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By constructing a suitable Lyapunov functional, the global attractivity of positive periodic solutions for a delayed predator-prey
system with diffusion and impulses is studied in this paper. Finally, an example and numerical analysis are given to show the

effectiveness of the main results.

1. Introduction

Recently, the existence of positive periodic solution of
predator-prey system has attracted more and more attention.
By using Mawhin continuation theorem and some analysis
techniques, sufficient conditions of the existence of positive
periodic solution are derived; see [1-3] and references cited
therein.

For example, the authors in [3] proposed the following
delayed periodic predator-prey system with impulses and
prey diffusion in #n-patches environments:

%; (1) = x; (8) (r; (8) = ay; () x; (£) = 4y (£) X, (D))

+ Y Dyt (x; () -x0),

it

xn+1 (t) = Xn+1 (t) <—7’n+1 () + Zaru.l’j (1) X (t - (Tj)
j=1 €]

_an+1,n+1 (t) Xn+1 (t - 0n+1) ) >

Ax; (1) = x; (1) = x; (ty,) = —cax; (t) »

t?étkr

with initial conditions
x;(s) = ¢ (s)

$:;(0)>0, ¢ €C([-0,0],R,), (2)

R, ={x e R, x >0},

s € [-0,0],
i=1,2,...,n+1,

where x;(t) i = 1,2,...,n) denotes the densities of prey
species in patch i and x,,,, (t) denotes the density of predator.
r;(t) (i = 1,2,...,n) is the intrinsic growth rates of the prey.
a;(t) (i =1,2,...,n+1)is the density-dependent coefficients
of the prey species. a;,,,(t) is the capturing rates of the
predator; a,,, ;(t) is the conversion rates of nutrients into the
reproduction of predator; i = 1,2,...,n. r,,,(t) is the death
rate of the predator. Dj(t) (j = L,2,...,n, j+i) is dispersal
rate of prey species, 0,,,; > 0 denotes the delay due to negative
feedback of the predator species, and o; (i = 1,2,...,n) is
the time delays due to gestation; that is, mature predators
can only contribute to the production of predator biomass;
0 = Max, e, {07}

By using Mawhin continuation theorem, the authors
derived the sufficient conditions of the existence of pos-
itive periodic solution. However, in addition to periodic
behavior, a hallmark of observed population densities is
their permanent and stable behaviors [4-8]. Then, it is
necessary to discuss the permanent and stable behaviors of
(1) with initial conditions (2). Therefore, in this paper, we are
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devoted to the study of global attractivity of positive periodic

solution for systems (1) and (2).
Throughout this paper, for j = 1,2, ..

following conditions are assumed.

(C1) a;(6), a1 (1), By ;@) G = 1,2,...,m), 13(t) (0 =

1,2 ,...,n + 1), and Dj(t) (j#i) are continuous,
positive periodic functions with period w > 0.

Ln k=1,2,.. ., the

(C,) ¢ is positive constant satisfying 0 < ¢; < 1 and there
exists an integer g > 0 such that

Citkq) = Gk + @s tpg =t tw fori=12,...,n+1
3)
For periodic function f, we denote
— 1 @
= — t)dt,
i e
L
= m
f7= min |f @), (4)
= t
M= max [f @)

The organization of this paper is as follows. In Section 2,
some definitions and lemmas are introduced. In Section 3,
by constructing suitable Lyapunov functional, the sufficient
conditions ensuring the global attractivity of periodic solu-
tion for system (1) are established. In Section 4, an example
and simulations are given to show the validity of the main
results. Finally in Section 5, we conclude this paper with a
brief discussion.

2. Preliminaries

In this section, some definitions and lemmas are introduced
as follows.

Definition 1. System (1) is uniformly persistent if there exists
a compact region D ¢ IntR”*" such that every solution x(t) =

(2, (1), xz(t),...,xn+1(t))T of (1) eventually enters and re-
mains in region D.

Definition 2. A bounded positive solution x(t) (x1(2),
x5 (8), ... %, (1)) of (1) is globally asymptotically sta-
ble if for any other positive bounded solution x*(t) =
(7 (1), x5 (8), ... 1(t)) of (1), the equality lim, _, , ., Z"H
o, (1) — x ()| = 0 holds

The following lemma ensuring the existence of positive
periodic solution for system (1) is from [3].

