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We introduce a constructive approach for the least squares algorithms with generalized K-norm regularization. Different from the
previous studies, a stepping-stone function is constructed with some adjustable parameters in error decomposition. It makes the
analysis flexible and may be extended to other algorithms. Based on projection technique for sample error and spectral theorem
for integral operator in regularization error, we finally derive a learning rate.

1. Introduction

In learning theory, we are always given a sample set z :=

{𝑧
𝑖
}
𝑚

𝑖=1
= {(𝑥
𝑖
, 𝑦
𝑖
)}
𝑚

𝑖=1
, which is drawn from a joint distribution

𝜌 on the sample space 𝑍 := 𝑋 × 𝑌. Here, the input space
𝑋 is a compact metric space and 𝑌 = R for a regression
problem. For a function𝑓 obtained via some algorithm, a loss
functional 𝐿(𝑓(𝑥), 𝑦) is defined to measure its performance
on a sample point (𝑥, 𝑦). In regression problem, least square
loss 𝐿(𝑓(𝑥), 𝑦) = (𝑓(𝑥) − 𝑦)2 is most widely used. Then, we
can use the generalization error to evaluate 𝑓 over the whole
sample space:

E (𝑓) = ∫
𝑍

(𝑓 (𝑥) − 𝑦)

2
𝑑𝜌. (1)

From [1], we know the goal function is 𝑓
𝜌
= ∫
𝑍
𝑦𝑑𝜌(𝑦 |

𝑥), which is called the regression function, minimizing the
generalization error. Since 𝜌 is always unknown in practice,
we have to find another function close to 𝑓

𝜌
based on

the sample. The famous empirical risk minimization (ERM)
algorithm is introduced in [2, 3]. To avoid overfitting, a
penalty term Ω(𝑓) related to 𝑓 is added into this algorithm,
which is usually called regularization. While the squared 𝐾-
norm regularization term is extensively studied in [4], and so
forth, in this paper, we consider a more general model:

𝑓z,𝜆 = arg min
𝑓∈H𝐾

1

𝑚

(𝑓 (𝑥
𝑖
) − 𝑦
𝑖
)

2
+ 𝜆
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑝

𝐾
, (2)

with some𝑝 > 0. In this algorithm,minimization is restricted
to a hypothesis space H

𝐾
which is a reproducing kernel

Hilbert space (RKHS) on 𝑋. The RKHS [5] is defined as
H
𝐾
:= span{𝐾

𝑥
: 𝑥 ∈ 𝑋} with 𝐾

𝑥
(𝑦) = 𝐾(𝑥, 𝑦), associated

with a Mercer Kernel 𝐾 : 𝑋 × 𝑋 → R which is
continuous, symmetric, and positive definite. Since 𝑋 is a
compact metric space, Kernel 𝐾 is bounded and we denote
𝜅 = sup

𝑥,𝑡∈𝑋
𝐾(𝑥, 𝑡) in the following.

2. Main Result

Though uniform bounded assumption was abandoned in
previous work [6], we still assume

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 (3)

almost surely for some constant 𝑀 > 0 throughout this
paper for simplicity, since our analysis can be extended to the
unbounded situation by choosing some different probability
inequality.

For the hypothesis space, a polynomial decay condition is
given to control the capacity. To state this condition, we have
to firstly recall covering number.

Definition 1. Let (M, 𝑑) be a pseudometric space and 𝑆 ⊂M.
For 𝜀 > 0, the covering number N(𝑆, 𝜀, 𝑑) of the set 𝑆 with

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 458459, 7 pages
http://dx.doi.org/10.1155/2014/458459

http://dx.doi.org/10.1155/2014/458459


2 Abstract and Applied Analysis

respect to 𝑑 is defined to be the minimal number of balls of
radius 𝜀 whose union covers 𝑆. That is,

N (𝑆, 𝜀, 𝑑)

= min{𝑛 ∈ N : ∃{𝑓
𝑖
}

𝑛

𝑖=1
⊂M such that 𝑆 ⊂

𝑛

⋃

𝑖=1

𝐵 (𝑓
𝑖
, 𝜀)} ,

(4)

where 𝐵(𝑓
𝑖
, 𝜀) = {𝑓 ∈M : 𝑑(𝑓, 𝑓

𝑖
) ≤ 𝜀}.

When metric 𝑑 is chosen to be ‖ ⋅ ‖
∞
, that is, 𝑑(𝑓, 𝑔) =

‖𝑓 − 𝑔‖
∞
, it is the classical uniform covering number. It is

widely used in [4, 6–8], and so forth, and more detailed
analysis can be found in [9, 10].More recent references [11–14]
use ℓ2-empirical covering number to obtain a sharper upper
bound for the excess generalization errorE(𝑓z,𝜆) −E(𝑓

𝜌
).

