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We investigate boundary value problems for a coupled system of nonlinear fractional differential equations involving Caputo
derivative in Banach spaces. A generalized singular type coupled Gronwall inequality system is given to obtain an important a
priori bound. Existence results are obtained by using fixed point theorems and an example is given to illustrate the results.

1. Introduction

Fractional differential equations involving the Riemann-
Liouville fractional derivative or the Caputo fractional
derivative have been shown to be very useful in the study of
models of many phenomena in various fields of science and
engineering, such as physics, chemistry, biology, signal and
image processing, biophysics, bloodflowphenomena, control
theory, economics, aerodynamics and fitting of experimental
data. For more details, see, for example, [1–6].

In recent years, many researchers paid much attention to
the coupled system of fractional differential equations due to
its applications in differential fields. The reader is referred to
the papers [7–11] and the references cited therein.

Up to now, there are fewer results of fractional differential
equations with boundary conditions in infinite dimensional
spaces than in finite dimensional spaces. Recently, Wang et
al. [12] investigated the existence and uniqueness of solutions
for a fractional boundary value problem involving theCaputo
derivative in Banach space as follows:

𝐶

0
𝐷
𝛼

𝑡
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 0 < 𝛼 < 1, 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑎𝑥 (0) + 𝑏𝑥 (𝑇) = 𝑐,

(1)

which extended the earlier work [13], where 𝐶
0
𝐷
𝛼

𝑡
is the

Caputo fractional derivative of order 𝛼, 𝑓 : 𝐽 × 𝑋 → 𝑋,

where 𝑋 is a Banach spaces and 𝑎, 𝑏, and 𝑐 are real constants
with 𝑎 + 𝑏 ̸= 0.

To the best of our knowledge, there is no effort being
made in the literature to study the existence of solutions
for a coupled system of fractional boundary value problems
involving the Caputo derivative in Banach space. Motivated
by the above-mentioned works, in this paper, we study
a coupled system of fractional differential equations with
boundary conditions of the type
𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 0 < 𝛼 < 1, 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝐶

0
𝐷
𝛽

𝑡
𝑦 (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 0 < 𝛽 < 1, 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑎𝑥 (0) + 𝑏𝑥 (𝑇) = 𝑝,

𝑐𝑦 (0) + 𝑑𝑦 (𝑇) = 𝑞,

(2)

where 𝐶
0
𝐷
𝛼

𝑡
and 𝐶
0
𝐷
𝛽

𝑡
are the Caputo fractional derivatives of

order 𝛼 and 𝛽, respectively, 𝑓, 𝑔 : 𝐽×𝑋×𝑋 → 𝑋, where𝑋 is
a Banach spaces and 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, and 𝑞 are real constants with
𝑎 + 𝑏 ̸= 0 and 𝑐 + 𝑑 ̸= 0. We will apply Schaefer fixed point
theorem, nonlinear alternative of Leray-Schauder type, and a
new singular coupled Gronwall inequality system given by us
to establish the existence of solutions for BVP (2).

This paper is organized as follows. In Section 2, we recall
some preliminary facts that we need in the sequel, and we
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give a generalized singular type coupled Gronwall inequality
system which can be used to obtain an important a priori
bound. In Section 3, we give two existence results of the
problem (2) which is based on two fixed point theorems,
respectively. Finally, an example is given to illustrate the
results in Section 4.

2. Preliminaries

For the convenience of the reader, we first briefly recall some
definitions of fractional calculus; formore details, see [1, 2, 5],
for example.

Definition 1. The Riemann-Liouville fractional integral of
order 𝛼 > 0 of a function 𝑢 : (0,∞) → 𝑅 is given by

𝐼
𝛼

0
+𝑢 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠 (3)

provided that the right side is pointwise defined on (0,∞),
where Γ(⋅) is the Gamma function.

Definition 2. The Caputo fractional derivative of order 𝛾 > 0

of a function 𝑢 : (0,∞) → 𝑅 can be written as

𝐶

0
𝐷
𝛾

𝑡
𝑢 (𝑡) =

1

Γ (𝑛 − 𝛾)
∫

𝑡

0

𝑢
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝛾+1−𝑛

𝑑𝑠,

𝑛 − 1 < 𝛾 < 𝑛.

(4)

Definition 3. The Mittag-Leffler function in two parameters
is defined as

𝐸
𝛼,𝛽 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 𝛽)
, (5)

where 𝛼 > 0, 𝛽 > 0, and 𝑧 ∈ C;C denotes the complex plane.
In particular, for 𝛽 = 1, one has

𝐸
𝛼,1 (𝑧) = 𝐸

𝛼 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 1)
. (6)

The Laplace transform of Mittag-Leffler function is

L {𝑡
𝛽−1

𝐸
𝛼,𝛽

(−𝜆𝑡
𝛼
)} =

𝑠
𝛼−𝛽

𝑠𝛼 + 𝜆
, (R (𝑠) > |𝜆|

1/𝛼
) , (7)

where 𝑡 and 𝑠 are, respectively, the variables in the time
domain and Laplace domain; L{⋅} stands for the Laplace
transform.

Throughout this paper, let𝐶(𝐽,𝑋) be the Banach space of
all continuous functions from 𝐽 into𝑋 with the norm ‖𝑥‖ :=

sup{‖𝑥(𝑡)‖ : 𝑡 ∈ 𝐽}. Let 𝐸 = 𝐶(𝐽, 𝑋) × 𝐶(𝐽, 𝑋) be the Banach
space endowed with the norm as follows:

󵄩󵄩󵄩󵄩(𝑥, 𝑦)
󵄩󵄩󵄩󵄩 = max {‖𝑥‖ , 󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩} , ∀ (𝑥, 𝑦) ∈ 𝐸. (8)

Now, we give the definition of the solution for problem
(2).

