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The idea of direction changing and order reducing is proposed to generate an exponential difference scheme over a five-point
stencil for solving two-dimensional (2D) convection-diffusion equationwith source term.During the derivation process, the higher
order derivatives along y-direction are removed to the derivatives along x-direction iteratively using information given by the
original differential equation (similarly from x-direction to y-direction) and then instead of keeping finite terms in the Taylor
series expansion, infinite terms which constitute convergent series are kept on deriving the exponential coefficients of the scheme.
From the construction process onemay gainmore insight into the relations among the stencil coefficients.The scheme is of positive
type so it is unconditionally stable and the convergence rate is proved to be of second-order. Fourth-order accuracy can be obtained
by applying Richardson extrapolation algorithm. Numerical results show that the scheme is accurate, stable, and especially suitable
for convection-dominated problems with different kinds of boundary layers including elliptic and parabolic ones. The idea of the
method can be applied to a wide variety of differential equations.

1. Introduction

“Singular perturbation” means that a small perturbation may
cause a large impact in mathematical or physical problems.
This terminology was first used by Friedrichs and Wasow
in their paper [1] in 1946. Despite this fairly long history,
the subject of singular perturbations is not a settled one and
there are still a lot of open problems to be investigated. Some
surveys on the computational techniques for different kinds
of singularly perturbed problems can be seen in [2–4].

Among abundant mathematical models for singular per-
turbation problems, the convection-diffusion problems play a
very important role as they arise in fluid flows, groundwater
flows, reactive flows, traffic flows, and so forth. Stynes [5]
presented a brief history of the development of numerical
methods for steady-state convection-diffusion problems, and
he also extensively discussed some commonnumericalmeth-
ods in [6].

In this paper, the 2D linear convection-diffusionmodel is
considered:

𝐿𝑢 (𝑥) ≡ −𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

+ 𝑝 (𝑥, 𝑦) 𝑢
𝑥
+ 𝑞 (𝑥, 𝑦) 𝑢

𝑦
= 𝑓 (𝑥, 𝑦) ,

(1)

for transport variable 𝑢 defined in a bounded domain Ω =

(0, 1) × (0, 1), with appropriate boundary condition:

𝑢 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨Γ
= 𝛾 (𝑥, 𝑦) . (2)

The second-order derivatives in (1) model diffusion while the
first-order derivatives are associatedwith convective or trans-
port process; 𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦), and 𝑓(𝑥, 𝑦) are sufficiently
smooth functions inΩ. When the magnitudes of 𝑝(𝑥, 𝑦) and
𝑞(𝑥, 𝑦) are large (convection-dominated case), boundary and
interior layers will normally emerge in the solutions of such
kind of problems.The term “layers” means some thin regions
in which the solution fluctuates rapidly.

It is well known that global unphysical oscillations may
occur if standard discretization schemes on general meshes
are used [7, 8]. Hence, stabilized methods and/or a priori
adapted meshes are widely developed in order to get discrete
solutions with satisfactory accuracy. In this paper, we mainly
focus on special finite difference (FD) methods on uniform
meshes.

The defect-correction method, as investigated in [9–11],
made the early attempt to combine the accuracy of the central
difference (CD) method and the stability of the upwind
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difference (UD) method. But according to Segal’s report [12],
the method is not useful for convection-dominated problems
because of its slow convergence.

In recent years, high order compact FD methods have
aroused renewed interest and a variety of techniques has
been developed. A compact difference scheme is one that is
restricted to cells surrounding any given node and does not
extend further, so it is convenient for use since no special
techniques are needed for points near the boundary,.

A lot of compact FD methods may be classified as
polynomial FD schemes for the influence coefficients are
connected to polynomials functions of the coefficients of the
differential operator; interested readers are referred to [13–
20] and the references therein for more details. Numerical
experiments have showed that some high order compact
polynomial FD schemes can yield high accuracy results. But
each scheme has its range of application, just as Stynes have
stated in [5], some polynomial FD schemes are difficult to
develop due to the need for extensive algebraic manipulation,
and the local mesh size should be small enough to make sure
that the coefficients matrix satisfies the maximum principle.

