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The purpose of this paper is to introduce new classes of generalized seminormed difference sequence spaces defined by aMusielak-
Orlicz function. We also study some topological properties and prove some inclusion relations between resulting sequence spaces.

1. Introduction and Preliminaries

Let ℓ0 denote the space of all real sequences 𝑥 = {𝑥
𝑘
}. Let

C denote the space whose elements are the sets of distinct
positive integers. Given any element𝜎 ofC, we denote by 𝑐(𝜎)
the sequence {𝑐

𝑛
(𝜎)} such that 𝑐

𝑛
(𝜎) = 1 if 𝑛 ∈ 𝜎, and 𝑐

𝑛
(𝜎) =

0 otherwise. Further

C
𝑠
= {𝜎 ∈ C :

∞

∑

𝑛=1

𝑐
𝑛
(𝜎) ≤ 𝑠} , (1)

the set of those 𝜎whose support has cardinality at most 𝑠, and

Φ = {𝜙 = {𝜙
𝑘
} ∈ ℓ
0
: 𝜙
1
> 0, Δ𝜙

𝑘
≥ 0,

Δ(
𝜙
𝑘

𝑘
) ≤ 0 (𝑘 = 1, 2, . . .)} ,

(2)

where Δ𝜙
𝑘
= 𝜙
𝑘
− 𝜙
𝑘−1

.
For 𝜙 ∈ Φ, Sargent [1] defined the following sequence

space:

𝑚(𝜙) = {𝑥 = {𝑥
𝑘
} ∈ ℓ
0
: sup
𝑠≥1

sup
𝜎∈C
𝑠

(
1

𝜙
𝑠

∑

𝑘∈𝜎

𝑥𝑘
) < ∞} ,

(3)

which was further studied in [2–4].

The space𝑚(𝜙) was extended to𝑚(𝜙, 𝑝) by Tripathy and
Sen [5] as follows:

𝑚(𝜙, 𝑝) = {𝑥 = {𝑥
𝑘
} ∈ ℓ
0
: sup
𝑠≥1

sup
𝜎∈C
𝑠

(
1

𝜙
𝑠

∑

𝑘∈𝜎

𝑥𝑘


𝑝
) < ∞} .

(4)

The notion of the difference sequence space was intro-
duced by Kızmaz [6] which was generalized by Mursaleen
[7]. It was further generalized by Et and Çolak [8] as follows:
𝑍(Δ
𝜇
) = {𝑥 = (𝑥

𝑘
) ∈ 𝜔 : (Δ

𝜇
𝑥
𝑘
) ∈ 𝑧} for 𝑧 = ℓ

∞
, 𝑐, and 𝑐

0
,

where 𝜇 is a nonnegative integer and

Δ
𝜇
𝑥
𝑘
= Δ
𝜇−1
𝑥
𝑘
− Δ
𝜇−1
𝑥
𝑘+1
, Δ

0
𝑥
𝑘
= 𝑥
𝑘
∀𝑘 ∈ N (5)

or equivalent to the following binomial representation:

Δ
𝜇
𝑥
𝑘
=

𝜇

∑

V=0
(−1)

V
(
𝜇

V)𝑥𝑘+V. (6)

These sequence spaces were generalized by Et and Basarir [9]
for 𝑧 = ℓ

∞
(𝑝), 𝑐(𝑝), and 𝑐

0
(𝑝).

Dutta [10] introduced the following difference sequence
spaces using a new difference operator:

𝑍(Δ
(𝜂)
)={𝑥=(𝑥

𝑘
)∈𝜔 : Δ

(𝜂)
𝑥∈𝑧} for 𝑧 = ℓ

∞
, 𝑐, and 𝑐

0
,

(7)
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where Δ
(𝜂)
𝑥 = (Δ

(𝜂)
𝑥
𝑘
) = (𝑥

𝑘
− 𝑥
𝑘−𝜂
) for all 𝑘, 𝜂 ∈ N.