Definition 4. A (𝑢, V) ∈ 𝐸 is said to be a solution of a coupled
system of fractional BVP (2) if (𝑢, V) satisfies the system
𝐶

0
𝐷
𝛼

𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑦(𝑡)), 𝐶

0
𝐷
𝛽

𝑡
𝑦(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡)) on 𝐽

and the conditions 𝑎𝑥(0) + 𝑏𝑥(𝑇) = 𝑝, 𝑐𝑦(0) + 𝑑𝑦(𝑇) = 𝑞.

By Lemma 3.2 in [14], we have the following.

Lemma 5. (𝑥, 𝑦) ∈ 𝐸 is a solution of the fractional integral
system

𝑥 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 −
1

𝑎 + 𝑏

× [
𝑏

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 − 𝑝] ,

𝑦 (𝑡) =
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 −
1

𝑐 + 𝑑

× [
𝑑

Γ (𝛽)
∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 − 𝑞] .

(9)

Wang et al. in [15] gave a generalized Gronwall inequality
as follows.

Lemma 6. Let 𝑦 ∈ 𝐶(𝐽, 𝑋) satisfy the following inequality:

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑎 + 𝑏∫

𝑡

0

󵄩󵄩󵄩󵄩𝑦 (𝜃)
󵄩󵄩󵄩󵄩

𝜆
1

𝑑𝜃 + 𝑐∫

𝑇

0

󵄩󵄩󵄩󵄩𝑦 (𝜃)
󵄩󵄩󵄩󵄩

𝜆
2

𝑑𝜃

+ 𝑑∫

𝑡

0

󵄩󵄩󵄩󵄩𝑦𝜃
󵄩󵄩󵄩󵄩

𝜆
3

𝑑𝜃 + 𝑒∫

𝑇

0

󵄩󵄩󵄩󵄩𝑦𝜃
󵄩󵄩󵄩󵄩

𝜆
4

𝑑𝜃, 𝑡 ∈ 𝐽,

(10)

where 𝜆
1
, 𝜆
3

∈ [0, 1], 𝜆
2
, 𝜆
4

∈ (0, 1), 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ≥ 0 are
constants, and ‖𝑦

𝜃
‖
𝐵

= sup
0≤𝑠≤𝜃

‖𝑦(𝑠)‖. Then there exists a
constant𝑀∗ > 0 such that

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀

∗
. (11)

By using the above generalized Gronwall inequality, we
now give the following generalized singular type coupled
Gronwall inequality system.

Lemma 7. Let 𝑥, 𝑦 ∈ 𝐶(𝐽, 𝑋) satisfy the following inequality
system:

‖𝑥 (𝑡)‖ ≤ 𝑎
1
+ 𝑏
1 ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖𝑥 (𝑠)‖
𝜆
1 𝑑𝑠

+ 𝑐
1 ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜆
2

𝑑𝑠

+ 𝑑
1 ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

‖𝑥 (𝑠)‖
𝜆
1 𝑑𝑠

+ 𝑒
1 ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜆
2

𝑑𝑠,

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑎
2
+ 𝑏
2 ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

‖𝑥 (𝑠)‖
𝜇
1 𝑑𝑠

+ 𝑏
2 ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜇
2

𝑑𝑠
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+ 𝑑2 ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

‖𝑥 (𝑠)‖
𝜇
1 𝑑𝑠

+ 𝑒2 ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜇
2

𝑑𝑠,

(12)

where 𝛼, 𝛽 ∈ (0, 1), 𝜆
𝑖
, 𝜇
𝑖
∈ [0, 1/2), and 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑑
𝑖
, 𝑒
𝑖
≥ 0

(𝑖 = 1, 2) are constants. Then there exists a constant 𝑀∗ > 0

such that

‖𝑥 (𝑡)‖ ≤ 𝑀
∗
,

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀

∗
. (13)

Proof. Let

𝑢 (𝑡) = {
1, ‖𝑥 (𝑡)‖ ≤ 1,

𝑥 (𝑡) , ‖𝑥 (𝑡)‖ > 1,

V (𝑡) = {
1,

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 1,

𝑦 (𝑡) ,
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩 > 1.

(14)

By (12), we have

‖𝑢 (𝑡)‖ ≤ 𝑎
1 + 1 + 𝑏1 ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖𝑢 (𝑠)‖
𝜆
1 𝑑𝑠

+ 𝑐
1 ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖V (𝑠)‖𝜆2 𝑑𝑠

+ 𝑑
1
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

‖𝑢 (𝑠)‖
𝜆
1 𝑑𝑠

+ 𝑒
1 ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

‖V (𝑠)‖𝜆2 𝑑𝑠

≤ 𝐴
1
+ 𝐵
1 ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[‖𝑢 (𝑠)‖
𝜆
+ ‖V (𝑠)‖𝜆] 𝑑𝑠

+ 𝐶
1 ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

[‖𝑢 (𝑠)‖
𝜆
+ ‖V (𝑠)‖𝜆] 𝑑𝑠,

(15)

‖V (𝑡)‖ ≤ 𝑎
2
+ 1 + 𝑏

2 ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

‖𝑢 (𝑠)‖
𝜇
1 𝑑𝑠

+ 𝑐
2 ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

‖V (𝑠)‖𝜇2 𝑑𝑠

+ 𝑑
2 ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

‖𝑢 (𝑠)‖
𝜇
1 𝑑𝑠

+ 𝑒
2 ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

‖V (𝑠)‖𝜇2 𝑑𝑠

≤ 𝐴
2
+ 𝐵
2 ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

[‖𝑢 (𝑠)‖
𝜇
+ ‖V (𝑠)‖𝜇] 𝑑𝑠

+ 𝐶2 ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

[‖𝑢 (𝑠)‖
𝜇
+ ‖V (𝑠)‖𝜇] 𝑑𝑠,

(16)

where𝐴
𝑖
= 𝑎
𝑖
+1, 𝐵

𝑖
= max{𝑏

𝑖
, 𝑐
𝑖
}, 𝐶
𝑖
= max{𝑑

𝑖
, 𝑒
𝑖
} (𝑖 = 1, 2),

𝜆 = max{𝜆
1
, 𝜆
2
}, and 𝜇 = max{𝜇

1
, 𝜇
2
}. It is easy to know that

𝑎
𝜃
+ 𝑏
𝜃
≤ 2 (𝑎 + 𝑏)

