the dropping strategy is applied, the
elements in these b rows are processed directly. The dropped
elements are set to zero, and after that, these zero elements
are dropped completely and their positions are filled with the
subsequent nonzero elements.

In the following, we analyzed the differences of the stor-
age requirement and the amount of computation of MRILDU
from ILUT. In ILUT, every time one row is computed and p
nonzero elements with largest magnitudes are selected and
retained from the current row of each triangular factor. There
may be only at most n nonzero elements in each row of the
factors before applying the dropping rule. Therefore, it can
be considered that the temporary space complexity is O(n),
which needs to be allocated additionally. In MRILDU, the
nonzero elements in b rows need to be stored before applying
dropping rule, and thus, the temporary space complexity
which needs to be allocated additionally may be up to O(bn).
As previously described, the storage space has been allocated
in advance. For the final incomplete factors, due to the fact
that the storage units of MRILDU(b, p, 0) and ILUT(p, o) are
both (2p + 1)n at most, therefore, the storage requirements
are almost invariant, especially when p is small or o is large.
Accordingly in the preconditioned iteration, the computing
time in a single iteration will also be almost the same. On the
other hand, the quality of MRILDU is higher in general; that
is to say, when MRILDU is used, the time spent in iteration
will be less than that when ILUT is used. Therefore, if the
construction of the preconditioner is not considered, the time
elapsed in the iteration itself will be less with MRILDU than
that with ILUT.

The time complexity of the construction of MRILDU
differs ILUT mainly from two origins. First, in ILUT, the
dropping is applied for one row each time. After the dropping
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is completed, the retained elements of the row are stored in
the incomplete factor. When the calculation is applied for the
subsequent rows, the elements in front of the current row in
the factor U need to be used and these elements are in the
final incomplete factor. In MRILDU, b rows of the factors
are calculated at a time. It may be assumed that they are the
rows from the kth to k + b — 1th. When applying dropping to
these b rows as a whole, the calculation process is as described
previously. Therefore, the additional temporary storage units
are greater than that in ILUT in general. At the same time, the
amount of computation will be also slightly larger than that
with ILUT.

The second origin is the different dimension of the
vectors to be split and the different number of elements
which need to be extracted from them. For ILUT, if there
are q nonzeros in each of the rows from the kth to the
k + b — 1th before dropping is applied, the time complexity
for each row is about O(g/plogq) when the quick sort is
used to extract the required p elements from the factor.
Therefore, the time complexity for b rows is O(bg/plogq).
For MRILDU, because the dropping strategy is applied to
bp rows, this operation is equivalent to the extraction of bp
elements from bq elements. Thus, the time complexity should
be Ofbgq/(bp)log(bq)}, namely, O{q/plog(bqg)}. This shows
that just from the perspective of extracting the elements with
largest magnitudes, it seems that MRILDU will be quicker.
However, it needs to note that, when the rows from the k+ 1th
to the k+b—1th are computed, the temporarily storage units in
each row are likely more than those in ILUT. Therefore, even
it MRILDU will be slightly quicker, it is not very significant,
especially when b is large.

Furthermore, it can be proved that similar to other
ILU factorizations, when A is a M matrix or diagonally
dominant, MRILDU can always continue, and the lower
right corner submatrix to be factorized will also be always
a M matrix or diagonally dominant. For each of these two
issues, after A is split into LDU and A — LDU, the iterative
method with LDU as the iterative matrix will be always
convergent. Correspondingly, the condition number of the
preconditioned coefficient matrix will be better than that of
the original coefficient matrix.

3. Numerical Experiments

In this section, for several sparse linear equations from some
scientific engineering applications, the proposed MRILDU
is compared to ILUT. The experiments are applied on the
high performance server with Intel Xeon CPU E5-2670 0 @
2.60 GHz CPU, 20480 KB cache, and main memory of 48 G.
The operating system is Red Hat 4.4.5-6 Linux. The Intel
Fortran compiler ifort 11.1.059 is used as compiler and -O3
is used for optimization.