In [11], Dutta introduced the sequence spaces 𝑐(‖⋅, ⋅‖,
Δ
𝜇

(𝜂)
, 𝑝), 𝑐

0
(‖⋅, ⋅‖, Δ

𝜇

(𝜂)
, 𝑝), ℓ
∞
(‖⋅, ⋅‖, Δ

𝜇

(𝜂)
, 𝑝), 𝑚(‖⋅, ⋅‖, Δ𝜇

(𝜂)
, 𝑝),

and 𝑚
0
(‖⋅, ⋅‖, Δ

𝜇

(𝜂)
, 𝑝), where 𝜂, 𝜇 ∈ N and Δ𝜇

(𝜂)
𝑥
𝑘
= (Δ𝜇
(𝜂)
𝑥
𝑘
)

= (Δ𝜇−1
(𝜂)
𝑥
𝑘
−Δ
𝜇−1

(𝜂)
𝑥
𝑘−𝜂
) andΔ0

(𝜂)
𝑥
𝑘
= 𝑥
𝑘
for all 𝑘, 𝜂 ∈ N, which

is equivalent to the following binomial representation:

Δ
𝜇

(𝜂)
𝑥
𝑘
=

𝜇

∑

V=0
(−1)

V
(
𝜇

V)𝑥𝑘−𝜂V. (8)

The difference sequence spaces have been studied by
several authors [12–19] and references therein. Başar and
Altay [20] introduced the generalized difference matrix 𝐵 =
(𝑏
𝑚𝑘
)
𝑘,𝑚∈N by

𝑏
𝑚𝑘
=

{{

{{

{

𝑟, 𝑘 = 𝑚

𝑠, 𝑘 = 𝑚 − 1

0, (𝑘 > 𝑚) or (0 ≤ 𝑘 < 𝑚 − 1) .
(9)

Başarir andKayikçi [21] defined thematrix𝐵𝜇(𝑏𝜇
𝑚𝑘
)which

reduces to the difference matrix Δ𝜇
(1)

if 𝑟 = 1, 𝑠 = −1.
The generalized 𝐵𝜇-difference operator is equivalent to the
following binomial representation:

𝐵
𝜇
𝑥 = 𝐵

𝜇
(𝑥
𝑘
) =

𝜇

∑

V=0
(
𝜇

V) 𝑟
𝜇−V
𝑠
V
𝑥
𝑘−V. (10)

Let ∧ = (∧
𝑘
) be a sequence of nonzero scalars. Then,

for a sequence space 𝐸, the multiplier sequence space 𝐸
∧
,

associated with the multiplier sequence ∧, is defined as

𝐸
∧
= {𝑥 = (𝑥

𝑘
) ∈ 𝜔 : (∧

𝑘
𝑥
𝑘
) ∈ 𝐸} . (11)

Let 𝜔(𝑋) denote the space of all sequences with ele-
ments in (𝑋, 𝑞), where (𝑋, 𝑞) denotes a seminormed space,
seminormed by 𝑞. The zero sequence is denoted by 𝜃 =

(0, 0, 0, . . .).
An Orlicz function 𝑀 is a function, 𝑀 : [0,∞) →

[0,∞), which is continuous nondecreasing and convex with
𝑀(0) = 0,𝑀(𝑥) > 0 for 𝑥 > 0 and𝑀(𝑥) → ∞ as 𝑥 → ∞.

Lindenstrauss and Tzafriri [22] used the idea of Orlicz
function to define the following sequence space:

ℓ
𝑀
= {𝑥 ∈ 𝜔 :

∞

∑

𝑘=1

𝑀(

𝑥𝑘


𝜌
) < ∞} , (12)

which is called an Orlicz sequence space. The space ℓ
𝑀

is a
Banach space with the norm

‖𝑥‖ = inf {𝜌 > 0 :
∞

∑

𝑘=1

𝑀(

𝑥𝑘


𝜌
) ≤ 1} . (13)

It is shown in [22] that every Orlicz sequence space ℓ
𝑀

contains a subspace isomorphic to ℓ
𝑝
(𝑝 ≥ 1). The Δ

2
-

condition is equivalent to 𝑀(𝐿𝑥) ≤ 𝐾𝐿𝑀(𝑥) for all values
of 𝑥 ≥ 0 and for 𝐿 > 1.