𝜃
, 𝜃 ∈ (0, 1) , 𝑎, 𝑏 ≥ 0. (17)

Adding (15) to (16), we get by Cauchy inequality and (17) that
(𝜃 = max{𝜆, 𝜇})
‖𝑢 (𝑡)‖ + ‖V (𝑡)‖

≤ 𝐴
1
+ 𝐴
2
+ ∫

𝑡

0

[𝐵
1 (𝑡 − 𝑠)

𝛼−1
+ 𝐵
2 (𝑡 − 𝑠)

𝛽−1
]

× (‖𝑢 (𝑠)‖
𝜃
+ ‖V (𝑠)‖𝜃) 𝑑𝑠

+ ∫

𝑇

0

[𝐶
1 (𝑇 − 𝑠)

𝛼−1
+ 𝐶
2 (𝑇 − 𝑠)

𝛽−1
]

× (‖𝑢 (𝑠)‖
𝜃
+ ‖V (𝑠)‖𝜃) 𝑑𝑠

≤ 𝐴
1
+ 𝐴
2
+ (∫

𝑡

0

[𝐵
1 (𝑡 − 𝑠)

𝛼−1
+ 𝐵
2 (𝑡 − 𝑠)

𝛽−1
]
2

𝑑𝑠)

1/2

⋅ (∫

𝑡

0

(‖𝑢 (𝑠)‖
𝜃
+ ‖V (𝑠)‖𝜃)

2

𝑑𝑠)

1/2

+ (∫

𝑇

0

[𝐶
1 (𝑇 − 𝑠)

𝛼−1
+ 𝐶
2 (𝑇 − 𝑠)

𝛽−1
]
2

𝑑𝑠)

1/2

⋅ (∫

𝑇

0

(‖𝑢 (𝑠)‖
𝜃
+ ‖V (𝑠)‖𝜃)

2

𝑑𝑠)

1/2

≤ 𝐴
1
+ 𝐴
2
+ (∫

𝑡

0

[𝐵
2

1
(𝑡 − 𝑠)

2(𝛼−1)
+ 2𝐵
1
𝐵
2 (𝑡 − 𝑠)

𝛼+𝛽−2

+𝐵
2

2
(𝑡 − 𝑠)

2(𝛽−1)
] 𝑑𝑠)

1/2

⋅ 2 ∫

𝑡

0

(‖𝑢 (𝑠)‖ + ‖V (𝑠)‖)2𝜃 𝑑𝑠

+ (∫

𝑇

0

[𝐶
2

1
(𝑇 − 𝑠)

2(𝛼−1)
+ 2𝐶
1
𝐶
2 (𝑇 − 𝑠)

𝛼+𝛽−2

+𝐶
2

2
(𝑇 − 𝑠)

2(𝛽−1)
] 𝑑𝑠)

1/2

⋅ 2 ∫

𝑇

0

(‖𝑢 (𝑠)‖ + ‖V (𝑠)‖)2𝜃 𝑑𝑠

≤ 𝐴
1
+ 𝐴
2
+ 2(

𝐵
2

1

2𝛼 − 1
𝑇
2𝛼−1

+
2𝐵
1
𝐵
2

𝛼 + 𝛽 − 1
𝑇
𝛼+𝛽−1

+
𝐵
2

2

2𝛽 − 1
𝑇
2𝛽−1

)

1/2

× ∫

𝑡

0

(‖𝑢 (𝑠)‖ + ‖V (𝑠)‖)2𝜃 𝑑𝑠

+ 2(
𝐶
2

1

2𝛼 − 1
𝑇
2𝛼−1

+
2𝐶
1
𝐶
2

𝛼 + 𝛽 − 1
𝑇
𝛼+𝛽−1

+
𝐶
2

2

2𝛽 − 1
𝑇
2𝛽−1

)

1/2

× ∫

𝑇

0

(‖𝑢 (𝑠)‖ + ‖V (𝑠)‖)2𝜃 𝑑𝑠.

(18)
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From Lemma 6, we obtain that there exists𝑀∗ > 0 such that
‖𝑢(𝑡)‖ + ‖V(𝑡)‖ ≤ 𝑀

∗. Thus,

‖𝑥 (𝑡)‖ ≤ ‖𝑢 (𝑡)‖ + ‖V (𝑡)‖ ≤ 𝑀
∗
,

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ ‖𝑢 (𝑡)‖ + ‖V (𝑡)‖ ≤ 𝑀

∗
.

(19)

Theorem 8 (Schaefer’s fixed point theorem [16]). Let 𝐹 :

𝑋 → 𝑋 completely continuous operator. If the set

𝐸 (𝐹) = {𝑥 ∈ 𝑋 : 𝑥 = 𝜆𝐹𝑥 for some 𝜆 ∈ [0, 1]} (20)

is bounded, then 𝐹 has fixed points.

Theorem 9 (Nonlinear alternative of Leray-Schauder type
[17]). Let𝑋 be a Banach space,𝐷 a closed, convex subset of𝑋,
𝑈 an open subset of 𝐷, and 0 ∈ 𝐷. Assume thatA : 𝑈 → 𝐷

is a continuous and compact map. Then either

(i) A has fixed points or

(ii) there exists 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 = 𝜆A(𝑢).

3. Main Results

In order to obtain main result, we make the following
assumptions.

(H1) The functions 𝑓, 𝑔 : 𝐽 × 𝑋 × 𝑋 → 𝑋 are continuous.