Another kind of compact FD methods is the exponential
ones that the coefficients of the schemes are connected to
exponential functions of the coefficients of the differential
operator.The exponential FD scheme was first introduced by
Allen and Southwell [21] to solve the second-order partial
differential equation governing the transport of vorticity.
Later Il’in [22] derived in principle the same scheme. But both
[21] and [22] were investigated only for 1D case. MacKinnon
and Johnson [23] derived a fourth-order exponential FD
scheme for one-dimensional convection-diffusion equation
and extended the formulation to two dimensions. Chen et
al. [24] developed a perturbational fourth-order exponential
FD scheme with diagonally dominant coefficient matrix
for the convection-diffusion equations based on a second-
order exponential FD scheme. The authors in [25, 26]
also developed a class of fourth-order compact exponential
FD schemes for solving 1D and 2D convection-diffusion
problems, respectively. Here we should point out that the
coefficients of the high-order exponential schemes in [23–26]
involve both exponential and polynomial functions so they
are still conditionally stable. Most references lack theoretical
analysis of the stability and convergence of the scheme.

We notice that coefficients of most of those exponential
type FD schemes [23–26] have close contact with a famous
scheme Il’in [22] for 1D convection-diffusion problems. Roos
[27] described ten different approaches to generate the Il’in
and related schemes for the 1D problems, including the com-
pact exponentially fitted method, collocation method, finite-
volume method, and exponential Petrov-Galerkin finite-
element method. But Roos also pointed out that “there are
still a lot of open questions and technical difficulties” as to
the generalization of most of those methods to the 2D case.

As is known to all, the remainder reapproximation
technique is an efficient procedure to increase the accuracy
of approximations for many problems in numerical analysis.
More specifically, a basic scheme (e.g., CDS) is given first
and the truncation error is analyzed by using Taylor series
expansions and then the high-order derivatives that appear in

the leading term of the truncation error are reapproximated
by using information given by the original differential equa-
tion. The details of the idea can be seen in [13, 14, 19, 23, 25,
26].

Just inspired by the remainder reapproximation method,
we aim to provide completely new way to generate an
exponential FD scheme for 2D convection-diffusion problem
directly without the aid of schemes for 1D case. The stencil
coefficients of the FD scheme are to be determined on a
five-point stencil. Different from the previous methods in
the literature, the main idea is direction changing and order
reducing. We keep as many high-order derivatives in the
Taylor series expansions as we can at the very beginning of
the construction of the scheme.During the derivation process
the higher order derivatives along 𝑦-direction are removed to
the derivatives along 𝑥-direction (or from 𝑥-direction to 𝑦-
direction) iteratively using information given by the original
differential equation (direction changing) and result in terms
with the orders of 𝑦-directional (or 𝑥-directional) derivatives
less than second-order (order reducing). Then infinite terms
which constitute convergent series are kept to form a system
of linear equations to determine the final stencil coefficients
of the scheme.

Here I should emphasize that the meaning of the paper
lies notmerely on the scheme over a five-point stencil but also
on the broad prospect of the idea in application: it can be used
to construct the scheme of high-order convergence over a
nine-point stencil, it can also be used to construct schemes on
nonuniform meshes and to solve many other different kinds
of problems.

The outline of the rest of the paper is as follows. In
Section 2, a detailed derivation of a five-point exponential
difference scheme is included for the convection-diffusion
problem (1) together with a thorough discussion. Proofs
of stability and convergence of the scheme are given in
Section 3. Firstly, we show that our scheme is of positive
type and then based on estimates of the remainder stability
and convergence of the difference scheme are analyzed using
barrier functions and the maximum principle for elliptic
differential equation. The error is proved to be of second-
order accuracy. In Section 4, different kinds of problems are
included for numerical experiments, fourth-order accuracy
can be obtained by Richardson extrapolation algorithm.
Results show that the method can cope with problems with
andwithout boundary layers and especially fit for convection-
dominated ones. Some concluding remarks are summarized
in Section 5.