Definition 2. Denote

𝑑
2 (
a, b) = ( 1

𝑚

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑎
𝑖
− 𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

2
)

1/2

(5)

for some 𝑎, 𝑏 ∈ R𝑚. For a setF of functions on 𝑋 and 𝜀 > 0,
with notation z = (𝑧

𝑖
)
𝑚

𝑖=1
⊂ 𝑋
𝑚 and F|z = {(𝑓(𝑧𝑖))

𝑚

𝑖=1
: 𝑓 ∈

F}, the ℓ2-empirical covering number ofF is given by

N
2 (
F, 𝜀) = sup

𝑚∈N

sup
z∈𝑋𝑚

N (F|z, 𝜀, 𝑑2) . (6)

Now, we can describe the capacity condition of the
hypothesis spaceH

𝐾
.

Definition 3. We say that H
𝐾

has empirical polynomial
complexity with exponent 𝑠, 0 < 𝑠 < 2, if there exists a
constant 𝑐

𝑠
> 0 such that

logN
2
(𝐵
1
(H
𝐾
) , 𝜀) ≤ 𝑐

𝑠
𝜀
−𝑠
, ∀𝜀 > 0, (7)

where 𝐵
𝑅
(H
𝐾
) = {𝑓 ∈ H

𝐾
: ‖𝑓‖
𝐾
≤ 𝑅} is the ball with

radius 𝑅 inH
𝐾
.

The integral operator 𝐿
𝐾
: 𝐿
2

𝜌𝑋
→ 𝐿
2

𝜌𝑋
defined by

𝐿
𝐾
𝑓 (𝑥) = ∫

𝑋

𝑓 (𝑡)𝐾 (𝑥, 𝑡) 𝑑𝜌𝑋 (
𝑡) (8)

is also important in learning theory and has been studied in
[15]. In [1], the authors claim that, for a Mercer Kernel 𝐾,
the associated 𝐿

𝐾
is a compact operator with nonincreasing

positive eigenvalue sequence 𝜇
𝑖
. And the induced fractional

operator

𝐿
𝑟

𝐾
𝑓 (𝑥) = ∑

𝑖≥1

𝜇
𝑟

𝑖
𝜙
𝑖 (
𝑥) (9)

is well defined, for any 𝑓 = ∑
𝑖≥1
𝑐
𝑖
𝜙
𝑖
∈ 𝐿
2

𝜌𝑋
with orthogonal

basis {𝜙
𝑖
}
𝑖≥1

of 𝐿2
𝜌𝑋
. In the following, we will make use of this

notion in our construction analysis.

We additionally introduce the projection operator 𝜋 on
the space of measurable function 𝑓 : 𝑋 → 𝑅:

𝜋 (𝑓 (𝑥)) =

{
{

{
{

{

𝑀 𝑓 (𝑥) > 𝑀

𝑓 (𝑥) 𝑀 ≥ 𝑓 (𝑥) ≥ −𝑀

−𝑀 𝑓 (𝑥) < −𝑀.

(10)

The main result is stated as follows which will be proved
in Section 6.

Theorem 4. Assume (3), (7) hold for sample distribution and
hypothesis space H

𝐾
. The regression function satisfies 𝑓

𝜌
∈

𝐿
𝑟

𝐾
(𝐿
2

𝜌𝑋
) for some 𝑟 > 0. 𝑓z,𝜆 is obtained from (2). Then, by

choosing appropriate 𝜆 (explicit expression can be found in the
proof) with confidence 1 − 𝛿 for any 0 < 𝛿 < 1/2, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝜋(𝑓z,𝜆) − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌
≤ 𝐶
𝑝,𝑟,𝑠,𝑀

log 2
𝛿

𝑚
−2𝑝𝜉/(2𝑠+(𝑠+2)𝑝𝜉) (11)

for some constant 𝐶
𝑝,𝑟,𝑠,𝑀

not depending on𝑚 or 𝛿 and

𝜉 =

{
{
{

{
{
{

{

1 𝑟 >

1

2

4𝑟

4𝑟 + (1 − 2𝑟) 𝑝

𝑟 ≤

1

2

.