Lemma 3 (see [3]). System (1) has at least one strictly positive
w-periodic solution provided that

(Cs)
Z;’Zl aﬁl)j (Fj - Z;’:l)#iﬁj +(1/w) Y} In (1 - cjk))
aM
ji
(5)
> Fn+1 Z In (1 Cut1 k)

Journal of Applied Mathematics

(Cy)
n 1 q
T Z D + —Zln (1-cy)
j=Lj#i w
M —
m A Z?:l Ayirj~ T + (Hw) 24, In (1= Guak)
> a bl
i,n+1 L
an+1,n+1

(6)

wherei = 1,2,...,n, A = max,,(((r; - Z;’:I)j#Dj)M +

Z;'l:1,j¢i Djw)/(a,]:))

Lemma 4 (see [4]). Ifa > 0,b > 0, X (1) = ()x(t)(b - ax(t))
fort > 0 and x(0) > 0, then

—1 _1
x(t)Z(S)g[l+(w—l)e_bt] . @)

The following lemma is from [9]. It will be employed in
establishing the asymptotic stability of (1).

Lemma 5. Let T be a real number and let f be a nonnegative
function defined on [1,+00) such that f is integrable and
uniformly continuous on [, +00); then, lim, _, . f(t) =0

Under (C,)-(C,), we consider the nonimpulsive delay
differential equation

2 (t) =z (t) (r; (1) = Ay (1) 2, (£) = Ay (8) 2,4 (1))

+ Z Dj(t)<zj(t) ]‘[ (l—cjk)

j=lj#i 0<ty<t

(1= = 20 )

i=12,...,n,

Zy () = 2,1 () <_rn+1 () + ZA;/H.])]' (t) Z; (t - O'j)
=1

_An+1,n+1 (t) Zn+1 (t - Gn+1) >

with initial conditions

z; (s) = ¢i (s)»
s€[-0,0], ¢;(0)>0, ¢ €C([-0,0],R,), (9)
R,={xeR x>0}, i=12,...,n+1,
where A;i(t) = a;(O]Jocr (1 = o) Ajpr () = a5, (1)

H0<tk<t(1 Car1k)> Ay = an+1,jH0<tk<t—aj(1_Cjk)) Apiinn

(t) = n+1,n+1(t)H0<tk<t—a,,H(1 - Cn+1,k)-

Considering (1) and (8), we have the following lemma
which plays key role in the proof of the main results. The proof
is similar to that of Theorem 1 in [10], and it is omitted.
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Lemma 6. Assume that (C,)-(C,) hold. Then, one has the
following.

(1) If z(t) = (2,(1), z,(t),... ,an(t))T is a solution of (8)
on [-0,00), then x(t) = (x,(t), xz(t),...,xnﬂ(t))T,
Xi(t) = [Toer eI —)zi(t) G = 1,2,...,n+ 1) isa

solution of (IS on [—o, 00).

%, ()T is a solution of (1) on
[-0,00), then z(t) = (z,(t), z,(t),..., 2, (),

2() = [Toer (1 =) 7 x,(0) (i = 1,2,...,n+ 1) is
a solution of (1) on [-0, c0).

(iD) If (x, (), x,(2).....

Lemma 7. Let z(t) = (z,(t), z,(t), - .., zn+1(t))T be a solution

of (8); then, there exists T > 0,

0<z;(t)<M; fort>T,i=12,...,n+1, (10)
where M; = M, = = M, = M =
max1<,<n{((r i o BN/AL) ¢ My = (5

n+1 ]M)/An+1 n+1)e i= lAnHJMUnH D (t) - D (t)H0<tk<t(1
)1 =)™
Proof. Define V(t) = max,_;{z;(t)} = z/(t),1 € [L,n].