A sequence M = (𝑀
𝑘
) of Orlicz functions is called a

Musielak-Orlicz function. A sequenceN = (𝑁
𝑘
) defined by

𝑁
𝑘
(V) = sup {|V| 𝑢 − 𝑀𝑘 (𝑢) : 𝑢 ≥ 0} , 𝑘 = 1, 2, . . . , (14)

is called the complimentary function of a Musielak-Orlicz
function (see [23, 24]). For a given Musiclak-Orlicz function
M, the Musielak-Orlicz sequence space 𝑡M and its subspace
ℎM are defined as follows:

𝑡M = {𝑥 ∈ 𝜔 : 𝐼
𝑀
(𝑐𝑥) < ∞ for some 𝑐 > 0} ,

ℎM = {𝑥 ∈ 𝜔 : 𝐼
𝑀
(𝑐𝑥) < ∞ ∀ 𝑐 > 0} ,

(15)

where 𝐼M is a convex modular defined by

𝐼M (𝑥) =

∞

∑

𝑘=1

𝑀
𝑘
(𝑥
𝑘
) , 𝑥 = (𝑥

𝑘
) ∈ 𝑡
𝑀
. (16)

We consider 𝑡M equipped with the Luxemburg norm,

‖𝑥‖ = inf {𝑘 > 0 : 𝐼
𝑀
(
𝑥

𝑘
) ≤ 1} , (17)

or equipped with the Orlicz norm,

‖𝑥‖
0
= inf {1

𝑘
(1 + 𝐼

𝑀
(𝑘𝑥)) : 𝑘 > 0} . (18)

A sequence space 𝐸 is said to be solid if (𝛼
𝑘
𝑥
𝑘
) ∈ 𝐸, whenever

(𝑥
𝑘
) ∈ 𝐸 for all sequences (𝛼

𝑘
) of scalars such that |𝛼

𝑘
| ≤ 1

for all 𝑘 ∈ N.
A sequence space 𝐸 is said to be monotone if 𝐸 contains

the canonical preimages of all its step spaces.

Remark 1. It is well known that a sequence space is solid
implies that it is monotone (see Kamthan and Gupta [25]).

The sequence space 𝑚(𝜙) was introduced by Sargent [1].
He studied someof its properties and obtained its relationship
with the space ℓ

𝑝
. Later on, it was investigated from sequence

space point of view and related with summability theory by
Bilgin [26], Esi [27], Tripathy and Mahanta [28], and many
others.

The main goal of the present paper is to introduce
new classes of generalized seminormed difference sequence
spaces defined by Musielak-Orlicz function.

For a given infinitematrix𝐴 = (𝑎
𝑖𝑘
)
𝑖,𝑘≥1

.The𝐴-transform
of a sequence 𝑥 = (𝑥

𝑘
)
𝑘≥1

is the sequence 𝐴𝑥 = (𝐴
𝑖
) (𝑖 ≥ 1),

where

𝐴
𝑖 (𝑥) =

∞

∑

𝑘=1

𝑎
𝑖𝑘
𝑥
𝑘
, (19)

provided that the series on the right converges for each 𝑖 ≥ 1.
Let (𝑋, 𝑞) be a seminormed space,M = (𝑀

𝑖
) a Musielak-

Orlicz function, and 𝑝 = (𝑝
𝑖
) a bounded sequence of
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positive real numbers. Then we define the following classes
of sequences:

ℓ
∞
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝)

= {𝑥 = (𝑥
𝑘
) ∈ 𝑤 (𝑋) : sup

𝑖≥1

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

< ∞,

for some 𝜌 > 0} ,

ℓ
1
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝)

= {𝑥 = (𝑥
𝑘
) ∈ 𝑤 (𝑋) :

∞

∑

𝑖=1

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

< ∞,

for some 𝜌 > 0} ,

𝑚 (M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝)

= {𝑥 = (𝑥
𝑘
) ∈ 𝑤 (𝑋) :

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

< ∞,

for some 𝜌 > 0} .