In this paper, for convenience, the number of iterations
will be denoted by IT, and the time used for the construction
of the preconditioner and the iteration process are denoted
by CTME and ITME, respectively. The total solution time is
denoted by TTME, which is the sum of CTME and ITME.
NNZ represents the number of nonzero elements in the
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TABLE 1: Dimension (N) and number of nonzero (NNZ) test matrices.

Matrix N NNZ Application field
af_shell10 1508065 27090195 Sheet metal forming
bone010 986703 36326514 Model reduction
ldoor 952203 42493817 Structural problem
thermal2 1228045 4904179 Thermal problem
airfoil_2d 14214 259688 CFD problem
cvxbgpl 50000 349968 Optimization problem
sparsine 50000 1548988 Structural problem
orsirr_1 1030 6858 CFD problem
pores_2 1224 9613 CFD problem
saylr3 1000 3750 CFD problem
sherman3 5005 20033 CFD problem

TABLE 2: Iteration results for matrix af_shell10.

TABLE 3: Iteration results for matrix bone010.

p b IT NNZ CTME ITME TTME p b IT NNZ CTME ITME TTME
ILUT 5 7 6813992  0.2050 12517 14566 ILUT 5 16 4900335 03119 2.5586 2.8704
MRILDU 5 1 6 8311004  0.2420 11074  1.3494 MRILDU 5 1 12 5884440 0.4067 19592  2.3659
MRILDU 5 2 5 8529756 0.2464 0.9494 11958 MRILDU 5 2 12 5894775 0.4346 19649  2.3995
MRILDU 5 5 5 8313907  0.2228 0.9362  1.1590 MRILDU 5 5 11 5915403 0.4694 18480 23174
ILUT 10 6 9848598  0.2054 11158 1.3213 ILUT 10 9 9702708  0.3530  1.6085  1.9615
MRILDU 10 1 4 11282919 0.2162 0.8019  1.0181 MRILDU 10 8 10686813 0.4344 14531 1.8875
MRILDU 10 3 11369132 0.2150  0.6045 0.8196 MRILDU 10 8 10722972  0.4445 1.4701  1.9146
MRILDU 10 5 4 11579261 0.1928 0.7934 0.9863 MRILDU 10 5 7 10795936 0.4915 12933 1.7848
ILUT 20 6 10464841 0.2027 11415  1.3442 ILUT 20 5 18784893  0.3951 1.0752  1.4703
MRILDU 20 1 2 11746902 0.1872 0.4282 0.6154 MRILDU 20 5 19768998 0.4477 11030  1.5507
MRILDU 20 2 11749200 0.1876  0.4273  0.6149 MRILDU 20 4 19817915  0.4725 0.8938  1.3663
MRILDU 20 2 11749244 01855  0.4318  0.6173 MRILDU 20 5 4 19923484 0.5748 0.9048 1.4797

preconditioner. All the time results are in seconds. In all
iterations, the initial solution vector is selected as all zeros.

3.1. Sparse Linear Systems from Some Test Matrices. The
coeflicient matrices of the sparse linear equations here come
from the UF sparse matrix collection (http://www.cise.ufl
.edu/research/sparse/matrices/index.html) website, and the
information of these matrices can be briefly described in
Table 1. Among them, the last four matrices starting from
orsirr_1 can also be downloaded from the website Martrix-
market  (http://math.nist.gov/MatrixMarket/browse.html).
The right-hand side vectors are obtained through applying
the matrix to the given true solution vector, in which the ith
component is x; = i/n, where n is the order of the matrix.
During the iteration process, BICGSTAB is used, and the
convergence criterion is that the 2-norm of the residual
vector is reduced by 10 orders of magnitude.

The results with ILUT and MRILDU are listed in Table 2.
In all the tests of this subsection, the threshold value o is taken
as 1E - 3 all the time.