Calculating the upper right derivative of V along the positive
solution of (8), then

D'V (t) = 2,(t)
=z,(t)(r,(1) = A, ()2, () = Ay (£) 240y (1))

+ Y D;()

jeLj

X<ZJU)IT (1-cie) (1-cu)”

0<t <t

-z (t)>

Y. D'z

j=Lj#1

<z (t) <r,M + ) 5;” —Alz, (t)>.
J

j=1,j#1

<z, () (rM - Alz, (1) +

(11)

By Lemma 4, for arbitrary small positive constant &, there
exists T, > 0 such that V(t) < ((rM + Z;.’:Lj#l 5;”)/(AI;I)) oy
fort > T,1 = 1,2...,n Let T} = max,_,{T.}, M =
max, e, (M + X0, i DIDI(AY) +els then, 0 < z(£) < M
holds fori =1,2,...,n

In addition, from the second equation of (8), fort > T} +
0, 0 = max,;.,{o;}; we have

Zn+1 (t) < Zp+1 (t)

X <ZAn+1,j )z (t - 0;)

j=1

_An+1,n+1 (t) Zn+1 (t - Gn+1) >

< Zyi (t) <2An+l ]M An+1 n+1%n+1 ( +1)>
j=1
(12)

Similar argument in the proof of Lemma 2.1 of [11]
shows that there exists T, > T, + & such that z,,(t) <

((Z;l:l n+1JM)/(AL+1 n+1))€ o1 A MO M, fort >
T,. Take T' = T,; then, Lemma 7 follows immediately. |
3. Main Results

In this section, by constructing suitable functional, we study
the permanence and globally asymptotic stability of the
periodic solution of (1).

Theorem 8. Suppose that (C,)-(C,) hold. Further,
(Cs)

n
M L
_rn+1 + Z An+1,jm > 0. (13)
=

Then, system (1) is uniformly persistent; that is, there exist T* >
T and m; > 0 such that

m<z;(t) <M, fort>T", i=12,...,n+1, (14)

where M; is defined by (10), m; = m, = -+ = m, = m =
minlsiSn{(r AM M n+l Z] 1]¢1DM)/(2AM)} m,.; <

1n+1
M
(—Tn+1 +m Zj:l n+l ])/(Am—l n+1

Proof. Define V(t) = min,_;_,{z;(t)}. Suppose that V(t) =
z;(t), i € [1,n]. Calculating the lower right derivative of
V along the positive solution of (8), then there exist T; > 0,
for any t > T;; we have

D,V (t) =z (t)
=z, () (r; () = Ay ()2 (1) = Ay () 2y (1))

+ZD (t)(z O [T (1) (=)™

0<ty<t

-z; (1) )

>z(t)< - A¥z (1) - AY M., ip?).
j=lLj#i
(15)



By Lemma 4, there exists T; > T; > 0 such that

M n M
z (t) > T A1n+1 +1 Zj:l,thiDj e
i = M -

Aii

for any t > T .
(16)

Equation (16) implies that there exists a positive integer N,
fort > T/; we have

M n M
Azn+1Mn+1 - Zj:L]';e,' Dj
M
Aii

z; (1) 2 -Ne. (17)

Noting that ¢ is an arbitrary small positive number, we can
choose € small enough such that

M n M
Ns S Aln+1M +1 Z]:l,]#ﬁlD] ) (18)
2A%
Thus, for any ¢ > Ti', (17) and (18) lead to
F =AM =X DY
T in J=Lj#i ]
(1) =2 : (19)
10 A
Let T' = max, ,{T}}, m = min,_,{(r] - AmHMnJrl -
Y4 DID2AYY then,
V(t) = mm {z )} =m foranyt>T'. (20)

On the other hand, from the (1 + 1)th equation of (8) and
(20), fort > T' + G, we have

2.:n+1 (t) = Zp+1 (t)

n
M L
X <_rn+l + ZAn+1 ]m An+1 nr12n+1 (t - 0n+1)> .
(21)