(20)

The following inequality will be used throughout the
paper. If 0 < ℎ = inf 𝑝

𝑘
≤ 𝑝
𝑘
≤ sup𝑝

𝑘
= 𝐻 and 𝐷 =

max (1, 2𝐻−1) then
𝑎𝑘 + 𝑏𝑘



𝑝
𝑘

≤ 𝐷{
𝑎𝑘


𝑝𝑘
+
𝑏𝑘


𝑝
𝑘

} , (21)

for all 𝑘 and 𝑎
𝑘
, 𝑏
𝑘
∈ C. Also |𝑎|𝑝𝑘 ≤ max (1, |𝑎|𝐻) for all 𝑎 ∈ C.

We study here some topological properties and establish
inclusion relations between these sequence spaces.

2. Main Results

Theorem 2. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and 𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.

Then the spaces ℓ
∞
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝), ℓ

1
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝), and

𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) are linear spaces over the field of complex

number C.

Proof. Let 𝑥 = (𝑥
𝑘
), 𝑦 = (𝑦

𝑘
) ∈ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝), and

𝛼, 𝛽 ∈ C. Then there exist positive real numbers 𝜌
1
, 𝜌
2
> 0

such that

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
1

))

𝑝
𝑖

< ∞,

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑦
𝑘
)

𝜌
2

))

𝑝
𝑖

< ∞.

(22)

Define 𝜌
3
= max (2|𝛼|𝜌

1
, 2|𝛽|𝜌

2
). Since (𝑀

𝑖
) is a nondecreas-

ing, convex function and so by using inequality (21), we have

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝛼𝑥 + 𝛽𝑦))

𝜌
3

))

𝑝
𝑖

≤ ∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝛼𝑥)

𝜌
3

)+ 𝑞(
𝐴
𝑖
(𝐵
𝜇

Λ
𝛽𝑦)

𝜌
3

))

𝑝
𝑖

≤ 𝐷∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝛼𝑥)

𝜌
1

))

𝑝
𝑖

+ 𝐷∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝛽𝑦)

𝜌
2

))

𝑝
𝑖

.

(23)

Thus

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝛼𝑥 + 𝛽𝑦))

𝜌
3

))

𝑝
𝑖

≤ sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

𝐷∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝛼𝑥)

𝜌
1

))

𝑝
𝑖

+ sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

𝐷∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝛽𝑦)

𝜌
2

))

𝑝
𝑖

< ∞.

(24)

Thus (𝛼𝑥 + 𝛽𝑦) ∈ 𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝). Hence 𝑚(M, 𝐴, 𝐵

𝜇

Λ
,

𝜙, 𝑞, 𝑝) is a linear space. Similarly, we can prove that the spaces
ℓ
∞
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝) and ℓ

1
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝) are linear spaces.

This completes the proof of the theorem.

Theorem 3. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and 𝑝 = (𝑝
𝑖
) a bounded sequence of positive real num-

bers. Then ℓ
1
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝) ⊂ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝) ⊂

ℓ
∞
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝).

Proof. Let 𝑥 = (𝑥
𝑘
) ∈ ℓ
1
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝). Then, for some 𝜌 >

0, we have
∞

∑

𝑖=1

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

< ∞. (25)

Since (𝜙
𝑛
) is a monotonic increasing, we have

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

≤
1

𝜙
1

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

≤
1

𝜙
1

∞

∑

𝑖=1

𝑀(𝑞(
𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

< ∞.

(26)

Hence,

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

< ∞. (27)



4 Abstract and Applied Analysis

Thus, 𝑥 = (𝑥
𝑘
) ∈ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝). Therefore, ℓ

1
(M,

𝐴, 𝐵
𝜇

Λ
, 𝑞, 𝑝) ⊂ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝).

Next, let 𝑥 = (𝑥
𝑘
) ∈ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝). Then, for some

𝜌 > 0, we have

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

< ∞. (28)

Hence,

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑘
)

𝜌
))

𝑝
𝑖

< ∞

(on taking cardinality of 𝜎 to be 1) .