2. A New Way to Generate Exponential FD
Scheme and Some Discussions

2.1. Derivation of the FD Scheme. Let 𝑀 and 𝑁 be two
positive integers. Partition the region Ω by the uniform
rectangular grid of points with a spacing ℎ in the 𝑥-direction
and 𝑘 in the 𝑦-direction, where ℎ = 1/𝑀 and 𝑘 = 1/𝑁.
Denote all the interiormesh points inΩ byΩ

ℎ,𝑘
and themesh

points on the boundary by Γ
ℎ,𝑘
.
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The value of a function 𝑢(𝑥, 𝑦) at a reference mesh point
(𝑥, 𝑦) is denoted by 𝑢

0
, and those values at its four immediate

neighboring mesh points are denoted by 𝑢
𝑖
, 𝑖 = 1, 2, 3, 4. The

discretized values𝑝
𝑖
, 𝑞
𝑖
, 𝑓
𝑖
, whichwill be used in the following

part of the paper, have their obvious meanings too. Before we
go on, we assume 𝑝(𝑥, 𝑦) > 0 and 𝑞(𝑥, 𝑦) > 0 firstly just for
brevity, though we may see at the end of the section that this
is not the necessary condition for our method.

The compact five-grid point stencil is shown in Figure 1.
The method will be based on a five-point approximation

using Taylor series expansion at the reference mesh point
(𝑥, 𝑦) numbered 0 in Figure 1. For simplicity, we introduce
denotation 𝑠

(𝑖,𝑗)

= 𝑠
(𝑖,𝑗)

(𝑥, 𝑦) = 𝜕
(𝑖+𝑗)

𝑠(𝑥, 𝑦)/𝜕𝑥
𝑖

𝜕𝑦
𝑗 for any

smooth function 𝑠(𝑥, 𝑦). Assume that the exact solution to
differential equation (1) satisfies the following expression:

𝜔
0
𝑢
0
− (𝜔
1
𝑢
1
+ 𝜔
2
𝑢
2
+ 𝜔
3
𝑢
3
+ 𝜔
4
𝑢
4
)

= 𝑓
0
+ 𝛾
01
𝑓
(0,1)

0
+ 𝛾
10
𝑓
(1,0)

0
+ 𝑅
0
,

(3)

where 𝜔
𝑖
(𝑖 = 0, 1, 2, 3, 4) and 𝛾

01
, 𝛾
10

are coefficients to be
determined later and 𝑅

0
is the term connected with the local

truncation error that also will be shown later. Sometimes we
may also omit the subscript 0 and write 𝑢

0
= 𝑢, 𝑝

0
= 𝑝, 𝑞

0
=

𝑞, 𝑓
0
= 𝑓, and so forth, just for brevity.

Set

V = 𝜔
0
𝑢
0
− (𝜔
1
𝑢
1
+ 𝜔
2
𝑢
2
+ 𝜔
3
𝑢
3
+ 𝜔
4
𝑢
4
) . (4)

𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
can be defined at the reference mesh point 0,

respectively, using Taylor’s theorem:

𝑢
1
= 𝑢 + ℎ𝑢

(1,0)

+
1

2
ℎ
2

𝑢
(2,0)

+
1

3!
ℎ
3

𝑢
(3,0)

+
1

4!
ℎ
4

𝑢
(4,0)

0
+

1

5!
ℎ
5

𝑢
(5,0)

0
+ ⋅ ⋅ ⋅ ,

𝑢
3
= 𝑢 − ℎ𝑢

(1,0)

+
1

2
ℎ
2

𝑢
(2,0)

−
1

3!
ℎ
3

𝑢
(3,0)

+
1

4!
ℎ
4

𝑢
(4,0)

−
1

5!
ℎ
5

𝑢
(5,0)

+ ⋅ ⋅ ⋅ ,

(5)

𝑢
2
= 𝑢 + 𝑘𝑢

(0,1)

+
1

2
𝑘
2

𝑢
(0,2)

+
1

3!
𝑘
3

𝑢
(0,3)

+
1

4!
𝑘
4

𝑢
(0,4)

+
1

5!
𝑘
5

𝑢
(0,5)

+ ⋅ ⋅ ⋅ ,

(6)

𝑢
4
= 𝑢 − 𝑘𝑢

(0,1)

+
1

2
𝑘
2

𝑢
(0,2)

−
1

3!
𝑘
3

𝑢
(0,3)

+
1

4!
𝑘
4

𝑢
(0,4)

−
1

5!
𝑘
5

𝑢
(0,5)

+ ⋅ ⋅ ⋅ .