(H2) There exist constants𝜆
1
, 𝜆
2
, 𝜇
1
, 𝜇
2
∈ [0, 1/2) such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝑀

1 (1 + ‖𝑥‖
𝜆
1 +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝜆
2

) ,

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝑀

2 (1 + ‖𝑥‖
𝜇
1 +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝜇
2

) ,

∀𝑡 ∈ 𝐽, 𝑥, 𝑦 ∈ 𝑋.

(21)

(H3) For each 𝑡 ∈ 𝐽, the sets

𝐾
1
= {(𝑡 − 𝑠)

𝛼−1
𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) :

𝑥, 𝑦 ∈ 𝐶 (𝐽, 𝑋) , 𝑠 ∈ [0, 𝑡]} ,

𝐾
2
= {(𝑡 − 𝑠)

𝛽−1
𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) :

𝑥, 𝑦 ∈ 𝐶 (𝐽, 𝑋) , 𝑠 ∈ [0, 𝑡]}

(22)

are relatively compact.

Define the operator 𝐹 : 𝐸 → 𝐸 as follows:

𝐹 (𝑥, 𝑦) (𝑡) := (𝐹1 (𝑥, 𝑦) (𝑡) , 𝐹2 (𝑥, 𝑦) (𝑡)) , (23)

where

𝐹
1
(𝑥, 𝑦) (𝑡)

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 −
1

𝑎 + 𝑏

× [
𝑏

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 − 𝑝] ,

𝐹
2
(𝑥, 𝑦) (𝑡)

=
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 −
1

𝑐 + 𝑑

× [
𝑑

Γ (𝛽)
∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 − 𝑞] .

(24)

It is easy to know that the existence of solution of the
coupled fractional BVP (2) is equivalent to the operator 𝐹
having a fixed point on 𝐸.

Theorem 10. Suppose that (H1)–(H3) hold. Then the coupled
fractional BVP (2) has at least one solution on 𝐽.

Proof. We will use Schaefer’s fixed point theorem to prove
that𝐹 has a fixed point.The proof is divided into several steps.

Firstly, 𝐹 is continuous. Let {(𝑥
𝑛
, 𝑦
𝑛
)} be a sequence such

that (𝑥
𝑛
, 𝑦
𝑛
) → (𝑥, 𝑦) in 𝐸. For each 𝑡 ∈ 𝐽, we have

󵄩󵄩󵄩󵄩𝐹1 (𝑥𝑛, 𝑦𝑛) (𝑡) − 𝐹1 (𝑥, 𝑦) (𝑡)
󵄩󵄩󵄩󵄩

≤
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

×
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥

𝑛 (𝑠) , 𝑦𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

+
|𝑏|

|𝑎 + 𝑏| Γ (𝛼)

× ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

×
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥

𝑛 (𝑠) , 𝑦𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

≤
1

Γ (𝛼)
[∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑑𝑠 +
|𝑏|

|𝑎 + 𝑏|
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑑𝑠]

×
󵄩󵄩󵄩󵄩𝑓 (⋅, 𝑥

𝑛
, 𝑦
𝑛
) − 𝑓 (⋅, 𝑥, 𝑦)

󵄩󵄩󵄩󵄩

≤
𝑇
𝛼

Γ (𝛼 + 1)
(1 +

|𝑏|

|𝑎 + 𝑏|
)

󵄩󵄩󵄩󵄩𝑓 (⋅, 𝑥
𝑛
, 𝑦
𝑛
) − 𝑓 (⋅, 𝑥, 𝑦)

󵄩󵄩󵄩󵄩 .

(25)

Similarly, we obtain
󵄩󵄩󵄩󵄩𝐹2 (𝑥𝑛, 𝑦𝑛) (𝑡) − 𝐹

2
(𝑥, 𝑦) (𝑡)

󵄩󵄩󵄩󵄩

≤
𝑇
𝛽

Γ (𝛽 + 1)
(1 +

|𝑑|

|𝑐 + 𝑑|
)

󵄩󵄩󵄩󵄩𝑔 (⋅, 𝑥𝑛, 𝑦𝑛) − 𝑔 (⋅, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩 .

(26)
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Since 𝑓, 𝑔 are continuous ((H1)), we have by (25) and (26)
that

󵄩󵄩󵄩󵄩𝐹1 (𝑥𝑛, 𝑦𝑛) − 𝐹
1
(𝑥, 𝑦)

󵄩󵄩󵄩󵄩 󳨀→ 0,

󵄩󵄩󵄩󵄩𝐹2 (𝑥𝑛, 𝑦𝑛) − 𝐹
2
(𝑥, 𝑦)

󵄩󵄩󵄩󵄩 󳨀→ 0

as 𝑛 󳨀→ ∞.

(27)

Thus, we get
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑛
, 𝑦
𝑛
) − 𝐹 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞. (28)

Secondly, we will prove that 𝐹 maps bounded sets into
bounded sets in 𝐸.

By (H2), for any𝑚 > 0, we have for each 𝑡 ∈ 𝐽 and (𝑥, 𝑦) ∈
𝐵
𝑚
= {(𝑥, 𝑦) ∈ 𝐸 : ‖(𝑥, 𝑦)‖ ≤ 𝑚} that

󵄩󵄩󵄩󵄩𝐹1 (𝑥, 𝑦) (𝑡)
󵄩󵄩󵄩󵄩

≤
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠 +
|𝑏|

|𝑎 + 𝑏| Γ (𝛼)

× ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠 +

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|

≤
𝑀
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(1 + ‖𝑥 (𝑠)‖
𝜆
1 +

󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩

𝜆
2

) 𝑑𝑠

+
|𝑏|𝑀1

|𝑎 + 𝑏| Γ (𝛼)

× ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

(1 + ‖𝑥 (𝑠)‖
𝜆
1 +

󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩

𝜆
2

) 𝑑𝑠

+

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|

=
𝑀1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑑𝑠 +
|𝑏|𝑀1

|𝑎 + 𝑏| Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑑𝑠

+

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|
+

𝑀
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖𝑥 (𝑠)‖
𝜆
1 𝑑𝑠

+
𝑀
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜆
2

𝑑𝑠

+
|𝑏|𝑀1

|𝑎 + 𝑏| Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

‖𝑥 (𝑠)‖
𝜆
1 𝑑𝑠

+
|𝑏|𝑀1

|𝑎 + 𝑏| Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜆
2

𝑑𝑠

≤
𝑀1𝑇
𝛼

Γ (𝛼 + 1)
+

|𝑏|𝑀1𝑇
𝛼

|𝑎 + 𝑏| Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|
+
𝑀1𝑇
𝛼
𝑚
𝜆
1

Γ (𝛼 + 1)

+
𝑀
1
𝑇
𝛼
𝑚
𝜆
2

Γ (𝛼 + 1)
+

|𝑏|𝑀1𝑇
𝛼
𝑚
𝜆
1

|𝑎 + 𝑏| Γ (𝛼 + 1)

+
|𝑏|𝑀1𝑇

𝛼
𝑚
𝜆
2

|𝑎 + 𝑏| Γ (𝛼 + 1)
:= 𝑁
1
,

(29)

which implies that ‖𝐹
1
(𝑥, 𝑦)‖ ≤ 𝑁

1
. Similarly, we can obtain

that ‖𝐹
2
(𝑥, 𝑦)‖ ≤ 𝑁

2
, where

𝑁
2
=

𝑀2𝑇
𝛽

Γ (𝛽 + 1)
+

|𝑑|𝑀2𝑇
𝛽

|𝑐 + 𝑑| Γ (𝛽 + 1)
+

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

|𝑐 + 𝑑|
+
𝑀2𝑇
𝛽
𝑚
𝜇
1

Γ (𝛽 + 1)

+
𝑀
2
𝑇
𝛽
𝑚
𝜇
2

Γ (𝛽 + 1)
+

|𝑑|𝑀2𝑇
𝛽
𝑚
𝜇
1

|𝑐 + 𝑑| Γ (𝛽 + 1)
+

|𝑑|𝑀2𝑇
𝛽
𝑚
𝜇
2

|𝑐 + 𝑑| Γ (𝛽 + 1)
.

(30)

Thus, we get
󵄩󵄩󵄩󵄩𝐹 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩 ≤ max {𝑁
1
, 𝑁
2} . (31)

Thirdly, 𝐹maps bounded sets into equicontinuous sets of
𝐸. Let 0 ≤ 𝑡

1
< 𝑡
2
≤ 𝑇, (𝑥, 𝑦) ∈ 𝐵

𝑚
. By (H2), we have

󵄩󵄩󵄩󵄩𝐹1 (𝑥, 𝑦) (𝑡2) − 𝐹
1
(𝑥, 𝑦) (𝑡

1
)
󵄩󵄩󵄩󵄩

≤
1

Γ (𝛼)
∫

𝑡
1

0

[(𝑡
1
− 𝑠)
𝛼−1

− (𝑡
2
− 𝑠)
𝛼−1

]

×
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤
𝑀
1

Γ (𝛼)
∫

𝑡
1

0

[(𝑡1 − 𝑠)
𝛼−1

− (𝑡2 − 𝑠)
𝛼−1

]

× (1 + ‖𝑥 (𝑠)‖
𝜆
1 +

󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩

𝜆
2

) 𝑑𝑠

+
𝑀
1

Γ (𝛼)
∫

𝑡
2

𝑡
1

(𝑡2 − 𝑠)
𝛼−1

(1 + ‖𝑥 (𝑠)‖
𝜆
1 +

󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩

𝜆
2

) 𝑑𝑠

≤
𝑀
1

Γ (𝛼)
(1 + 𝑚

𝜆
1 + 𝑚
𝜆
2) ∫

𝑡
1

0

[(𝑡
1
− 𝑠)
𝛼−1

− (𝑡
2
− 𝑠)
𝛼−1

] 𝑑𝑠

+
𝑀
1

Γ (𝛼)
(1 + 𝑚

𝜆
1 + 𝑚
𝜆
2)∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼−1

𝑑𝑠

≤
𝑀
1

Γ (𝛼 + 1)
(1 + 𝑚

𝜆
1 + 𝑚
𝜆
2)

× [
󵄨󵄨󵄨󵄨𝑡
𝛼

1
− 𝑡
𝛼

2

󵄨󵄨󵄨󵄨 + 2 (𝑡
2 − 𝑡2)

𝛼
] 󳨀→ 0, as 𝑡2 󳨀→ 𝑡1.

(32)

Similarly, we obtain
󵄩󵄩󵄩󵄩𝐹2 (𝑥, 𝑦) (𝑡2) − 𝐹

2
(𝑥, 𝑦) (𝑡

1
)
󵄩󵄩󵄩󵄩

≤
𝑀
2

Γ (𝛽 + 1)
(1 + 𝑚

𝜇
1 + 𝑚
𝜇
2)

× [
󵄨󵄨󵄨󵄨󵄨󵄨
𝑡
𝛽

1
− 𝑡
𝛽

2

󵄨󵄨󵄨󵄨󵄨󵄨
+ 2 (𝑡
2
− 𝑡
2
)
𝛽
] 󳨀→ 0, as 𝑡

2
󳨀→ 𝑡
1
.