(29)

Thus, 𝑥 = (𝑥
𝑘
) ∈ ℓ
∞
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝). Therefore,𝑚(M, 𝐴, 𝐵

𝜇

Λ
,

𝜙, 𝑞, 𝑝) ⊂ ℓ
∞
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝). This completes the proof of the

theorem.

Theorem 4. LetM = (𝑀
𝑖
) be aMusielak-Orlicz function and

𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.Then the

space𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜑, 𝑞, 𝑝) is a seminormed space, seminormed

by

𝑔 (𝑥)

= inf {𝜌 > 0 : sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

≤ 1} .

(30)

Proof. Clearly, 𝑔(𝑥) ≥ 0 for all 𝑥 = (𝑥
𝑘
) ∈

𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) and 𝑔(𝜃) = 0. Let 𝑥 = (𝑥

𝑘
), 𝑦 = (𝑦

𝑘
) ∈

𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝). Then there exist 𝜌

1
> 0 and 𝜌

2
> 0 such

that

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
1

))

𝑝
𝑖

≤ 1,

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑦)

𝜌
2

))

𝑝
𝑖

≤ 1.

(31)

Let 𝜌 = 𝜌
1
+ 𝜌
2
. Thus, we have

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥 + 𝑦))

𝜌
))

𝑝
𝑖

= sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥 + 𝑦))

𝜌
1
+ 𝜌
2

))

𝑝
𝑖

≤ sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

{
𝜌
1

𝜌
1
+ 𝜌
2

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥))

𝜌
1

))

+
𝜌
2

𝜌
1
+ 𝜌
2

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑦))

𝜌
2

))}

𝑝
𝑖

≤ (
𝜌
1

𝜌
1
+ 𝜌
2

) sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
1

))

𝑝
𝑖

+ (
𝜌
2

𝜌
1
+ 𝜌
2

) sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑦)

𝜌
2

))

𝑝
𝑖

≤ 1.

(32)

Since the 𝜌’s are nonnegative, so we have

𝑔 (𝑥 + 𝑦)

= inf {𝜌 > 0 : sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥 + 𝑦))

𝜌
))

𝑝
𝑖

≤1}

≤ inf {𝜌
1
> 0 : sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
1

))

𝑝
𝑖

≤ 1}

+ inf {𝜌
2
> 0 : sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑦)

𝜌
2

))

𝑝
𝑖

≤1}.

(33)

Thus, 𝑔(𝑥 + 𝑦) ≤ 𝑔(𝑥) + 𝑔(𝑦). Next, for 𝜆 ∈ C, without loss
of generality, 𝜆 ̸= 0, then

𝑔 (]𝑥)

= inf {𝜌 > 0 : sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(]𝑥))
𝜌

))

𝑝
𝑖

≤ 1}

= inf {𝜌 > 0 : sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝑟
))

𝑝
𝑖

≤ 1} ,

where 𝑟 =
𝜌

|]|
.

(34)

This completes the proof of the theorem.

Theorem 5. LetM = (𝑀
𝑖
) be a Musielak-Orlicz function and

𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers. Then

(i) the space ℓ
∞
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝) is a seminormed space,

seminormed by

𝑓 (𝑥) = inf {𝜌 > 0 : sup
𝑖≥1

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

≤ 1} ,

(35)

(ii) the space ℓ
1
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝) is a seminormed space,

seminormed by

ℎ (𝑥) = inf {𝜌 > 0 :
∞

∑

𝑖=1

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

≤ 1} . (36)

Proof. It is easy to prove in view ofTheorem 4, so we omit the
details.

Theorem 6. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and 𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.

Then 𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) ⊂ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜓, 𝑞, 𝑝) if and only

if sup
𝑠≥1
(𝜑
𝑠
/𝜓
𝑠
) < ∞.

Proof. Suppose sup
𝑠≥1
(𝜑
𝑠
/𝜓
𝑠
) < ∞ and 𝑥 = (𝑥

𝑘
) ∈

𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝). Then, we have for some 𝜌 > 0

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

< ∞. (37)
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Thus,

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜓
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

≤ (sup
𝑠≥1

𝜙
𝑠

𝜓
𝑠

)( sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

) < ∞.