(7)

From the differential equation (1) one can have

𝑢
𝑦𝑦

= −𝑢
𝑥𝑥

+ 𝑝 (𝑥, 𝑦) 𝑢
𝑥
+ 𝑞 (𝑥, 𝑦) 𝑢

𝑦
− 𝑓 (𝑥, 𝑦) . (8)

In a next step we freeze the data and assume that the convec-
tion terms 𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦) are constant in the neighbouring
meshes of grid 0; that is, 𝑝(𝑥, 𝑦) = 𝑝

0
, 𝑞(𝑥, 𝑦) = 𝑞

0
, and

then using (8) as an auxiliary relation, we may remove all

0 13

2

4

Figure 1: 2D five-point stencil.

the higher order derivatives (equal to or more than second)
of function 𝑢(𝑥, 𝑦) along 𝑦-direction to the derivatives of 𝑢
along 𝑥-direction; for instance,

𝑢
(0,3)

= 𝑞
2

𝑢
(0,1)

+ 𝑝𝑞𝑢
(1,0)

+ 𝑝𝑢
(1,1)

− 𝑞𝑢
(2,0)

− 𝑢
(2,1)

− 𝑞𝑓 − 𝑓
(0,1)

.

(9)

Equation (9) is really the key to learn the idea of the
construction of the differencing scheme. We have removed
the higher order (equal to 3) derivatives of function 𝑢(𝑥, 𝑦)

along 𝑦-direction to the derivatives of 𝑢 along 𝑥-direction
(direction changing), and result in the right side of (9) with
the orders of 𝑦-directional derivatives of function 𝑢(𝑥, 𝑦) less
than 2 (order reducing). 𝑢(0,4), 𝑢(0,5) . . . can be treated in the
same way. Generally,

𝑢
(0,𝑛)

=
𝜕
𝑛−2

𝜕𝑦𝑛−2
(−𝑢
𝑥𝑥

+ 𝑝𝑢
𝑥
+ 𝑞𝑢
𝑦
− 𝑓) , for 𝑛 ≥ 2, (10)

substituting (10) into (6) iteratively until all the derivatives of
direction-𝑦 are less than second-order. The idea of direction
changing and order reducing is just reflected in this proce-
durewhich can be carried out easily bymeans ofMathematica
software, and then we obtain

𝑢
2
= 𝑢 + (𝑘 +

1

2
𝑞𝑘
2

+
1

3!
𝑞
2

𝑘
3

+
1

4!
𝑞
3

𝑘
4

+ ⋅ ⋅ ⋅ ) 𝑢
(0,1)

+ (
1

2
𝑘
2

+
1

3!
𝑞𝑘
3

+
1

4!
𝑞
2

𝑘
4

+
1

5!
𝑞
3

𝑘
5

+ ⋅ ⋅ ⋅ ) 𝑝𝑢
(1,0)

+ (
1

3!
𝑘
3

+
2

4!
𝑞𝑘
4

+
3

5!
𝑞
2

𝑘
5

+
4

6!
𝑞
3

𝑘
6

+ ⋅ ⋅ ⋅ ) 𝑝𝑢
(1,1)

+ ⋅ ⋅ ⋅
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+ [−(
1

2
𝑘
2

+
1

3!
𝑞𝑘
3

+
1

4!
𝑞
2

𝑘
4

+
1

5!
𝑞
3

𝑘
5

+ ⋅ ⋅ ⋅ )] 𝑓

+ [−(
1

3!
𝑘
3

+
1

4!
𝑞𝑘
4

+
1

5!
𝑞
2

𝑘
5

+
1

6!
𝑞
3

𝑘
6

+ ⋅ ⋅ ⋅ )] 𝑓
(0,1)

+ ⋅ ⋅ ⋅ .

(11)

Noticing that the infinite terms in the brackets of (11)
constitute convergent series, we rewrite it as

𝑢
2
= 𝑢 + 𝛼

01
𝑢
(0,1)

+ 𝛼
10
𝑢
(1,0)

+ 𝛼
11
𝑢
(1,1)

+ ⋅ ⋅ ⋅ + 𝜉
00
𝑓 + 𝜉
01
𝑓
(0,1)