(12)

3. Error Decomposition

Various error decompositionmethodsmotivate our research,
especially [7, 12, 14, 16, 17]. A general idea of error decompo-
sition is to transform the excess generalization errorE(𝑓z,𝜆)−
E(𝑓
𝜌
) = ‖𝑓z,𝜆 − 𝑓𝜌‖

2

𝜌
(see [1] for details) to two parts,

which can be bounded by some concentration inequality and
approximation analysis. In our setting, let 𝑓

𝜆
be a function to

be determined inH
𝐾
; it can be expressed as

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝜌
) ≤ E (𝜋 (𝑓z,𝜆)) −E (𝑓

𝜌
) + 𝜆

󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆

󵄩
󵄩
󵄩
󵄩

𝑝

𝐾

≤ E (𝜋 (𝑓z,𝜆)) −Ez (𝜋 (𝑓z,𝜆))

+Ez (𝜋 (𝑓z,𝜆)) + 𝜆
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆

󵄩
󵄩
󵄩
󵄩

𝑝

𝐾
−E (𝑓

𝜌
)

≤ E (𝜋 (𝑓z,𝜆)) −Ez (𝜋 (𝑓z,𝜆))

+Ez (𝑓z,𝜆) + 𝜆
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆

󵄩
󵄩
󵄩
󵄩

𝑝

𝐾
−E (𝑓

𝜌
)

≤ E (𝜋 (𝑓z,𝜆)) −Ez (𝜋 (𝑓z,𝜆))

+Ez (𝑓𝜆) + 𝜆
󵄩
󵄩
󵄩
󵄩
𝑓
𝜆

󵄩
󵄩
󵄩
󵄩

𝑝

𝐾
−E (𝑓

𝜌
)

≤ 𝑆
1
+ 𝑆
2
+ 𝐷 (𝜆) ,

(13)

where
𝑆
1
= (E (𝜋 (𝑓z,𝜆)) −E (𝑓

𝜌
))

− (Ez (𝜋 (𝑓z,𝜆)) −Ez (𝑓𝜌)) ,

𝑆
2
= (Ez (𝑓𝜆) −Ez (𝑓𝜌)) − (E (𝑓𝜆) −E (𝑓

𝜌
)) ,

𝐷 (𝜆) = E (𝑓
𝜆
) −E (𝑓

𝜌
) + 𝜆

󵄩
󵄩
󵄩
󵄩
𝑓
𝜆

󵄩
󵄩
󵄩
󵄩

𝑝

𝐾
.

(14)
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The first and second terms 𝑆
1
and 𝑆
2
are called sample error

which will be studied in Section 5, while the third term𝐷(𝜆)

is regularization error (or approximation error) which is our
main work in this paper.

It is known that 𝑓
𝜆
can be freely chosen in H

𝐾
which is

close to 𝑓
𝜌
in some sense and in previous work 𝑓

𝜆
is always

naturally chosen to be the oneminimizing𝐷(𝜆). However, we
will encounter difficulties if the minimizer does not exist or
the expression of the minimizer is not explicit. In this paper,
we construct a special function in the form

𝑓
𝜆
= (𝐿
𝛼

𝐾
+ 𝜆
𝛽
𝐼)

−1

𝐿
𝛼

𝐾
𝑓
𝜌

(15)

with some 𝛼, 𝛽 > 0 to handle this problem.

4. Regularization Error

It is the main contribution of this section to conduct error
analysis for the regularization error. Regularization error,
also called approximation error, has already been studied
in [18]. However, we will analyze this part of error in a
different viewpoint. From [1], we know 𝐿

𝐾
is a compact

self-adjoint and positive operator. By applying the spectral
theorem for compact operators, we can bound a compact
positive operator with its eigenvalues. Firstly, we have to
introduce a useful lemma.

Lemma 5. Let 𝑎, 𝑏, 𝑐, 𝑑 > 0 and 𝑐 < 𝑑; one has

𝑎
𝑐

𝑎
𝑑
+ 𝑏

≤ 𝑏
(𝑐/𝑑)−1

. (16)

Proof. By simply taking derivative of the right-hand side with
respect to 𝑎, we can find that it reaches its maximum when
𝑎 = (𝑐/(𝑑 − 𝑐))

1/𝑑
𝑏
1/𝑑; that is,

sup
𝑎>0

𝑎
𝑐

𝑎
𝑑
+ 𝑏

=

𝑐

𝑑

(

𝑐

𝑑 − 𝑐

)

(𝑐/𝑑)−1

𝑏
(𝑐/𝑑)−1

. (17)

Since (𝑐/𝑑)(𝑐/(𝑑 − 𝑐))(𝑐/𝑑)−1 = 𝑟𝑟(1 − 𝑟)1−𝑟 < 1, where 0 < 𝑟 =
𝑐/𝑑 < 1, the lemma is proved.