(38)

Therefore, 𝑥 = (𝑥
𝑘
) ∈ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜓, 𝑞, 𝑝). Hence, 𝑚(M,

𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) ⊂ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜓, 𝑞, 𝑝).

Conversely, let 𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) ⊂ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜓,

𝑞, 𝑝). Suppose that sup
𝑠≥1
(𝜙
𝑠
/𝜓
𝑠
) = ∞. Then there exists a

sequence of naturals {𝑠
𝑖
} such that lim

𝑖→∞
(𝜙
𝑠
𝑖

/𝜓
𝑠
𝑖

) = ∞. Let
𝑥 = (𝑥

𝑘
) ∈ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝). Then there exists 𝜌 > 0 such

that

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

< ∞. (39)

Now, we have

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜓
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

≥ (sup
𝑠≥1

𝜙
𝑠

𝜓
𝑠

)( sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

) = ∞.

(40)

Therefore, 𝑥 = (𝑥
𝑘
) ∉ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜓, 𝑞, 𝑝), which is a

contradiction. Hence sup
𝑠≥1
(𝜙
𝑠
/𝜓
𝑠
) < ∞.

We get the following corollary as a consequence of
Theorem 6.

Corollary 7. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and 𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.

Then 𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) = 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜓, 𝑞, 𝑝) if and only

if 𝑠𝑢𝑝
𝑠≥1
(𝜙
𝑠
/𝜓
𝑠
) < ∞ and 𝑠𝑢𝑝

𝑠≥1
(𝜓
𝑠
/𝜙
𝑠
) < ∞ for all 𝑠 =

1, 2, 3, . . ..

Theorem 8. Let M = (𝑀
𝑖
)

,M = (𝑀

𝑖
)
 be Musielak-

Orlicz functions which satisfy Δ
2
-conditions and 𝑝 = (𝑝

𝑖
) a

bounded sequence of positive real numbers. Then

(i) 𝑚(M𝜇
Λ
, 𝜙, 𝑞, 𝑝) ⊆ 𝑚(M ∘M

𝜇

Λ
, 𝐴, 𝜙, 𝑞, 𝑝);

(ii) 𝑚(M𝜇
Λ
, 𝜙, 𝑞, 𝑝) ∩ 𝑚(M

𝜇

Λ
, 𝜙, 𝑞, 𝑝) ⊆ 𝑚(M + M

𝜇

Λ
,

𝜙, 𝑞, 𝑝).

Proof. (i) Let 𝑥 = (𝑥
𝑘
) ∈ 𝑚(M

𝜇

Λ
, 𝜙, 𝑞, 𝑝). Then there exists

𝜌 > 0 such that

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀


𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

< ∞. (41)

Let 0 < 𝜀 < 1 and 0 < 𝛿 < 1 such that 𝑀
𝑖
(𝑡) < 𝜀 for

0 ≤ 𝑡 < 𝛿. Let 𝑦
𝑘
= 𝑀


𝑖
(𝑞(𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)/𝜌))

𝑝
𝑖 and, for any 𝜎 ∈ C

𝑠
,

let ∑
𝑖∈𝜎
𝑀
𝑖
(𝑦
𝑘
) = ∑

1
𝑀
𝑖
(𝑦
𝑘
) + ∑

2
𝑀
𝑖
(𝑦
𝑘
), where the first

summation is over 𝑦
𝑘
≤ 𝛿 and the second summation is over

𝑦
𝑘
> 𝛿. Since (𝑀

𝑖
) satisfies Δ

2
-condition, we have

∑

1

𝑀
𝑖
(𝑦
𝑘
) ≤ 𝑀

𝑖
(1)∑

1

𝑦
𝑘
≤ 𝑀
𝑖
(2)∑

1

𝑦
𝑘
. (42)

For 𝑦
𝑘
> 𝛿

𝑦
𝑘
<
𝑦
𝑘

𝛿
≤ 1 +

𝑦
𝑘

𝛿
. (43)