+ ⋅ ⋅ ⋅ ,

(12)

with

𝛼
01

=

∞

∑

𝑖=1

𝑘
𝑖

𝑞
𝑖−1

𝑖!
=
exp (𝑞𝑘) − 1

𝑞
,

𝛼
10

= 𝑝

∞

∑

𝑖=2

𝑘
𝑖

𝑞
𝑖−2

𝑖!
= 𝑝

exp (𝑞𝑘) − 𝑞𝑘 − 1

𝑞2
,

𝛼
11

= 𝑝

∞

∑

𝑖=3

(𝑖 − 2) 𝑘
𝑖

𝑞
𝑖−3

𝑖!
= 𝑝

exp (𝑞𝑘) (𝑞𝑘 − 2) + 𝑞𝑘 + 2

𝑞3
,

𝜉
00

= −

∞

∑

𝑖=2

𝑘
𝑖

𝑞
𝑖−2

𝑖!
=

𝑞𝑘 + 1 − exp (𝑞𝑘)
𝑞2

,

𝜉
01

= −

∞

∑

𝑖=3

𝑘
𝑖

𝑞
𝑖−3

𝑖!
=

𝑞
2

𝑘
2

+ 2𝑞𝑘 + 2 − 2 exp (𝑞𝑘)
2𝑞3

.

(13)

Similarly, we get

𝑢
4
= 𝑢 + 𝛽

01
𝑢
(0,1)

+ 𝛽
10
𝑢
(1,0)

+ 𝛽
11
𝑢
(1,1)

+ ⋅ ⋅ ⋅ + 𝜂
00
𝑓 + 𝜂
01
𝑓
(0,1)

+ ⋅ ⋅ ⋅ ,

(14)

with

𝛽
01

=

∞

∑

𝑖=1

(−𝑘)
𝑖

𝑞
𝑖−1

𝑖!
= −

(1 − exp (−𝑞𝑘))
𝑞

,

𝛽
10

= 𝑝

∞

∑

𝑖=2

(−𝑘)
𝑖

𝑞
𝑖−2

𝑖!
= 𝑝

𝑞𝑘 − 1 + exp (−𝑞𝑘)
𝑞2

,

𝛽
11

= 𝑝

∞

∑

𝑖=3

(𝑖 − 2) (−𝑘)
𝑖

𝑞
𝑖−3

𝑖!

= −𝑝
(𝑞𝑘 − 2) + (𝑞𝑘 + 2) exp (−𝑞𝑘)

𝑞3
,

𝜂
00

= −

∞

∑

𝑖=2

(−𝑘)
𝑖

𝑞
𝑖−2

𝑖!
= −

𝑞𝑘 − 1 + exp (−𝑞𝑘)
𝑞2

,

𝜂
01

= −

∞

∑

𝑖=3

(−𝑘)
𝑖

𝑞
𝑖−3

𝑖!
=

𝑞
2

𝑘
2

− 2𝑞𝑘 + 2 − 2 exp (−𝑞𝑘)
2𝑞3

.

(15)

Substituting (5), (12), and (14) into (4) yields

V = (𝜔
0
− 𝜔
1
− 𝜔
2
− 𝜔
3
− 𝜔
4
) 𝑢

+ (−𝛼
01
𝜔
2
− 𝛽
01
𝜔
4
) 𝑢
(0,1)

+ (−ℎ𝜔
1
+ ℎ𝜔
3
− 𝛼
10
𝜔
2
− 𝛽
10
𝜔
4
) 𝑢
(1,0)

+ (−𝛼
11
𝜔
2
− 𝛽
11
𝜔
4
) 𝑢
(1,1)

+ ⋅ ⋅ ⋅

+ (−𝜉
00
𝜔
2
− 𝜂
00
𝜔
4
) 𝑓

+ (−𝜉
01
𝜔
2
− 𝜂
01
𝜔
4
) 𝑓
(0,1)

+ ⋅ ⋅ ⋅ .

(16)

Denoting V = 𝜎
00
𝑢 + 𝜎

01
𝑢
(0,1)

+ 𝜎
10
𝑢
(1,0)

+ 𝜎
11
𝑢
(1,1)

+ ⋅ ⋅ ⋅ +

𝜇
00
𝑓 + 𝜇

01
𝑓
(0,1)

+ ⋅ ⋅ ⋅ and comparing it with (3), we know
clearly that it is necessary to set 𝜎

00
= 0, 𝜎

01
= 0, 𝜎

10
= 0,

and 𝜇
00

= 1, 𝛾
01

= 𝜇
01
in order to get the numerical scheme

of (1), and after some easy calculation, we get five equations:

𝜔
0
− 𝜔
1
− 𝜔
2
− 𝜔
3
− 𝜔
4
= 0, (17)

(1 − exp (−𝑞𝑘)) 𝜔
4

𝑞
−
(exp (𝑞𝑘) − 1) 𝜔

2

𝑞
= 0,

− ℎ𝜔
1
+ ℎ𝜔
3
−
𝑝 (exp (𝑞𝑘) − 𝑞𝑘 − 1) 𝜔

2

𝑞2

−
𝑝 (𝑞𝑘 − 1 + exp (−𝑞𝑘)) 𝜔

4

𝑞2
= 0,

(18)

(exp (𝑞𝑘) − 𝑞𝑘 − 1) 𝜔
2

𝑞2
+
(𝑞𝑘 − 1 + exp (−𝑞𝑘)) 𝜔

4

𝑞2
= 1,

(19)

𝛾
01

=

(2 exp (𝑞𝑘) − 2 − 2𝑞𝑘 − 𝑞
2

𝑘
2

) 𝜔
2

2𝑞3

−

(𝑞
2

𝑘
2

− 2𝑞𝑘 + 2 − 2 exp (−𝑞𝑘)) 𝜔
4

2𝑞3
.

(20)

Instead of (8), if we change differential equation (3) into
the form

𝑢
𝑥𝑥

= −𝑢
𝑦𝑦

+ 𝑝 (𝑥, 𝑦) 𝑢
𝑥
+ 𝑞 (𝑥, 𝑦) 𝑢

𝑦
− 𝑓 (𝑥, 𝑦) , (21)
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similar procedure can be carried out as above, (17) will be
obtained together with the following formulae:

(1 − exp (−𝑝ℎ)) 𝜔
3

𝑝
−
(exp (𝑝ℎ) − 1) 𝜔

1

𝑝
= 0, (22)

− 𝑘𝜔
2
+ 𝑘𝜔
4
−
𝑞 (exp (𝑝ℎ) − 𝑝ℎ − 1) 𝜔

1

𝑝2

−
𝑞 (𝑝ℎ − 1 + exp (−𝑝ℎ)) 𝜔

3

𝑝2
= 0,

(exp (𝑝ℎ) − 𝑝ℎ − 1) 𝜔
1

𝑝2
+
(𝑝ℎ − 1 + exp (−𝑝ℎ)) 𝜔

3

𝑝2
= 1,

(23)

𝛾
10

=

(2 exp (𝑝ℎ) − 2 − 2𝑝ℎ − 𝑝
2

ℎ
2

) 𝜔
1

2𝑝3

−

(𝑝
2

ℎ
2

− 2𝑝ℎ + 2 − 2 exp (−𝑝ℎ)) 𝜔
3

2𝑝3
.

(24)

These seven equations, (17)–(19) and (22)-(23)which con-
tain five unknown values 𝜔

𝑖
, 𝑖 = 0, 1, 2, 3, 4, are compatible;

in fact (17)–(19) and (22) can be easily solved by means of
Mathematica software to give

𝜔
1
=

exp (−𝑝ℎ) 𝑝
(1 − exp (−𝑝ℎ)) ℎ

, (25)

𝜔
2
=

exp (−𝑞𝑘) 𝑞
(1 − exp (−𝑞𝑘)) 𝑘

, (26)

𝜔
3
=

𝑝

(1 − exp (−𝑝ℎ)) ℎ
, (27)

𝜔
4
=

𝑞

(1 − exp (−𝑞𝑘)) 𝑘
, (28)

𝜔
0
=

𝑝 (1 + exp (−𝑝ℎ))
ℎ (1 − exp (−𝑝ℎ))

+
𝑞 (1 + exp (−𝑞𝑘))
𝑘 (1 − exp (−𝑞𝑘))

, (29)

and then (23) holds immediately. In fact, 𝜎
11

= 0 holds too.
Substituting (25)–(29) into (20) and (24), we get, respectively,

𝛾
01

= −
(2 + 𝑞𝑘) exp (−𝑞𝑘) + 𝑞𝑘 − 2

2𝑞 (1 − exp (−𝑞𝑘))
, (30)

𝛾
10

= −
(2 + 𝑝ℎ) exp (−𝑝ℎ) + 𝑝ℎ − 2

2𝑝 (1 − exp (−𝑝ℎ))
. (31)