As can be seen from Tables 2,3,4,5,6,7,8,9,10,11,and 12,
when the same p and o are used, the number of iterations with
MRILDU is less than that with ILUT in general; namely, the
effectiveness of MRILDU is higher. Besides, when p is small,

due to the fact that the number of iterations with MRILDU
is less than that with ILUT, the time elapsed for iteration is
also less than that with ILUT. However, for some matrices,
because the number of the nonzero elements retained by
MRILDU is relatively more, while the number of iterations
is not reduced significantly, especially when p is large, the
time elapsed for iteration is slightly longer than that with
ILUT. From the perspective of total execution time including
preconditioner construction and iteration process, although
it is difficult to say that MRILDU is absolutely better than
ILUT, MRILDU is superior in general. Furthermore, when
ILUT is used, it is difficult to solve the linear systems for some
matrices. However, when MRILDU is used, the solution is
more robust with slightly larger b. Moreover, the experiments
also show that when b is large, MRILDU is not as sensitive as
ILUT to the parameter p.

3.2. Energy Equation in Inertial Constrained Fusion Simu-
lation. The energy equations in the numerical simulation
of inertial confinement fusion can be described as in the
literatures [11, 12]. When the discretization is applied to the
equations, the velocity and coordinates are given on grid
points, while the temperature, density, pressure, and energy
are given at the center of the cells. When uniform quadrilat-
eral mesh is used to discretize the continuous equations, we
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TABLE 4: Iteration results for matrix ldoor.

p b IT NNZ CTME ITME TTME
ILUT 5 19 4165454 0.3516  2.0167 2.3683
MRILDU 5 1 17 5030085 0.4738 1.8135 2.2873
MRILDU 5 15 5220618  0.4855 1.6805 2.1660
MRILDU 5 13 5360138  0.4806 1.5297  2.0103
ILUT 10 10 7533577 0.3755 11645  1.5400
MRILDU 10 9 8365112 0.4880 1.0859 15740
MRILDU 10 7 8683459  0.4947 0.8785 1.3732
MRILDU 10 5 7 8979981  0.4938 0.9068 1.4007
ILUT 20 5 12443336 0.3878 0.6864 1.0742
MRILDU 20 5 13180555 0.4608 0.7038  1.1647
MRILDU 20 5 13565302 0.4595 0.7209 11804
MRILDU 20 5 5 13932275  0.4477 0.7354 11830

TABLE 5: Iteration results for matrix thermal2.

p b IT NNZ CTME ITME TTME
ILUT 5 6 3589294  0.0808 0.6483  0.7291
MRILDU 5 1 3 4701667  0.0791  0.3485 0.4276
MRILDU 5 2 3 4836374  0.0781  0.3535 0.4316
MRILDU 5 5 3 4881973 0.0766 0.3549  0.4315
ILUT 10 6 3785538 0.0799 0.6612  0.7411
MRILDU 10 2 4896078 0.0680 0.2475  0.3154
MRILDU 10 2 4896078  0.0717  0.2476  0.3193
MRILDU 10 2 4896078 0.0706  0.2474  0.3180
ILUT 20 6 3785538  0.0799 0.6616  0.7416
MRILDU 20 2 4896078 0.0687 0.2477  0.3164
MRILDU 20 2 2 4896078  0.0723  0.2474  0.3198
MRILDU 20 5 2 4896078  0.0705 0.2474  0.3180

TABLE 6: Iteration results for matrix airfoil_2d.