Proposition 6. Assume 𝑓
𝜌
∈ 𝐿
𝑟

𝐾
(𝐿
2

𝜌𝑋
) and (15); there holds

𝐷 (𝜆) ≤ 𝐶𝑟,𝑝
𝜆
𝜉 (18)

with some constant 𝐶
𝑟,𝑝

depending on 𝑟, 𝑝 and

𝜉 =

{
{
{

{
{
{

{

1 𝑟 >

1

2

4𝑟

4𝑟 + (1 − 2𝑟) 𝑝

𝑟 ≤

1

2

(19)

by choosing appropriate 𝛼 and 𝛽.

Proof. Since𝐷(𝜆) = E(𝑓
𝜆
) −E(𝑓

𝜌
) +𝜆‖𝑓

𝜆
‖
𝑝

𝐾
, we will analyze

the two terms, respectively. Noting that E(𝑓) − E(𝑓
𝜌
) =

‖𝑓 − 𝑓
𝜌
‖
2

𝜌
and 𝐿−𝑟

𝐾
𝑓
𝜌
∈ 𝐿
2

𝜌𝑋
, we have

E (𝑓
𝜆
) −E (𝑓

𝜌
) =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜆
− 𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

((𝐿
𝛼

𝐾
+ 𝜆
𝛽
𝐼)

−1

𝐿
𝛼

𝐾
− 𝐼)𝑓

𝜌

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌

= 𝜆
2𝛽
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
𝛼

𝐾
+ 𝜆
𝛽
𝐼)

−1

𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌

≤ 𝜆
2𝛽
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
𝛼

𝐾
+ 𝜆
𝛽
𝐼)

−1

𝐿
𝑟

𝐾

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2
󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌

= 𝜆
2𝛽
(sup
𝑖≥1

𝜇
𝑟

𝑖

𝜇
𝛼

𝑖
+ 𝜆
𝛽
)

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌
.

(20)

Recall that sup
𝑖≥1
𝜇
𝑖
= ‖𝐿
𝐾
‖ ≤ 𝜅, combining with Lemma 5;

there holds

sup
𝑖≥1

𝜇
𝑟

𝑖

𝜇
𝛼

𝑖
+ 𝜆
𝛽
≤ {

𝜅
𝑟−𝛼

𝛼 ≤ 𝑟

𝜆
𝛽((𝑟/𝛼)−1)

𝛼 > 𝑟,

(21)

E (𝑓
𝜆
) −E (𝑓

𝜌
) ≤

{

{

{

𝜅
2(𝑟−𝛼)󵄩󵄩

󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌
𝜆
2𝛽

𝛼 ≤ 𝑟

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌
𝜆
2𝑟(𝛽/𝛼)

𝛼 > 𝑟.

(22)

For the term 𝜆‖𝑓
𝜆
‖
𝑝

𝐾
, we have the following inequality as

‖𝑓‖
𝐾
= ‖𝐿
−1/2

𝐾
𝑓‖
𝜌
:

󵄩
󵄩
󵄩
󵄩
𝑓
𝜆

󵄩
󵄩
󵄩
󵄩

𝑝

𝐾
= 𝜆

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−1/2

𝐾
𝑓
𝜆

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
−1/2

𝐾
(𝐿
𝛼

𝐾
+ 𝜆
𝛽
)

−1

𝐿
𝛼

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
𝛼

𝐾
+ 𝜆
𝛽
𝐼)

−1

𝐿
𝛼+𝑟−1/2

𝐾

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑝
󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌
(sup
𝑖≥1

𝜇
𝛼+𝑟−1/2

𝑖

𝜇
𝛼

𝑖
+ 𝜆
𝛽
)

𝑝

.

(23)

This means

𝜆
󵄩
󵄩
󵄩
󵄩
𝑓
𝜆

󵄩
󵄩
󵄩
󵄩

𝑝

𝐾
≤

{
{
{

{
{
{

{

𝜅
(𝑟−1/2)𝑝󵄩󵄩

󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌
𝜆 𝑟 >

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌
𝜆
(𝑟−1/2)𝑝(𝛼/𝛽)+1

𝑟 ≤

1

2

.

(24)

Tominimize the sum of upper bounds (22) and (24) is the
same to maximize the power of 𝜆. We can choose

𝛼 = 𝛼
𝑟,𝑝
≤ 𝑟, 𝛽 = 𝛽

𝑟,𝑝
≥

1

2

, 𝑟 >

1

2

;

𝛼 = 𝛼
𝑟,𝑝
= 𝑟, 𝛽 = 𝛽

𝑟,𝑝
=

2𝑟

4𝑟 + (1 − 2𝑟) 𝑝

, 𝑟 ≤

1

2

.