(33)

Hence, 𝐹 is equicontinuous.
Let {(𝑥

𝑛
, 𝑦
𝑛
)}, 𝑛 = 1, 2, . . ., be a sequence on 𝐵

𝑚
, and

𝐹
1 (𝑥𝑛, 𝑦𝑛) (𝑡) = 𝐺1 (𝑥𝑛, 𝑦𝑛) (𝑡) + 𝐺2 (𝑥𝑛, 𝑦𝑛) (𝑇) , 𝑡 ∈ 𝐽,

𝐹
2
(𝑥
𝑛
, 𝑦
𝑛
) (𝑡) = 𝐻

1
(𝑥
𝑛
, 𝑦
𝑛
) (𝑡) + 𝐻

2
(𝑥
𝑛
, 𝑦
𝑛
) (𝑇) , 𝑡 ∈ 𝐽,

(34)
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where

𝐺
1 (𝑥𝑛, 𝑦𝑛) (𝑡)

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥𝑛 (𝑠) , 𝑦𝑛 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽,

(35)

𝐺2 (𝑥𝑛, 𝑦𝑛) (𝑇)

= −
1

𝑎 + 𝑏

× [
𝑏

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥
𝑛 (𝑠) , 𝑦𝑛 (𝑠)) 𝑑𝑠 − 𝑝] ,

𝐻
1
(𝑥
𝑛
, 𝑦
𝑛
) (𝑡)

=
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑔 (𝑠, 𝑥𝑛 (𝑠) , 𝑦𝑛 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽,

𝐻
2
(𝑥
𝑛
, 𝑦
𝑛
) (𝑇)

= −
1

𝑐 + 𝑑

× [
𝑑

Γ (𝛽)
∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

𝑔 (𝑠, 𝑥
𝑛 (𝑠) , 𝑦𝑛 (𝑠)) 𝑑𝑠 − 𝑞] .

(36)

According to the condition (H3) andMazur Lemma [18],
we know that conv𝐾

1
is compact. For any 𝑡

∗
∈ 𝐽,

𝐺
1
(𝑥
𝑛
, 𝑦
𝑛
) (𝑡
∗
) =

1

Γ (𝛼)
∫

𝑡
∗

0

(𝑡
∗
− 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥
𝑛 (𝑠) , 𝑦𝑛 (𝑠)) 𝑑𝑠

=
𝑡
∗

Γ (𝛼)
𝜉
𝑛
,

(37)

where

𝜉𝑛 = lim
𝑘→∞

𝑘

∑

𝑖=1

1

𝑘
(𝑡∗ −

𝑖𝑡
∗

𝑘
)

𝛼−1

𝑓(
𝑖𝑡
∗

𝑘
, 𝑥𝑛 (

𝑖𝑡
∗

𝑘
) , 𝑦𝑛 (

𝑖𝑡
∗

𝑘
)) .

(38)

Since conv𝐾
1
is convex and compact, we have that 𝜉

𝑛
∈

conv𝐾1. Thus, for any 𝑡∗ ∈ 𝐽, the set {𝐺1(𝑥𝑛, 𝑦𝑛)(𝑡∗)} is
relatively compact. From Ascoli-Arzela theorem [17], every
{𝐺1(𝑥𝑛, 𝑦𝑛)(𝑡)} contains a uniformly convergent subsequence
{𝐺1(𝑥𝑛

𝑘

, 𝑦𝑛
𝑘

)(𝑡)}, 𝑘 = 1, 2, . . ., on 𝐽. Hence, the set {𝐺1(𝑥, 𝑦) :
(𝑥, 𝑦) ∈ 𝐵𝑚} is relatively compact. Similarly, one can
obtain that {𝐺2(𝑥𝑛, 𝑦𝑛)(𝑇)} contains a uniformly convergent
subsequence {𝐺2(𝑥𝑛

𝑘

, 𝑦𝑛
𝑘

)(𝑇)}, 𝑘 = 1, 2, . . .. Thus, the set
{𝐹1(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐵𝑚} is relatively compact. Similar to the
above process, we can get that the set {𝐹

2
(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐵

𝑚
}

is relatively compact. Thus, the set {𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐵
𝑚
} is

relatively compact.
From the above three steps, we can conclude that 𝐹 is

continuous and completely compact.

Finally, we will show that the set

𝐸 (𝐹)

= {(𝑥, 𝑦) ∈ 𝐸 : (𝑥, 𝑦) = 𝜆𝐹 (𝑥, 𝑦) , for some 𝜆 ∈ (0, 1)}

(39)

is bounded.
Let (𝑥, 𝑦) ∈ 𝐸(𝐹); then (𝑥, 𝑦) = 𝜆𝐹(𝑥, 𝑦) for some 𝜆 ∈

(0, 1). Hence, for any 𝑡 ∈ 𝐽, we obtain

𝑥 (𝑡)

= 𝜆(
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 −
1

𝑎 + 𝑏

× [
𝑏

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 − 𝑝]) ,

𝑦 (𝑡)

= 𝜆(
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 −
1

𝑐 + 𝑑

× [
𝑑

Γ (𝛽)
∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 − 𝑞]) .

(40)

For each 𝑡 ∈ 𝐽, we obtain

‖𝑥 (𝑡)‖ ≤
𝑀
1𝑇
𝛼

Γ (𝛼 + 1)
+

|𝑏|𝑀1𝑇
𝛼

|𝑎 + 𝑏| Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|

+
𝑀
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖𝑥 (𝑠)‖
𝜆
1 𝑑𝑠

+
𝑀
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜆
2

𝑑𝑠

+
𝑀
1 |𝑏|

|𝑎 + 𝑏| Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

‖𝑥 (𝑠)‖
𝜆
1 𝑑𝑠

+
𝑀
1 |𝑏|

|𝑎 + 𝑏| Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜆
2

𝑑𝑠,

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤

𝑀
2
𝑇
𝛽

Γ (𝛽 + 1)
+

|𝑑|𝑀2𝑇
𝛽

|𝑐 + 𝑑| Γ (𝛽 + 1)
+

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

|𝑐 + 𝑑|

+
𝑀
2

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

‖𝑥 (𝑠)‖
𝜇
1 𝑑𝑠

+
𝑀
2

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜇
2

𝑑𝑠

+
𝑀
2 |𝑑|

|𝑐 + 𝑑| Γ (𝛽)
∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

‖𝑥 (𝑠)‖
𝜇
1 𝑑𝑠

+
𝑀
2 |𝑑|

|𝑐 + 𝑑| Γ (𝛽)
∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1 󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩

𝜇
2

𝑑𝑠.