We denote the numerical solution at stencil points by 𝑈
𝑖
(𝑖 =

0, 1, 2, 3, 4); the FD approximation can then be obtained by
dropping the truncation error 𝑅

0
from (3)

𝐿
ℎ
𝑈
0
≡ 𝜔
0
𝑈
0
− (𝜔
1
𝑈
1
+ 𝜔
2
𝑈
2
+ 𝜔
3
𝑈
3
+ 𝜔
4
𝑈
4
)

= 𝑓
0
+ 𝛾
01
𝑓
(0,1)

0
+ 𝛾
10
𝑓
(1,0)

0
,

(32)

with 𝜔
𝑖
(𝑖 = 0, 1, 2, 3, 4) defined in (25)–(29) and 𝛾

01
, 𝛾
10

given in (30) and (31). And the boundary points values are
directly given by the boundary condition (2) as

𝑈
𝑗
= 𝑢 (𝑥

𝑗
, 𝑦
𝑗
) , for (𝑥

𝑗
, 𝑦
𝑗
) ∈ Γ
ℎ,𝑘
. (33)

Numerical methods like these, whose coefficients involve
exponential functions, are known collectively as compact
exponentially difference schemes. For brevity we call the
scheme EDS (exponential difference scheme) in the sequel.
If we freeze the data of𝑓(𝑥, 𝑦) to be constant locally too, then
in (32) we should let 𝛾

01
= 0 and 𝛾

10
= 0; we will call the

scheme EDS0 as below.

2.2. Discussions of EDS and EDS0

(1) It can be easily seen from (25)–(29) that the coefficients
matrix of difference operator 𝐿

ℎ
is five-diagonal and of

positive type: thematrix is diagonally dominant with positive
diagonal elements and negative off-diagonal elements. And
since upwind effect is preserved in the scheme so hopefully it
will serve well for convection-dominated problems.

(2)The scheme EDS0 is equivalent to central differencing
applied to a modified differential equation:

−𝛿(
𝑝ℎ

2
) 𝑢
𝑥𝑥

− 𝛿(
𝑞𝑘

2
) 𝑢
𝑦𝑦

+ 𝑝𝑢
𝑥
+ 𝑞𝑢
𝑦
= 𝑓, (34)

where 𝛿(V) = V ⋅ coth V. Since

𝛿(
𝑝ℎ

2
) = 1 +

𝑝
2

ℎ
2

12
+ 𝑂 (ℎ

4

) ,

𝛿 (
𝑞𝑘

2
) = 1 +

𝑞
2

𝑘
2

12
+ 𝑂 (𝑘

4

) ,

(35)

the scheme EDS0 can be said to have artificial diffusion.
Likewise, the schemeEDS is equivalent to central differencing
applied to the following modified differential equation:

− 𝛿(
𝑝ℎ

2
) 𝑢
𝑥𝑥

− 𝛿(
𝑞𝑘

2
) 𝑢
𝑦𝑦

+ 𝑝𝑢
𝑥
+ 𝑞𝑢
𝑦

= 𝑓 + 𝛾
01
𝑓
(0,1)

+ 𝛾
10
𝑓
(1,0)

.

(36)

(3) If we implement Taylor expansion for 𝜔
𝑖
(𝑖 =

0, 1, 2, 3, 4) with only two terms to be reserved, that is, 𝜔
1
≈

(1/ℎ
2

) − (𝑝/2ℎ), 𝜔
2

≈ (1/𝑘
2

) − (𝑞/2𝑘), 𝜔
3

≈ (1/ℎ
2

) +

(𝑝/2ℎ), 𝜔
4
≈ (1/𝑘

2

) + (𝑞/2𝑘), and 𝜔
0
≈ (2/ℎ

2

) + (2/𝑘
2

),
together with 𝛾

01
= 0 and 𝛾

10
= 0, then EDS (32) becomes

CDS.