L

ne,jM > 0, there

According to the assumption —r1 | + Z A

L M

—r

M
n+l An+1,n+1m > 0. Let

exists m satisfying Z 1 A jm

A= Z] 1 n+1] - rV%l Alr\t/-[i-l,nﬂm' If z,,,,(t)
t > T'+G+0,,,, then by (21) it follows that 2,,,, () > Az,,,(t),
which leads to a contradiction. Thus, there must exist T"' >
T' + 6 + 0,,, such that z,, (T") > m. If z,,,(t) > m for
anyt > T", then we take m,,, = 5 the conclusions hold.
If not, suppose z,,,(t) < m, where t > T"; then, from the
above discussion, there exist t* and t** such that z,,,,(t*) =
n+1(t**) = mand z,,(t) <mfort* <t <t**, where T" <
t* <t < t"". Now suppose that z,,,, (t) attains its maximum
att = 1; then, z,,,(f) = 0. Equation (21) implies that

< m for all

n
M L M e
TP T ZArH—l,jm - An+1,n+lzn+1 (t - Gn+1) <0. (22)

=1
Equation (22) leads to
_ +2
Z,.1 (t—a n+1 j=1 n+1] > m.

n+1) = M
n+l,n+1

(23)
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From (21) again, we have

Za (1) M N ,L M —
= = _rn+1 + ZAnJrl,jm - An+1,n+1m’ (24)
Znt1 (t) j=1

Integrating the above inequality from 7 — g,,,, to 7, we have

Zn1 (‘t-) 2 Zyi1 (?_

(= rn+1+Z/l n+1/m An+1n+1m)‘7n

o 1) (= rn+1+Z/l n+1/m An+1n+1m)‘7n+1
n+

(25)
> me > m.
This contradicts with z,,,,(f) < m for t* < t < t**. Therefore,
Z,.1(t) > m holds for any t > T. Let m,,; = m; then, m; <
z;(t) holds fori = 1,2,...,n + 1. In addition, by Lemma 7,
z;(t) < M; (i=1,2,...,n+ 1). Hence, m; < z;(t) < M; holds
fori=1,2,...,n+ 1.This completes the proof.
O

Theorem 9. In addition to (C,)-(Cs), further assume that

(Ce) minQ;(t) >0, i=1,2,...,n+ 1, where
(n-1)DM
Q=A;t)-———— A, (t+0)
t+o;+0,

n+l

Mn+1An+l,i (t + O-i) J An+l,n+1 (S) dS,

t+o;

i%j’
Q=A;(t)= Ay (t+0) =M A, (t+0,)

t+0,+0,,,,
x J An+l,n+1 (5) dS, 1=1 1= 1,2,...,7’1,
t

+0;

t+gn+l
Qnﬂ = An+1,n+1 (t) - J; An+1,n+1 (S) ds

n
( Tn+1 (t + ZAnJrl] (t M + An+1 n+1 (t)M >
j=1
- An+1,n+1 (t + 0n+1) Mn+1
t+20,,1
<
t+0,41

Then, system (1) has one w-periodic solution which is globally
asymptotically stable.

An+1,n+1 (5) ds - ZAi:"+1 (t) .

i=1

(26)

Proof. By Lemmas 3 and 6, we know that (8) has one
w-periodic solution. Hence, we only need to show the
global asymptotic stability of the positive periodic solu-
tion of (8). Let x™(t) = (x(¢), x;‘(t),...,xzﬂ(t))T be a
positive w-periodic solution of (1) and let x(t) (x1(8),
xz(t),...,xnﬂ(t))T be any positive solution of (1); then,
25t = (25 (1), 25 (t), ...,z (), 2] () = [Toce, (1 - )"
x; (t) (i=1,2,...,n+1)is the positive w-periodic solution of
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(8) and z(t) = (zl(t),zz(t),...,zn+1(t))T,zi(t) = H0<tk<t(1 -
Cik)_lxi(f) (i=1,2,...,n+ 1) is the positive solution of (8).