(41)

By Lemma 7, there exists a𝑀∗ > 0 such that

‖𝑥 (𝑡)‖ ≤ 𝑀
∗
,

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀

∗
, 𝑡 ∈ 𝐽. (42)
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Hence for any 𝑡 ∈ 𝐽, we obtain

󵄩󵄩󵄩󵄩(𝑥, 𝑦)
󵄩󵄩󵄩󵄩 = max {‖𝑥‖ , 󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩} ≤ 𝑀
∗
, (43)

which implies that the set 𝐸(𝐹) is bounded. FromTheorem 8
(Schaefer’s fixed point theorem), we have that 𝐹 has a fixed
point which is a solution of the fractional BVP (2).

Next, we give the second result of this paper, which applies
Theorem 9. We firstly introduce the following assumption.

(H4) There exist functions ℎ
𝑖
, 𝑘
𝑖
∈ 𝐿
∞
(𝐽, 𝑋) and nonde-

creasing functions 𝜑
𝑖
, 𝜓
𝑖
: 𝑋 → 𝑋 (𝑖 = 1, 2) such

that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ ℎ
1 (𝑡) 𝜑1 (‖𝑥‖) + ℎ

2 (𝑡) 𝜑2 (
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) ,

for 𝑡 ∈ 𝐽, (𝑥, 𝑦) ∈ 𝐸,

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝑘
1 (𝑡) 𝜓1 (‖𝑥‖) + 𝑘

2 (𝑡) 𝜓2 (
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) ,

for 𝑡 ∈ 𝐽, (𝑥, 𝑦) ∈ 𝐸.

(44)

For convenience, let

𝐴
1 =

𝑇
𝛼

Γ (𝛼)
max{1, |𝑏|

|𝑎 + 𝑏|
} (

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝐿∞

+
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩𝐿∞
) , (45)

𝐴
2 =

𝑇
𝛽

Γ (𝛽)
max{1, |𝑑|

|𝑐 + 𝑑|
} (

󵄩󵄩󵄩󵄩𝑘1
󵄩󵄩󵄩󵄩𝐿∞

+
󵄩󵄩󵄩󵄩𝑘2

󵄩󵄩󵄩󵄩𝐿∞
) , (46)

Φ (𝑡) = max {max {𝜑
1 (𝑡) , 𝜑2 (𝑡)} , max {𝜓

1 (𝑡) , 𝜓2 (𝑡)}} .

(47)

Theorem 11. Let (H1), (H3), and (H4) hold. Assume that there
exists 𝑟 > 0, with

𝑟

𝐴Φ (𝑟) + 𝐵
> 1, (48)

where

𝐴 = max {𝐴1, 𝐴2} , 𝐵 = max{
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|
,

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

|𝑐 + 𝑑|
} . (49)

Then problem (2) has at least one solution.

Proof. Firstly, we prove that 𝐹 maps sets into bounded sets
in 𝐸. Let 𝐷 be a bounded subset of 𝐸. For each 𝑡 ∈ 𝐽, and
(𝑥, 𝑦) ∈ 𝐷 with ‖(𝑥, 𝑦)‖ ≤ 𝑟 (𝑟 > 0), we have

󵄩󵄩󵄩󵄩𝐹1 (𝑥, 𝑦) (𝑡)
󵄩󵄩󵄩󵄩

≤
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠 +
|𝑏|

|𝑎 + 𝑏| Γ (𝛼)

× ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠 +

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|

≤
1

Γ (𝛼)
[
󵄩󵄩󵄩󵄩ℎ1

󵄩󵄩󵄩󵄩𝐿∞
𝜑
1 (‖𝑥‖) +

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝐿∞

𝜑
2
(
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)]

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑑𝑠 +
|𝑏|

|𝑎 + 𝑏| Γ (𝛼)

× [
󵄩󵄩󵄩󵄩ℎ1

󵄩󵄩󵄩󵄩𝐿∞
𝜑
1 (‖𝑥‖) +

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝐿∞

𝜑
2
(
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)]

× ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑑𝑠 +

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|

≤
𝑇
𝛼

Γ (𝛼)
max{1, |𝑏|

|𝑎 + 𝑏|
} (

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝐿∞

+
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩𝐿∞
)

×max {𝜑
1
(
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩) , 𝜑2 (
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩)} +

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|
,

(50)

which implies that

󵄩󵄩󵄩󵄩𝐹1 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐴

1
max {𝜑

1
(
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩) , 𝜑2 (
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩)} +

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

|𝑎 + 𝑏|
,

(51)

where 𝐴
1
is as in (45). Similarly, we have

󵄩󵄩󵄩󵄩𝐹2 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐴

2
max {𝜓

1
(
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩) , 𝜓2 (
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩)}

+

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

|𝑐 + 𝑑|
,

(52)

where 𝐴
2 is as in (46). Combining (47), (51), and (52), we

obtain
󵄩󵄩󵄩󵄩𝐹 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝐴Φ (
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩) + 𝐵 ≤ 𝐴Φ (𝑟) + 𝐵, (53)

where 𝐴 and 𝐵 are as in (49). This implies that 𝐹(𝐷) is
bounded in 𝐸.

Secondly, we claim that 𝐹 is continuous and completely
continuous. The proof of this claim is the same as the
corresponding part in the proof of Theorem 10 by the
conditions (H1), (H3), and (H4).