(25)
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Then,
𝐷(𝜆)

≤

{
{
{
{
{
{

{
{
{
{
{
{

{

(𝜅
2(𝑟−𝛼)

+ 𝜅
(𝑟−1/2)𝑝

)

× (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌
) 𝜆, 𝑟 >

1

2

;

(𝜅
2(𝑟−𝛼)

+ 1)

× (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌
) 𝜆
4𝑟/(4𝑟+(1−2𝑟)𝑝)

, 𝑟 ≤

1

2

.

(26)
This proves the result with

𝐶
𝑟,𝑝
= (𝜅
2(𝑟−𝛼)

+ 𝜅
(𝑟−1/2)𝑝

+ 1) (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−𝑟

𝐾
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

𝑝

𝜌
) .

(27)

Remark 7. Another choice

𝛼
𝑟,𝑝
> 𝑟, 𝛽

𝑟,𝑝
>

𝛼
𝑟,𝑝

2𝑟

, 𝑟 >

1

2

;

𝛼
𝑟,𝑝
> 𝑟, 𝛽

𝑟,𝑝
=

2𝛼
𝑟,𝑝

4𝑟 + (1 − 2𝑟) 𝑝

, 𝑟 ≤

1

2

(28)

can also lead to the same result except for the constants.

Remark 8. In the case 𝑝 = 2, our result turns to 𝐷(𝜆) ≤
𝐶
𝑟
𝜆
min{2𝑟,1} which is consistent with the classical one [4]. In

fact, for a general 𝑝 ≤ 2 of interest, the bound is better than
min{2𝑟, 1} since 𝜉 ≥ 2𝑟, while 𝑟 ≤ 1/2.

In [7], the authors construct a function based on the
generalized Fourier expansion of 𝑓

𝜌
and derive that 𝐷(𝜆) ≤

𝐶
1
𝜆
2𝑟/(𝑟+2) with some constant 𝐶

1
for any 0 < 𝑟 ≤ 2. The

rate is always much less than 2𝑟 and cannot achieve 1 when
1/2 < 𝑟 ≤ 2. On the other hand, our result is better than 2𝑟,
while 0 < 𝑟 < 1/2.

Comparedwith [19], we get the same rate of upper bound.
There, the authors find a connection between inf

𝑓∈H𝐾
E(𝑓)−

E(𝑓
𝜌
) + 𝜆‖𝑓‖

𝑝

𝐾
and inf

𝑓∈H𝐾
E(𝑓) − E(𝑓

𝜌
) + 𝜆‖𝑓‖

𝑝

𝐾
with

different𝑝, 𝑞. However, their analysis needs an existent result,
while our method does not.

5. Sample Error

There are a vast number of literatures studying the sample
error. Here, we will follow the analysis of [11]. Firstly, we
should introduce the Bernstein inequality [20]. Denote E𝑔 =
∫
𝑍
𝑔(𝑧)𝑑𝜌, Ez𝑔 = (1/𝑚)∑

𝑚

𝑖=1
𝑔(𝑧
𝑖
), and 𝜎2(𝑔) = E𝑔2 − (E𝑔)

2

for an integral function 𝑔 on 𝑍.
Lemma 9. Assume |𝑔 − E𝑔| ≤ 𝑀

𝑔
for some constant 𝑀

𝑔

almost surely. Then,

𝑃𝑟𝑜𝑏z∈𝑍𝑚 {Ez𝑔 − E𝑔 ≥ 𝜀} ≤exp{− 𝑚𝜀
2

2 (𝜎
2
(𝑔) + (1/3)𝑀𝑔

𝜀)

}

(29)
for any 𝜀 > 0.

Now, we can obtain the sample error bound involving 𝑓
𝜆
.

Proposition 10. Assume (3), for any 0 < 𝛿 < 1, with
confidence 1 − (𝛿/2); there holds

𝑆
2
= (Ez (𝑓𝜆) −Ez (𝑓𝜌)) − (E (𝑓𝜆) −E (𝑓

𝜌
))

≤

32𝑀
2
+ 3

3𝑚

log 2
𝛿

+ 16𝑀
2 log 2

𝛿

(E (𝑓
𝜆
) −E (𝑓

𝜌
)) .