p b IT NNZ CTME ITME TTME
ILUT 5 45 140933 0.0119 0.0583  0.0702
MRILDU 5 1 38 155280 0.0178  0.0486 0.0664
MRILDU 5 41 155863 0.0188 0.0563 0.0751
MRILDU 5 38 155992 0.0188 0.0561  0.0750
ILUT 10 22 276559  0.0286  0.0354 0.0640
MRILDU 10 1 21 289850 0.0326  0.0327  0.0653
MRILDU 10 2 22 294696 0.0334 0.0372  0.0706
MRILDU 10 5 21 297000 0.0335 0.0382 0.0718
ILUT 20 13 491044 0.0509  0.0291  0.0800
MRILDU 20 1 14 455303 0.0415 0.0302 0.0717
MRILDU 20 2 14 457858 0.0399 0.0306 0.0706
MRILDU 20 5 14 458851 0.0397  0.0306  0.0703

can derive the discrete nonlinear equations. When Newton
iteration is used to solve the nonlinear system and natural
ordering is used to grid points, the problem is converted
into the solution of block tridiagonal linear equations which
corresponds to Jacobi matrices [12].

In this subsection, we perform experiments for two typi-
cal sparse matrices (namely, MAT17 and MAT20) extracted
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TABLE 7: Iteration results for matrix cvxbqpl.

p b IT NNZ CTME ITME TTME
ILUT 5 9 144410 0.0021  0.0206  0.0227
MRILDU 5 1 3 188828 0.0023 0.0077  0.0100
MRILDU 5 2 2 197127 0.0022 0.0055 0.0078
MRILDU 5 5 2 198783 0.0023 0.0055 0.0077
ILUT 10 9 155499  0.0020  0.0207  0.0227
MRILDU 10 1 199884 0.0021 0.0032  0.0053
MRILDU 10 1 199884  0.0021  0.0032  0.0053
MRILDU 10 1 199884 0.0022 0.0032 0.0054
ILUT 20 9 155499  0.0020  0.0207  0.0227
MRILDU 20 1 199884 0.0021 0.0032  0.0053
MRILDU 20 1 199884 0.0021  0.0032  0.0053
MRILDU 20 1 199884 0.0022 0.0032  0.0054

TABLE 8: Iteration results for matrix sparsine.

p b IT NNZ CTME ITME TTME
ILUT 5 16 229231  0.0121  0.0741  0.0861
MRILDU 5 14 278049 0.0168 0.0658  0.0826
MRILDU 5 2 12 283896 0.0175 0.0593  0.0768
MRILDU 5 5 12 286417 0.0172  0.0611  0.0782
ILUT 10 13 410600  0.0130  0.0684  0.0814
MRILDU 10 1 9 459413 0.0169 0.0493  0.0662
MRILDU 10 2 9 469141 0.0175 0.0509  0.0685
MRILDU 10 5 9 473756  0.0165 0.0511  0.0677
ILUT 20 10 631734  0.0127  0.0712  0.0839
MRILDU 20 1 6 680387 0.0123  0.0456  0.0580
MRILDU 20 2 4 709044 0.0125 0.0324  0.0449
MRILDU 20 5 4 723248 0.0125  0.0322  0.0447

TABLE 9: Iteration results for matrix orsirr_L.

p b IT NNZ CIME ITME TTME
ILUT 5 167 5333 0.0002  0.0094  0.0097
MRILDU 5 1 10 6712 0.0004 0.0008  0.0011
MRILDU 5 1 6782 0.0004 0.0008  0.0012
MRILDU 5 10 6932 0.0004 0.0008  0.0012
ILUT 10 165 5678  0.0003  0.0095 0.0098
MRILDU 10 1 10 7517 0.0004 0.0008  0.0012
MRILDU 10 2 11 7698  0.0004  0.0009  0.0013
MRILDU 10 5 10 7931  0.0004 0.0008  0.0012
ILUT 20 165 5961  0.0003  0.0097  0.0100
MRILDU 20 1 10 7839 0.0004 0.0008 0.0012
MRILDU 20 2 9 8100  0.0004  0.0007  0.0011
MRILDU 20 5 11 8183  0.0004 0.0009  0.0013

from the discrete solution of the two-dimensional three
temperature energy equations. The size of the related discrete
grid is 21 by 75. Since each grid point corresponds to three
temperature variables, namely, electron, ion, and photon, the
number of the dimensions of the equations is 4,725. In the
experiments, the stop criterion is that the Euclid norm of the
residual vector is reduced by 10 orders of magnitude.
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TABLE 10: Iteration results for matrix pores_2.