Since (𝑀
𝑖
) is nondecreasing and convex, so

𝑀(𝑦
𝑘
) < 𝑀(1 +

𝑦
𝑘

𝛿
) <

1

2
𝑀 (2) +

1

2
𝑀
𝑖
(
2𝑦
𝑘

𝛿
) . (44)

Since (𝑀
𝑖
) also satisfies Δ

2
-condition, so

𝑀
𝑖
(𝑦
𝑘
) <

1

2
𝐾
𝑦
𝑘

𝛿
𝑀
𝑖 (2) +

1

2
𝐾
𝑦
𝑘

𝛿
𝑀
𝑖 (2) = 𝐾

𝑦
𝑘

𝛿
𝑀
𝑖 (2) .

(45)

Hence,

∑

2

𝑀
𝑖
(𝑦
𝑘
) ≤ max (1, 𝐾𝛿−1𝑀

𝑖
(2))∑

2

𝑦
𝑘
. (46)

By (42) and (46), we have 𝑥 = (𝑥
𝑘
) ∈ 𝑚(M ∘M

𝜇

Λ
, 𝜙, 𝑞, 𝑝).

Hence

𝑚(M
𝜇

Λ
, 𝜙, 𝑞, 𝑝) ⊆ 𝑚 (M ∘M



Λ
, 𝜙, 𝑞, 𝑝) . (47)

(ii) Let 𝑥 = (𝑥
𝑘
) ∈ 𝑚(M

𝜇

Λ
, 𝜙, 𝑞, 𝑝) ∩ 𝑚(M

𝜇

Λ
, 𝜙, 𝑞, 𝑝).

Then there exists 𝜌 > 0 such that

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀


𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

< ∞,

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀


𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

< ∞.

(48)

The rest of the proof follows from the equality

∑

𝑖∈𝜎

(M


𝑖
+M


𝑖
) (𝑞(

𝐴
𝑖
(𝑥)

𝜌
))

𝑝
𝑖

= ∑

𝑖∈𝜎

𝑀


𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

+∑

𝑖∈𝜎

𝑀


𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

.

(49)

This completes the proof of the theorem.

Corollary 9. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and 𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.

Then, we have𝑚(𝐴, 𝐵𝜇
Λ
, 𝜑, 𝑞, 𝑝) ⊆ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜑, 𝑞, 𝑝).

Proof. It follows fromTheorem 8(i) on consideringM(𝑥) =
𝑥, for all 𝑥 ∈ [0,∞).

The following result is a consequence of Theorem 8 and
Corollary 9.
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Corollary 10. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and 𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.

Then 𝑚(𝐴, 𝐵𝜇
Λ
, 𝜑, 𝑞, 𝑝) ⊆ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜓, 𝑞, 𝑝) if and only if

𝑠𝑢𝑝
𝑠≥1
(𝜑
𝑠
/𝜓
𝑠
) < ∞.

Theorem 11. LetM = (𝑀
𝑖
) be aMusielak-Orlicz function and

𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.Then the

space𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) is solid.

Proof. Let 𝑥 = (𝑥
𝑘
) ∈ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝). Then

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

< ∞. (50)

Let (𝛼
𝑘
) be a sequence of scalars with |𝛼

𝑘
| ≤ 1 for all 𝑘 ∈ N.

Then the result follows from (50) and the following inequality

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝛼𝑥)

𝜌
))

𝑝
𝑖

≤ ∑

𝑖∈𝜎

|𝛼|𝑀𝑖(𝑞(
𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

≤ ∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
𝑥)

𝜌
))

𝑝
𝑖

.

(51)

This completes the proof of the theorem.

In view of the above result, we get the following corollar-
ies.

Corollary 12. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and 𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.

Then the space𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) is monotone.

We formulate the following result which can be
established following the technique of Theorem 11 and
Corollary 12.

Corollary 13. Let M = (𝑀
𝑖
) be a Musielak-Orlicz function

and 𝑝 = (𝑝
𝑖
) a bounded sequence of positive real numbers.

Then the spaces ℓ
∞
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝) and ℓ

1
(M, 𝐴, 𝐵

𝜇

Λ
, 𝑞, 𝑝) are

solid and monotone.