(30)

Proof. Let

𝑔
𝜆 (
𝑧) = (𝑓𝜆 (

𝑥) − 𝑦)

2
− (𝑓
𝜌 (
𝑥) − 𝑦)

2

= (𝑓
𝜆 (
𝑥) − 𝑓𝜌 (

𝑥)) (𝑓𝜆 (
𝑥) + 𝑓𝜌 (

𝑥) − 2𝑦) ;

(31)

we have 𝑆
2
= Ez𝑔𝜆 − E𝑔

𝜆
. Note that |𝑓

𝜌
(𝑥)| = | ∫

𝑌
𝑦𝑑𝜌(𝑦 |

𝑥)| ≤ 𝑀 and

󵄩
󵄩
󵄩
󵄩
𝑓
𝜆
(𝑥)
󵄩
󵄩
󵄩
󵄩∞

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
𝛼

𝐾
+ 𝜆
𝛽
𝐼)

−1

𝐿
𝛼

𝐾
𝑓
𝜌
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
𝛼

𝐾
+ 𝜆
𝛽
𝐼)

−1

𝐿
𝛼

𝐾

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

⋅

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩∞

= sup
𝑖≥1

𝜇
𝛼

𝑖

𝜇
𝛼

𝑖
+ 𝜆
𝛽

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩∞

≤ 𝑀.

(32)

It is easy to see that

󵄨
󵄨
󵄨
󵄨
𝑔
𝜆 (
𝑧)
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝜆 (
𝑥) − 𝑓𝜌 (

𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝜆 (
𝑥) + 𝑓𝜌 (

𝑥) − 2𝑦

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 8𝑀
2
.

(33)

Then, |𝑔
𝜆
− E𝑔
𝜆
| ≤ 16𝑀

2 and

𝜎
2
(𝑔
𝜆
) ≤ E𝑔

2

𝜆
≤ 16𝑀

2
∫

𝑋

(𝑓
𝜆 (
𝑥) − 𝑓𝜌 (

𝑥))

2

𝑑𝜌
𝑋

≤ 16𝑀
2
(E (𝑓

𝜆
) −E (𝑓

𝜌
)) .

(34)

By Bernstein inequality,

Probz∈𝑍𝑚 {Ez𝑔𝜆 − E𝑔
𝜆
≥ 𝜀}

≤ exp{− 𝑚𝜀
2

2 (𝜎
2
(𝑔
𝜆
) + (1/3) 16𝑀

2
𝜀)

}

(35)

holds with𝑀
𝑔
= 16𝑀

2. Set the right-hand side to be 𝛿/2; we
can solve 𝜀 and the following bound

Ez𝑔𝜆 − E𝑔
𝜆
≤

32𝑀
2

3𝑚

log 2
𝛿

+
√
2𝜎
2
(𝑔
𝜆
)

𝑚

log 2
𝛿

≤

32𝑀
2
+ 3

3𝑚

log 2
𝛿

+ 16𝑀
2 log 2

𝛿

(E (𝑓
𝜆
) −E (𝑓

𝜌
)) .

(36)

This proves the proposition.
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For the sample error term 𝑆
1
, it is more difficult since it

involves the function 𝑓z,𝜆 which varies, while the sample size
𝑚 is different. So, we need a concentration inequality for a
set of functions as in [21]. By setting 𝜏 = 1, the inequality
becomes as follows.

Lemma 11. LetF be a set of measurable functions on 𝑍, and
𝐵
1
, 𝐵
2
> 0 is constant such that each function 𝑓 ∈ F satisfies

‖𝑓‖
∞
≤ 𝐵
1
and E(𝑓2) ≤ 𝐵

2
E𝑓. If for some 𝑎 > 0 and 0 < 𝑠 <

2,

logN
2 (
F, 𝜀) ≤ 𝑎𝜀

−𝑠
, ∀𝜀 > 0, (37)

then there exists a constant 𝑐󸀠
𝑠
depending only on 𝑠 such that,

for any 𝛿 > 0, with probability at least 1 − 𝛿, there holds

1

𝑚

𝑚

∑

𝑖=1

𝑓 (𝑧
𝑖
) − E𝑓

≤

1

2

E𝑓 + 𝑐
󸀠

𝑠
𝜂
󸀠
(

𝑎

𝑚

)

2/(2+𝑠)

+

2𝐵
2
+ 18𝐵

1

𝑚

log 1
𝛿

∀𝑓 ∈ F,

(38)

where 𝜂󸀠 := max{𝐵(2−𝑠)/(2+𝑠)
2

, 𝐵
(2−𝑠)/(2+𝑠)

1
}.

Theresult will be used to estimate 𝑆
1
.We apply this lemma

to the function set

G = {𝑔
𝜋,𝑓 (

𝑧)

= (𝑓
𝜌 (
𝑥) − 𝜋 (𝑓 (𝑥)))

× (𝜋 (𝑓 (𝑥)) + 𝑓𝜌 (
𝑥) − 2𝑦) : 𝑓 ∈ 𝐵𝑅

(H
𝐾
) }

(39)

and have the following proposition.