p b IT NNZ CTME ITME TTME
ILUT 5 95 7339 0.0003 0.0071 0.0074
MRILDU 5 1 56 9587 0.0004 0.0045 0.0049
MRILDU 5 2 48 11435 0.0006  0.0041 0.0048
MRILDU 5 5 30 11315 0.0007  0.0028 0.0035
ILUT 10 58 9778 0.0005  0.0050  0.0055
MRILDU 10 1 28 14520  0.0008  0.0027  0.0035
MRILDU 10 2 24 17193 0.0011 0.0026  0.0037
MRILDU 10 5 20 17206 0.0012 0.0022  0.0034
ILUT 20 59 10002  0.0005 0.0050  0.0055
MRILDU 20 1 19 19384 0.0011 0.0022  0.0033
MRILDU 20 2 17 21137 0.0012 0.0021 0.0033
MRILDU 20 5 17 21307 0.0013 0.0021 0.0034

TABLE 11: Iteration results for matrix saylr3.

p b IT NNZ CTME ITME TTME
ILUT 5 45 4940 0.0004  0.0028  0.0032
MRILDU 5 1 9 6104 0.0006  0.0006  0.0013
MRILDU 5 7602 0.0008  0.0006 0.0014
MRILDU 5 8560 0.0009  0.0007 0.0015
ILUT 10 43 7455 0.0006  0.0030 0.0037
MRILDU 10 1 6 9374 0.0010 0.0006 0.0015
MRILDU 10 11002 0.0010 0.0005 0.0016
MRILDU 10 5 5 11828 0.0010 0.0006 0.0016
ILUT 20 47 8968 0.0007 0.0036  0.0043
MRILDU 20 1 5 12024  0.0010  0.0006  0.0016
MRILDU 20 2 5 12430 0.0010  0.0006  0.0016
MRILDU 20 5 5 12466 0.0010 0.0006 0.0016

TABLE 12: Iteration results for matrix sherman3.

p b IT NNz CTME ITME TTME
ILUT 5 137 28459 0.0021 0.0365 0.0386
MRILDU 5 1 44 32097 0.0029 0.0121 0.0150
MRILDU 5 44 33180 0.0033 0.0124 0.0158
MRILDU 5 5 30 35526 0.0038 0.0092  0.0130
ILUT 10 128 50481 0.0051 0.0404 0.0456
MRILDU 10 1 28 55298  0.0060 0.0089 0.0150
MRILDU 10 2 27 56084 0.0064 0.0092  0.0156
MRILDU 10 5 23 58137  0.0066 0.0084  0.0150
ILUT 20 113 85790  0.0091 0.0462  0.0553
MRILDU 20 1 18 88174  0.0096  0.0073 0.0169
MRILDU 20 2 17 88770  0.0098  0.0072 0.0170
MRILDU 20 5 18 90454  0.0100 0.0080  0.0179

For matrices MAT17 and MAT20, the results are listed
in Tables 13 and 14, respectively. In these experiments, the
parameter o is taken as 1E — 3.

As can be seen from Tables 13 and 14, although MRILDU
with b = 1 corresponds to ILUT, similar to the previ-
ous experiments, the experimental results also show that

7
TABLE 13: Iteration results for MATI17.
P b IT CTME ITME TTME
ILUT 5 22 0.0005 0.0051 0.0057
MRILDU 5 1 12 0.0007 0.0028 0.0036
MRILDU 5 5 8 0.0012 0.0021 0.0033
MRILDU 5 10 7 0.0012 0.0019 0.0030
ILUT 10 17 0.0009 0.0043 0.0052
MRILDU 10 1 9 0.0011 0.0023 0.0034
MRILDU 10 5 0.0013 0.0016 0.0029
MRILDU 10 10 6 0.0012 0.0016 0.0028
TABLE 14: Iteration results for MAT20.
P b 1T CTME ITME TTME
ILUT 5 17 0.0007 0.0042 0.0049
MRILDU 5 1 12 0.0008 0.0029 0.0037
MRILDU 5 5 7 0.0014 0.0020 0.0034
MRILDU 5 10 7 0.0013 0.0020 0.0034
ILUT 10 14 0.0012 0.0038 0.0050
MRILDU 10 1 8 0.0012 0.0022 0.0034
MRILDU 10 5 7 0.0014 0.0020 0.0034
MRILDU 10 10 7 0.0014 0.0020 0.0034