From Theorem 8, there exists T > 0, forallt > T, m; <
z;(t) < M, m; <z (t) < M;, i =1,2,...,n+ 1. Consider the
following Lyapunov functional:

Vi(#) =) |Inz (t) - Inz] (¢)]. (27)
i=1

Calculate and estimate the upper right derivative of V;(t)
along the solution of (8); then,

D'V, (1) =) sgn (2 (1) -z (1) (i 8 B E_Eg)
i=1 ; :

sgn (2, (t) — z; (1))

-

Il
—

X (=A; (1) (2] () =z (1))

_Ai,n+1 (t) (Z:;+1 (t) ~ Zn11 (t)))

+ Z sgn (z; (t) — z; ()
i=1

(28)
noo_ zZi () oz (t)
5. jNF
" j:gj:#i i (Zi* )z (@) )
< Z ( - A; (O)]z () -z ()]
i1
+ A (D) Z;+1 ) = z411 (t)|
+ Z _j (t)> >
j=Lj#i
where
_ z; () z;(b)
_ Dj ®) (z{" (t) B ? ) ) ’ Zi* B>z ()
Pi=1_ 2w 0\
D;(¢) ( 20z (t))’ z; (t) <z (t).
R (29)

By using similar analysis in [12], we have the following.
(i) If 2 (t) > z;(¢), then
= M

(), D
;(t (5 0 -2,0) < —

O

SHOEEAG!

(30)

D;(t) <

N

~

(ii) If 2 (t) < z;(t), then
D; (t) ) D!
Z{(t) (z; (1) -z} (1) <

O

SHOEEAG!
(D

D;(t) <

i
m

Therefore, fort > T,

n

D'Vi(t) <) < - A; () |z (1) -z @)

i=1

+ A ) |zn O -2, )] (32)

z} (t) - z; (t)|>.

n

+ Y 5;”%

J=Lj#i

Define V,(t) = |Inz,,,(¢) - Inz,,,(t)|. Calculating the upper
right derivative of V,(t) along the solution of system (8), for
t > T + o, we have

D+V2 (t) = sgn (Z:+1 (t) = z,11 (t))
% (‘;Z:H (t) _ zn+1 (t)>
zr )z, (B)
= sgn (ZZH (1) = 24y (t))
X { - An+1,n+1 (t)

X (Z:;+1 (t - 0n+1) ~ Zp+l (t - 0n+1))

) A (025 (t-0))
=1

4 -o,) }
=sgn(z,,, (1) =z, ()

X { = Appipe () (Z:;+1 () = Z,41 ()

) A (0 x (2] (t=0y)
=1
~z;(t-0;))
+ An+1,n+1 (t)
t
y j (0 () = 2y () dul
t=0p41

= §gn (Z:+l (t) ~ Zutl (t))

X { = Ay () (Z:;+1 () = Z,41 ()

+ Y Ay ()
j=1



x (2] (t-0;) =2 (t - 0y))

+ An+1,n+1 (t)

S (e

+ ZA,HL]- (u) z; (u - crj)

=1
_An+1,n+1 (u) Zn+1 (u - On+1) >

X (21 (W) = 2,1, (1))
- An+1,n+1 (u) Z::+1 (u)
X (Zn+1 (u - 0n+1)

)

~Zpt1 (u -
n

+ ZA,HL]» (W) z,,, ()

(33)

According to (14) and the above equality, for t > T + o, we
have

D'V, (t) < A () |Z:+1 (1) = 21 (t)|

+ 2 Aun O] (£ 0)) =2 (- 0))
j=1

+ An+1,n+1 (t)

X L_ [(rnﬂ (u) + ZA"HJ (uyM

j=1
+ An+1,n+1 (u) Mn+1 >

Zn+1 (u)l

+ An+1,n+1 (u) Mn+1

x |z:+1 (u) -

X |Z:+1 (u - Gn+1)

~Zy+1 (u - 0n+1)|
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n
+ ZAnH,j (u) M,
=

X |ZJ (- ‘7;') ~Zj (u- Uj)| du.
(34)
Define

n

V,(t) = ZJ

A (s+0)) |z (9) =2, ()]

t+0,41 (t
+ J j An+1,n+1 (S)
t $—0,

X { (rn+1 (u)

n
+ Z n+l,j (u)M
j=1

+An+1,n+1 (u) Mn+1 )

Zn+1 (u)|

+ An+1,n+1 (u) Mn+1

X |Z;+1 (u) -

X IZ;H (u - 0n+1)

~Zn+1 (u - 0n+1)|
n
+ Z n+l,j (l/l) M
j=1

.
x |Zj (” - "j)