Finally, let (𝑥, 𝑦) = ]𝐹(𝑥, 𝑦) for some ] ∈ (0, 1). Then for
any 𝑡 ∈ 𝐽, we have by (53) that

󵄩󵄩󵄩󵄩(𝑥, 𝑦)
󵄩󵄩󵄩󵄩

𝐴Φ (
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩) + 𝐵
≤ 1. (54)

By (48), we know that there exists 𝑟 > 0 such that ‖(𝑥, 𝑦)‖ ̸= 𝑟.
Let

𝑈 = {(𝑥, 𝑦) ∈ 𝐸 :
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩 < 𝑟} . (55)

From the choice of 𝑈, there is no (𝑥, 𝑦) ∈ 𝜕𝑈 such that
(𝑥, 𝑦) = ]𝐹(𝑥, 𝑦) for some ] ∈ (0, 1). Therefore, Theorem 9
guarantees that 𝐹 has a fixed point (𝑥, 𝑦) ∈ 𝑈 which is a
solution of (2). This completes the proof.

4. An Example

In this section, we give an example to illustrate the main
results.
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Example 1. Consider the following fractional boundary value
problem:

𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) =

1 + √𝑡 |𝑥 (𝑡)|
𝜆
1 + 𝑡
2 󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨

𝜆
2

(1 + 𝑒𝑡) (1 + |𝑥 (𝑡)|) (1 +
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨)
,

0 < 𝛼 < 1, 𝑡 ∈ 𝐽 := [0, 1] ,

𝐶

0
𝐷
𝛽

𝑡
𝑦 (𝑡) =

𝑡 + sin 𝑡 |𝑥 (𝑡)|𝜇1 + cos 𝑡 󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

𝜇
2

𝑒𝑡 (2 + |𝑥 (𝑡)|) (1 +
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨)
,

0 < 𝛽 < 1, 𝑡 ∈ 𝐽 := [0, 1] ,

𝑥 (0) + 2𝑥 (1) = 0,

𝑦 (0) − 𝑦 (1) = 0.

(56)

Set

𝑓 (𝑡, 𝑥, 𝑦) =
1 + √𝑡 |𝑥|

𝜆
1 + 𝑡
2 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝜆
2

(1 + 𝑒𝑡) (1 + |𝑥|) (1 +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
,

(𝑡, 𝑥, 𝑦) ∈ 𝐽 × [1, 2] × [1, 2] ,

𝑔 (𝑡, 𝑥, 𝑦) =
𝑡 + sin 𝑡 |𝑥|𝜇1 + cos 𝑡 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝜇
2

𝑒𝑡 (2 + |𝑥|) (1 +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

,

(𝑡, 𝑥, 𝑦) ∈ 𝐽 × [1, 2] × [1, 2] .

(57)

For each 𝑡 ∈ 𝐽 and (𝑥, 𝑦) ∈ [1, 2] × [1, 2], we have

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤

1 + √𝑡 |𝑥|
𝜆
1 + 𝑡
2 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝜆
2

(1 + 𝑒𝑡) (1 + |𝑥|) (1 +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

≤
1

8
(1 + |𝑥|

𝜆
1 +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝜆
2

) ,

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤

1 + |sin 𝑡| |𝑥|𝜇1 + |cos 𝑡| 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝜇
2

𝑒𝑡 (2 + |𝑥|) (1 +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

≤
1

6
(1 + |𝑥|

𝜇
1 +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝜇
2

) .

(58)

On the other hand, we easily see that

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

1 + √𝑠 |𝑥 (𝑠)|
𝜆
1 + 𝑠
2 󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

𝜆
2

(1 + 𝑒𝑠) (1 + |𝑥 (𝑠)|) (1 +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)
𝑑𝑠

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(
1

8
+
1

4
√𝑠 +

1

4
𝑠
2
)𝑑𝑠

=
1

8𝛼
𝑡
𝛼
+
Γ (𝛼) Γ (3/2)

4Γ (𝛼 + 3/2)
𝑡
𝛼+1/2

+
Γ (𝛼) Γ (3)

4Γ (𝛼 + 3)
𝑡
𝛼+2

≤
1

8𝛼
+
Γ (𝛼) Γ (3/2)

4Γ (𝛼 + 3/2)
+

Γ (𝛼)

2Γ (𝛼 + 3)
,

∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑠 + |sin 𝑠| |𝑥 (𝑠)|𝜇1 + |cos 𝑠| 󵄨󵄨󵄨󵄨𝑦 (𝑠)
󵄨󵄨󵄨󵄨

𝜇
2

𝑒𝑠 (2 + |𝑥 (𝑠)|) (1 +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

(
𝑠

6
+
1

2
+
1

3
) 𝑑𝑠

=
Γ (𝛽) Γ (2)

6Γ (𝛽 + 2)
𝑡
𝛽+1

+
5

6𝛽
𝑡
𝛽

≤
Γ (𝛽)

6Γ (𝛽 + 2)
+

5

6𝛽
.

(59)

Thus the sets

𝐾
1
= {(𝑡 − 𝑠)

𝛼−1
1 + √𝑠 |𝑥 (𝑠)|

𝜆
1 + 𝑠
2 󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

𝜆
2

(1 + 𝑒𝑠) (1 + |𝑥 (𝑠)|) (1 +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)
:

𝑥, 𝑦 ∈ 𝐶 (𝐽, [1, 2]) , 𝑠 ∈ [0, 𝑡] } ,

𝐾
2
= {(𝑡 − 𝑠)

𝛽−1
𝑠 + |sin 𝑠| |𝑥 (𝑠)|𝜇1 + |cos 𝑠| 󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

𝜇
2

𝑒𝑠 (2 + |𝑥 (𝑠)|) (1 +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)
:

𝑥, 𝑦 ∈ 𝐶 (𝐽, [1, 2]) , 𝑠 ∈ [0, 𝑡] }

(60)

are bounded and closed which implies that 𝐾
1
and 𝐾

2

are compact. Hence, all the assumptions in Theorem 10
are satisfied. By Theorem 10, the fractional boundary value
problem (56) has at least one solution.
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