MRILDU with b = 1 has great advantages and both the num-
ber of iterations and the time used in iteration are reduced
significantly. Furthermore, when the parameter p is given
and the parameter b increases, the convergence rate of the
iteration is improved gradually; however, when the parameter
b is increased to a certain extent, further improvement is
trivial when it continues to increase. Moreover, it can be noted
that after the parameter b is increased to a certain extent, the
quality of MRILDU will be very close for different parameters

p-

3.3. Helmholtz Equation in Numerical Weather Prediction
Model. When the finite-difference model is used to perform
the numerical weather forecast, the sparse linear equations
related to the pressure deviation in the three-dimensional
space need to be solved on each time step, which are
called discrete Helmholtz equations [13]. In this paper, we
perform experiments for the grid point model GRAPES [14]
developed by Chinese Academy of Meteorological Sciences.
In this model, the full compressible atmosphere motion
system is used as the control equation, the semi-implicit
semi-Lagrangian scheme is used as discrete scheme for time
derivative, and the discretization adopts Arakawa-C grid in
horizontal direction and Charney-Phillips grid in vertical
direction. See literature [14] for details.

Although the Helmholtz equations are diagonally dom-
inant, the diagonal dominance is very weak. For this kind
of sparse linear equations, the GCR iteration is often used
to solve the equations [2], but the solution is very time-
consuming, which occupies a large proportion in the whole
numerical simulation time. For example, in GRAPES, when
the diagonal scaling GCR is used and the grid size is 144 x
73 x 31, namely, the number of the grid points in the latitude,



8 Journal of Applied Mathematics
TABLE 15: Iteration results for linear systems from GRAPES. TABLE 16: Iteration results for static loading of concrete sample.
p b Avg. #iters Avg. time b Avg. #iters Avg. time
ILUT 5 104.5833 4.6204 ILUT 142.6517 13.7294
MRILDU 5 1 421771 2.5964 MRILDU 1 144.1124 12.9234
MRILDU 5 5 39.8021 2.5092 MRILDU 10 143.1742 12.2766
MRILDU 5 10 39.3854 2.4978 MRILDU 20 142.6517 10.9980
ILUT 10 54.8333 3.3918
MRILDU 10 1 26.2604 2.2461
MRILDU 10 > 25.8125 22306 In this subsection, for the linear equations encountered
MRILDU 10 10 25.6354 2.2229 in the static loading test, we compare the efficiency of ILUT

longitude, and vertical direction is 144, 73 and 31, respectively,
this proportion can be up to about 70%.

In the experiments, the grid size used is 144 by 73 by 31,
the preconditioned GCR is used to perform the iterations,
and the stop criterion is that the 2-norm of the residual
vector is less than 1E — 8. Due to the fact that the coefficient
matrix of the sparse linear equations remains unchanged
in the simulation process, the preconditioner just needs
to be constructed in the setting stage and its information
can be directly referenced in the solution processes of the
sparse linear equations at subsequent time steps. During the
simulation, the length of time step is taken as 1,800 seconds
and the experiment is integrated for one day, namely, 96 time
steps. Thus, there are 96 linear systems to be solved in all.

The experimental results can be described as in Table 15,
where the average number of iterations and the average
iteration time for the solution of a linear system with
preconditioned GCR are provided. The parameter o is taken
as 1E — 6 in all tests.