Proposition 12. Let G be defined as above with some 𝑅 ≥ 1
satisfying ‖𝑓z,𝜆‖𝐾 ≤ 𝑅, whose expression will be given in the
next section. Assume (3) and (7) hold. Then, we have

𝑆
1
≤

1

2

(E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝜌
))

+ (𝑐
󸀠

𝑠
(16𝑐
𝑠
𝑀
𝑠
)

2/(2+𝑠)
+ 176𝑀

2
)𝑅
2𝑠/(2+𝑠)

𝑚
−2/(2+𝑠) log 2

𝛿

(40)

for some constant 𝑐󸀠
𝑠
depending only on 𝑠 with confidence 1 −

(𝛿/2).

Proof. From definition, we know that

𝑆
1
= (E (𝜋 (𝑓z,𝜆)) −E (𝑓

𝜌
)) − (Ez (𝜋 (𝑓z,𝜆)) −Ez (𝑓𝜌))

=

1

𝑚

𝑚

∑

𝑖=1

𝑔
𝜋,z (𝑧𝑖) − ∫

𝑍

𝑔
𝜋,z (𝑧) 𝑑𝜌,

(41)

where 𝑔
𝜋,z(𝑧) = (𝑓𝜌(𝑥) − 𝜋(𝑓z,𝜆(𝑥)))(𝑓𝜌(𝑥) + 𝜋(𝑓z,𝜆(𝑥)) − 2𝑦)

is an element ofG.

In the following, we verify the conditions for G in
Lemma 11. For any function 𝑔

𝜋,𝑓
(𝑧) ∈ G, it holds

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝜋,𝑓 (

𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝜌 (
𝑥) − 𝜋 (𝑓 (𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑓 (𝑥)) + 𝑓𝜌 (

𝑥) − 2𝑦

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 8𝑀
2
,

E𝑔
2

𝜋,𝑓
≤ 16𝑀

2
∫

𝑋

(𝜋 (𝑓 (𝑥)) − 𝑓𝜌 (
𝑥))

2

𝑑𝜌
𝑋

= 16𝑀
2
E𝑔
𝜋,𝑓
.

(42)

On the other hand, for any 𝑔
1
, 𝑔
2
∈ G depending, respec-

tively, on 𝑓
1
, 𝑓
2
∈H
𝐾
,

󵄨
󵄨
󵄨
󵄨
𝑔
1 (
𝑧) − 𝑔2 (

𝑧)
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜋 (𝑓
2 (
𝑥)) − 𝑦)

2
− (𝜋 (𝑓

1 (
𝑥)) − 𝑦)

2󵄨󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑓
2 (
𝑥)) − 𝜋 (𝑓1 (

𝑥))
󵄨
󵄨
󵄨
󵄨

⋅
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑓
2 (
𝑥)) + 𝜋 (𝑓1 (

𝑥)) − 2𝑦
󵄨
󵄨
󵄨
󵄨

≤ 4𝑀
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑓
2 (
𝑥)) − 𝜋 (𝑓1 (

𝑥))
󵄨
󵄨
󵄨
󵄨

≤ 4𝑀
󵄨
󵄨
󵄨
󵄨
𝑓
2 (
𝑥) − 𝑓1 (

𝑥)
󵄨
󵄨
󵄨
󵄨
.

(43)

This meansN
2
(G, 𝜀) ≤N

2
(𝐵
𝑅
(H
𝐾
), 𝜀/4𝑀) and

logN
2 (
G, 𝜀) ≤ logN

2
(𝐵
𝑅
(H
𝐾
) ,

𝜀

4𝑀

)

≤ logN
2
(𝐵
1
(H
𝐾
) ,

𝜀

4𝑀𝑅

)

≤ 𝑐
𝑠(
4𝑀𝑅)

𝑠
𝜀
−𝑠
.

(44)

Now, we can see from Lemma 11 that, with confidence 1−
(𝛿/2), there holds

𝑆
1
≤

1

2

E𝑔
𝜋,z + 𝑐

󸀠

𝑠
(16𝑐
𝑠
𝑀
𝑠
)

2/(2+𝑠)
𝑅
2𝑠/(2+𝑠)

𝑚
−2/(2+𝑠)

+

176𝑀
2

𝑚

log 2
𝛿

≤

1

2

(E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝜌
))

+ (𝑐
󸀠

𝑠
(16𝑐
𝑠
𝑀
𝑠
)

2/(2+𝑠)
+ 176𝑀

2
)𝑅
2𝑠/(2+𝑠)

𝑚
−2/(2+𝑠) log 2

𝛿

.