-z; (u o )| } duds.
(35)
From (34) and (35), for t > T + o, then

D+V2 (t) + V3, (t) < - An+1,n+1 (t)

X |20y (8) = 201 (1)

n

+ ZAn+1j(t+o-)

j=1

t+‘7n+1
J n+1 i1 (5) ds

[ et () + ZAM, ()M
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+An+1,n+1 (t) Mn+1 >

x |Z:+1 (t) = Zpy (t)l

+ An+1,n+1 (t) Mn+1
x |Z::+1 (t - Gn+1)

“Zyt1 (t - 0n+1)|

n

+ ZAnJrl,j (t) Mn+1
j=1

x |2} (t=0;) ~2; (¢~ ;)] } :
(36)

Define

t Ut0o;+0,,
Vy(t) = J- J’ M, A1 (5)

t—o j Juto;

n

X ZA"H)J' (u + aj)

j=1

X 'Z; () - z; (u)| dsdu

t u+20,,;
+ Mn+1 J J An+1,n+1 (S) An+1,n+1
t

“Opy1 JUTOpy
X (u + 0n+1)

X |z::+1 (u) — z,4 (u)| dsdu.
(37)

Fort > T + o, from (36) and (37), then
D" (V,+V,+V,)

< _An+1,n+1 () |Z::+1 (t) - 241 (t)|

n

+ ) A (t+05)

Jj=1

L+0,4,

X |Z]* ) - Zj (t)| + j An+1,n+1 (s)ds

t

n
x ( )+ D Aprj OM+ A,y () M)

j=1

X |21 (8) = 200 (8)]

040,

+ Mn+IZAn+1,j (t + Uj) J A () ds

j=1 t+0;

7
x Z; (t) - Zj (t)| + An+1,n+1 (t + 0n+1) Mn+1
t+20,11
X J An+1,n+1 (s)ds IZn+1 () =z (t)| .
L+0,4,
(38)

Let V(t) = Z?:l V(t); then, it follows from (18) and (32)
that

n+1

D'V <-YQ Wz () -z )], t=T+o, (39)
i=1

where Q,(t) are defined by (26).

According to (Cy), there existey; > 0 (i = 1,2,...,n+ 1)
and T* > T + o suchthat Q,(f) > o > Ofort > T".
Integrating (39) on interval [T, t] yields

n+l

t
Vi +y L* Qi (s)|z ()~ 2z (B)]ds <V (T").  (40)

i=1
It follows from (39) and (40) that
n+l ot

2}

o (s) |z (s) =z (1)|ds <V (T") <0, t>T".
i-1 JT”

(41)
Since z; (1), z;(t) (i = 1,2,...,n + 1) are bounded for ¢ >

T, then |2/ (t) — z;(t)| is uniformly continuous on [T, c0).
n+l

By Lemma 5, lim, _, >, |2/ (t) — z;(t)] = 0. Therefore,
lim, _, |2 (t) — z;(t)] = 0; that is, lim, _, o |x; (t) — x;(t)| = 0,
i=1,2,...,n+ L. This completes the proof.

O

4. Example and Simulations

In this section, an illustrative example and numerical analysis
are given to show the effectiveness of the main results.

Example 1. Consider the following dispersed predator-prey
system with delays and impulses:

X, (t) =x; (t) (r; 1) —ay, () x, (£)
—ay; (1) x5 (1)) + D, (t) (x, (t) — x; (1)),
%, (1) = 2%, () (ry (D) — ay, () 3, (1)
a3 (t) x5 (1)) + Dy (1) (x (£) = x, (1)),
X3 () = x5 (t) (=15 () + ag; () x, (t - 07)
+as, (1) x, (t — 0,) —as3 () %3 (t — 03))
Ax; (t) = —cpex; () »

i=1,2,3, k=12,....

t#t,.
(42)

Take r =1 = 2, 7'3 = 3, all(t) = 3/2 + Sint/z) a22 = 2’
a;3(t) = ay(t) = 1, a5(t) = 7/4 + sint/4, a5,(t) = 15 +



15+

x,(2)

0.5 I

t-axis

(a)
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FIGURE 1: Dynamics of (42). (a) Time series of x,, (b) time series of x,, (c) time series of x5, and (d) portrait of (x,, x,, x5).