As can be seen from Table 15, MRILDU is significantly
superior to ILUT, and this is mainly thanks to the facts that
the incomplete ILDU factorization is used to replace the ILU
factorization and the dropping strategy for the elements in U
in MRILDU is different from that in ILUT. At the same time,
it benefits partly from the multirow strategy.

3.4. Mesoscale Simulation of Concrete Sample. In the
mesoscale simulation of concrete specimens, the specimens
are seen as three-phase composite materials which are
composed of aggregate, mortar, and the interface between
them and the finite element method is used. In this paper, we
perform experiments for a cubic wet-sieved specimen and
the size of the specimen is 550 mm by 150 mm by 150 mm.
See literature [8] for specific descriptions. There are 71,013
discrete nodes and 78,800 finite elements in all, respectively.
The two supporting columns are, respectively, located at the
places where x = —0.15mand z = Omas well as x = 0.3 m
and z = Om, namely, the places which are, respectively,
0.05 m away from the left and right boundaries at the bottom
of the specimen, while the two loading columns are located
at the places where x = Om and z = 0.15m as well as
x = 0.15m and z = 0.15 m, respectively, namely, the places
which are, respectively, 0.2 m away from the left and right
boundaries at the top of the specimen.

and MRILDU. The load is increased step by step, and the
increased load for each step is 0.25 kN. When loaded to the
59th step, the damaged elements will appear in the concrete
specimen and the specimen is completely damaged at the
94th step. If some damaged element appears at some loading
step, it may need to solve multiple sparse linear equations
with the same coeflicient matrix at this step, to correct the
displacements. Therefore, there are 178 sparse linear systems
to be solved in all during the whole simulation process.
Although the obtained sparse linear systems are symmetric
positive definite, due to the fact that ILUT and MRILDU are
not symmetric, BICGSTAB is selected as the iterative method.
The stop criterion is that the 2-norm of the residual vector is
reduced by six orders of magnitude.

In Table 16, for the sparse linear systems occurring in the
static loading simulation, the average number of iterations
and the average time elapsed for iteration of each sparse linear
system are provided. In the tests, the parameter p is taken
as 25 and the parameter o is taken as 1E — 3. Due to the
fact that when there are no damaged elements, the global
stiffness matrix, namely, the coeflicient matrix of sparse
linear equations, remains unchanged and even if there are
damaged elements, the coefficient matrix is also unchanged
during the corrections at each loading step. As long as the
coefficient matrix is unchanged, the preconditioner does not
need to reconstruct. Therefore, the time consumed by the
construction of the preconditioner is relatively trivial and
thus the time used to construct the preconditioner is not
listed in the table, while only the iteration results are listed.

As can be seen from Table 16, for sparse linear equa-
tions which need to be solved in the mesoscale numerical
simulation of concrete specimen, MRILDU does not have
advantages in the number of iterations compared to ILUT,
but the average iteration time used for each linear system
is improved slightly. This may be due to the fact that the
utilization ratio of Cache is better when MRILDU is used.

4. Conclusion

In this paper, aiming at the disadvantage that ILUT may
drop some relatively large elements and retain relatively
small elements, we propose an improved version MRILDU
based on the following two techniques. First, the incomplete
LDU factorization is used to replace the incomplete LU
factorization and the same dropping strategy is used for the
elements in L and U, so as to make the dropping rules be more
equitable for L and U. Second, multiple rows are factorized
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before each dropping, so as to effectively deal with great
differences between the diagonal dominance and to retain
the relatively large elements, thereby improving the quality of
incomplete factorization. The experimental results show that
when the same parameters are used, the number of iterations
with MRILDU will be significantly smaller than that with
ILUT. And in most cases, the iteration time and total solution
time with MRILDU can be reduced in general. Furthermore,
MRILDU is not as sensitive as ILUT is to the parameter p,
and thus, in the case that the parameter p cannot effectively be
determined, the advantages of MRILDU are more significant.
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