(45)

This proves the proposition.

6. Total Error

Combining the regularization and sample error bounds, we
can prove the main result as follows.
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Proof of Theorem 4. By substituting the regularization error
and sample error (in the error decomposition formula) with
obtained bounds in the above two sections, we have

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝜌
)

≤

1

2

(E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝜌
))

+ (𝑐
󸀠

𝑠
(16𝑐
𝑠
𝑀
𝑠
)

2/(2+𝑠)
+ 176𝑀

2
)𝑅
2𝑠/(2+𝑠)

𝑚
−2/(2+𝑠) log 2

𝛿

+

32𝑀
2
+ 3

3𝑚

log 2
𝛿

+ 16𝑀
2 log 2

𝛿

(E (𝑓
𝜆
) −E (𝑓

𝜌
)) + 𝐷 (𝜆) .

(46)

Note that 𝐷(𝜆) = E(𝑓
𝜆
) − E(𝑓

𝜌
) + 𝜆‖𝑓

𝜆
‖
𝑝

𝐾
and radius 𝑅 is

always larger than 1; the bound becomes

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝜌
)

≤ 2 (𝑐
󸀠

𝑠
(16𝑐
𝑠
𝑀
𝑠
)

2/(2+𝑠)
+ 187𝑀

2
+ 1)𝑅

2𝑠/(𝑠+2)
𝑚
−2/(2+𝑠) log 2

𝛿

+ 2 (16𝑀
2
+ 1) log 2

𝛿

𝐶
𝑟,𝑝
𝜆
𝜉
,

(47)

where

𝜉 =

{
{
{

{
{
{

{

1 𝑟 >

1

2

4𝑟

4𝑟 + (1 − 2𝑟) 𝑝

𝑟 ≤

1

2

.

(48)

From 𝜆‖𝑓z,𝜆‖
𝑝

𝐾
≤ Ez(𝑓z,𝜆) + 𝜆‖𝑓z,𝜆‖

𝑝

𝐾
≤ (1/𝑚)∑

𝑚

𝑖=1
𝑦
2

𝑖
≤ 𝑀,

we have the bound for the radius: 𝑅 ≤ 𝑀
1/𝑝
𝜆
−1/𝑝, and the

above inequality is now

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝜌
)

≤ 2 (𝑐
󸀠

𝑠
(16𝑐
𝑠
𝑀
𝑠
)

2/(2+𝑠)
+ 187𝑀

2
+ 1)

×𝑀
2𝑠/(𝑠+2)𝑝

𝜆
−2𝑠/(𝑠+2)𝑝

𝑚
−2/(2+𝑠) log 2

𝛿

+ 2 (16𝑀
2
+ 1) log 2

𝛿

𝐶
𝑟,𝑝
𝜆
𝜉
.

(49)

To balance the two terms, we choose

𝜆 = 𝑚
−2𝑝/(2𝑠+(𝑠+2)𝑝𝜉) (50)

and the result is proved with constant

𝐶
𝑝,𝑟,𝑠,𝑀

= 2 (𝑐
󸀠

𝑠
(16𝑐
𝑠
𝑀
𝑠
)

2/(2+𝑠)
+ 187𝑀

2
+ 1)𝑀

2𝑠/(𝑠+2)𝑝

+ 2 (16𝑀
2
+ 1)𝐶

𝑟,𝑝
.

(51)

Remark 13. In [11], the authors also use 𝑙2-empirical covering
number and derive an optimal rate (1/𝑚)min{2𝑟,1}/(𝑠+2). Com-
pared with their classical rate for squared𝐾-norm regulariza-
tion, our result also can achieve the best one 𝑂

𝑝
(1/𝑚), while

𝑠 tends to 0. Though when 𝑟 ≥ 1/2, that is, 𝑓
𝜌
∈ H
𝐾
, our

rate is worse than 𝑚−2/(𝑠+2), we will get a better rate than
(1/𝑚)

2𝑟 when 𝑟 ≤ 𝑝/2(𝑝 + 𝑠). Moreover, by the iteration
technique [4], we can expect that the radius for𝑓z,𝜆 is close to
the upper bound of 𝑓

𝜆
, which leads to a sharper learning rate

𝑚
−2𝜉
2
/(2𝑟(1−2𝑟)𝑠+𝜉

2
(𝑠+2)). This is always better than 𝑚2𝑟/(𝑠+2) for

any 𝑟 ≤ 1/2.
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