Theorem 14. If (𝑋, 𝑞) is complete, then𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) is

also complete.

Proof. Let (𝑥𝑗) be aCauchy sequence in𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝),

where 𝑥𝑗 = (𝑥𝑗
𝑘
) = (𝑥

𝑗

1
, 𝑥
𝑗

2
, 𝑥
𝑗

3
, . . .) ∈ 𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝) for

each 𝑗 ∈ N. Let 𝑟 > 0 and 𝑥
0
> 0 be fixed. Then for each

𝜀/𝑟𝑥
0
> 0, there exists a positive integer 𝑛

0
such that

𝑔 (𝑥
𝑗
− 𝑥
𝑙
) <

𝜀

𝑟𝑥
0

, ∀𝑗, 𝑙 ≥ 𝑛
0
. (52)

This implies

inf
{

{

{

𝜌 : sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
))

𝜌
))

𝑝
𝑖

≤ 1
}

}

}

<
𝜀

𝑟𝑥
0

, ∀𝑗, 𝑙 ≥ 𝑛
0
.

(53)

We have for all 𝑗, 𝑙 ≥ 𝑛
0
and by (53)

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
))

ℎ (𝑥𝑗 − 𝑥𝑙)
))

𝑝
𝑖

≤ 1

⇒
1

𝜙
1

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
))

ℎ (𝑥𝑗 − 𝑥𝑙)
))

𝑝
𝑖

≤ 1

⇒ 𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
))

ℎ (𝑥𝑗 − 𝑥𝑙)
))

𝑝
𝑖

≤ 𝜙
1
, ∀𝑗, 𝑙 ≥ 𝑛

0
.

(54)

We can find 𝑟 > 0 such that (𝑟𝑥
0
/2)𝜂(𝑥

0
/2) > 𝜙

1
, where 𝜂 is

the kernel associated with Musielak-Orlicz functionM, such
that

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
))

ℎ (𝑥𝑗 − 𝑥𝑙)
))

𝑝
𝑖

≤
𝑟𝑥
0

2
𝜂 (
𝑥
0

2
)

⇒ 𝑞(𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
)))
𝑝
𝑖

<
𝑟𝑥
0

2
⋅
𝜀

𝑟𝑥
0

=
𝜀

2
.

(55)

Hence 𝐴
𝑖
(𝐵
𝜇

Λ
𝑥
𝑗
)
𝑗≥1

is a Cauchy sequence in (𝑋, 𝑞), which is
complete. Therefore, for each 𝑘 ∈ N, there exist 𝑥

𝑘
∈ 𝑋 and

𝑥 = (𝑥
𝑘
) such that 𝑞(𝐴

𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥)))

𝑝
𝑖 → 0 as 𝑗 → ∞.

Using the continuity ofM, so for some 𝜌 > 0, we have

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

lim
𝑖→∞

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
))

𝜌
))

𝑝
𝑖

≤ 1

⇒ sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
))

𝜌
))

𝑝
𝑖

≤ 1.

(56)

Now, taking the infimum of such 𝜌’s by (53), we get

inf
{

{

{

𝜌 > 0 :

sup
𝑠≥1,𝜎∈C

𝑠

1

𝜙
𝑠

∑

𝑖∈𝜎

𝑀
𝑖
(𝑞(

𝐴
𝑖
(𝐵
𝜇

Λ
(𝑥
𝑗
− 𝑥
𝑙
))

𝜌
))

𝑝
𝑖

≤ 1
}

}

}

<𝜀,

∀𝑗 ≥ 𝑛
0
.

(57)

Since 𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝) is a linear space and (𝑥 − 𝑥𝑗) are

in 𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝), so it follows that 𝑥 = 𝑥𝑗 + (𝑥 − 𝑥𝑗) ∈

𝑚(M, 𝐴, 𝐵
𝜇

Λ
, 𝜙, 𝑞, 𝑝). Hence𝑚(M, 𝐴, 𝐵

𝜇

Λ
, 𝜙, 𝑞, 𝑝) is complete.

This completes the proof of the theorem.
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