3cost, azi(t) = 31 —sint, Dy(t) = D,(t) = 1/2, 0y = 0, =
02,0, = 0,¢, = 1/2. Then, w = 7. Let {t;,k = 1,2,...} n
[0,w] = {t;,t,}. By calculating, it is not difficult to show
that (C;)-(Cs) hold. Hence, from Lemma 3 and Theorem 8,
system (42) has at least one positive rz-periodic solution and
(42) is persistent. By numerical analysis, the existence and
persistence of (42) can be showed clearly; see Figure L.

5. Conclusion

For predator-prey system (1), the periodic solution is studied
by authors [3], but in the real world, in addition to periodic
behavior, a hallmark of observed population densities is their
permanent and stable behaviors. Then, it is necessary and
valuable to investigate the stability of (1). In this paper, by
constructing a suitable Lyapunov functional, we are devoted
to the study of global attractivity of positive periodic solution
of (1). Further, an example and numerical analysis are given
to show the effectiveness of the main results. In addition, the
existence of almost periodic solution is interesting and will be
our research work in the future.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the referees for their very
suggestive comments. This paper is supported by the Natural
Science Foundation of Guangxi (2013GXNSFAA019003) and
National Natural Science Foundation of China (11161015,
11361012, and 11161011) and partially supported by the National

High Technology Research and Development Program 863
under Grant no. 2013AA12A402.

References

[1] Y.K.Liand L. L. Zhao, “Positive periodic solutions for a neutral
Lotka-Volterra system with state dependent delays,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 14,
no. 4, pp. 1561-1569, 2009.

[2] X. Meng and L. Chen, “Periodic solution and almost periodic
solution for a nonautonomous Lotka-Volterra dispersal system
with infinite delay, Journal of Mathematical Analysis and
Applications, vol. 339, no. 1, pp. 125-145, 2008.

[3] Q.Liuand S. Dong, “Periodic solutions for a delayed predator-
prey system with dispersal and impulses,” Electronic Journal of
Differential Equations, vol. 31, pp. 1-14, 2005.

[4] Y. E Shao, B. X. Dai, and Z. G. Luo, “The dynamics of an
impulsive one-prey multi-predators system with delay and
Holling-type II functional response;” Applied Mathematics and
Computation, vol. 217, no. 6, pp. 2414-2424, 2010.

[5

S. Ahmad and I. M. Stamova, “Asymptotic stability of compet-
itive systems with delays and impulsive perturbations,” Journal
of Mathematical Analysis and Applications, vol. 334, no. 1, pp.
686-700, 2007.

[6] R. Liang and J. Shen, “Uniform stability theorems for delay
differential equations with impulses,” Journal of Mathematical
Analysis and Applications, vol. 326, no. 1, pp. 62-74, 2007.

[7] G. Wei and J. Shen, “Asymptotic behavior of solutions of non-
linear impulsive delay differential equations with positive and
negative coefficients,” Mathematical and Computer Modelling,
vol. 44, no. 11-12, pp. 1089-1096, 2006.

[8] R.Xuand Z. Ma, “The effect of dispersal on the permanence of a
predator-prey system with time delay;” Nonlinear Analysis. Real
World Applications, vol. 9, no. 2, pp. 354-369, 2008.



Journal of Applied Mathematics

[9] I. Barbalat, “Systems dequations differential doscillations
nonlinearies,;” Revue Roumaine de Mathématique Pures et
Appliquées, vol. 4, pp. 267-270, 1959.

[10] J. Yan and A. Zhao, “Oscillation and stability of linear impulsive
delay differential equations,” Journal of Mathematical Analysis
and Applications, vol. 227, no. 1, pp. 187-194, 1998.

[11] W.Wendiand Z. Ma, “Harmless delays for uniform persistence,”
Journal of Mathematical Analysis and Applications, vol. 158, no.
1, pp. 256-268, 1991

[12] E Chen, “Positive periodic solutions of neutral Lotka-Volterra
system with feedback control,” Applied Mathematics and Com-
putation, vol. 162, no. 3, pp- 1279-1302, 2005.