(4) If considering 𝑝(𝑥
0
, 𝑦
0
) > 0 and 𝑞(𝑥

0
, 𝑦
0
) = 0 on

some reference point (𝑥
0
, 𝑦
0
) ∈ Ω, we have no difficulty

to follow the whole derivation process from the beginning
of this section to arrive at the difference operator similar to
𝐿
ℎ
defined in (32) but with 𝜔

2
= 1/𝑘

2

, 𝜔
4

= 1/𝑘
2

, 𝛾
01

=

0, and with 𝜔
1
, 𝜔
3
, 𝛾
10

no change in (25), (27), and (31).
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Correspondingly,𝜔
0
= (𝑝(1+exp(−𝑝ℎ)))/(ℎ(1−exp(−𝑝ℎ)))+

(2/𝑘
2

). Easily we can see that EDS and EDS0 are still of
positive type.

Furthermore, if 𝑝(𝑥, 𝑦) > 0 and 𝑞(𝑥, 𝑦) ≡ 0 are satisfied
in Ω, this problem typically has an exponential boundary
layer at 𝑥 = 1 and parabolic boundary layers at 𝑦 = 0 and
𝑦 = 1 (see [5, 28]). The parabolic layers raise interesting
numerical issues. They cause numerical instabilities that are
far less serious than those engendered by exponential layers;
yet it is difficult for traditional methods to approximate them
accurately. But EDS and EDS0 can cope with such kind of
problems without difficulty, and we will provide numerical
Example 10 in Section 4 to validate it.

As for 𝑝(𝑥
0
, 𝑦
0
) = 0 at some points (or 𝑝(𝑥, 𝑦) ≡ 0) and

𝑞(𝑥
0
, 𝑦
0
) > 0, similar formulae can be derived.

(5) If 𝑝(𝑥, 𝑦) ≡ 0 and 𝑞(𝑥, 𝑦) ≡ 0 hold inΩ, EDS becomes
CDS for Poisson’s equation.

(6) We assume 𝑝(𝑥, 𝑦) > 0 and 𝑞(𝑥, 𝑦) > 0 at the
beginning of the section just for brevity, as for 𝑝(𝑥, 𝑦) < 0

or 𝑞(𝑥, 𝑦) < 0, the difference scheme (32) still holds.

3. Analysis of Stability and Convergence of
the Difference Scheme

3.1. Local Truncation Error. We begin with analyzing the
truncation error of the scheme about EDS0. For brevity we
only consider the case that 𝑝(𝑥, 𝑦) > 0 and 𝑞(𝑥, 𝑦) > 0;
similar analysis can be done for other cases.

Estimating the truncation error of EDS0 from (3) yields

𝑅 = 𝜔
0
𝑢
0
− (𝜔
1
𝑢
1
+ 𝜔
2
𝑢
2
+ 𝜔
3
𝑢
3
+ 𝜔
4
𝑢
4
) − 𝑓. (37)

Substituting Taylor expansions (5)–(7) together with values
𝜔
𝑖
, (𝑖 = 0, 1, 2, 3, 4) given in (25)–(29) into (37), and making

some arrangement, we have

𝑅 = − 𝑓 + 𝑝𝑢
(1,0)

+ 𝑞𝑢
(0,1)

−
𝑝ℎ (1 + exp (−𝑝ℎ))
2 (1 − exp (−𝑝ℎ))

𝑢
(2,0)

−
𝑞𝑘 (1 + exp (−𝑞𝑘))
2 (1 − exp (−𝑞𝑘))

𝑢
(0,2)

+ 𝑝[
ℎ
2

3!
𝑢
(3,0)

+
ℎ
4

5!
𝑢
(5,0)

+ ⋅ ⋅ ⋅ ]

−
𝑝ℎ (1 + exp (−𝑝ℎ))
(1 − exp (−𝑝ℎ))

[
ℎ
2

4!
𝑢
(4,0)

+
ℎ
4

6!
𝑢
(6,0)

+ ⋅ ⋅ ⋅ ]

+ 𝑞 [
𝑘
2

3!
𝑢
(0,3)

+
𝑘
4

5!
𝑢
(0,5)

+ ⋅ ⋅ ⋅ ]

−
𝑞𝑘 (1 + exp (−𝑞𝑘))
(1 − exp (−𝑞𝑘))

[
𝑘
2

4!
𝑢
(0,4)

+
𝑘
4

6!
𝑢
(0,6)

+ ⋅ ⋅ ⋅ ] .

(38)

Using Taylor expansion again, we arrive at

𝑝ℎ (1 + exp (−𝑝ℎ))
2 (1 − exp (−𝑝ℎ))

= 1 +
𝑝
2

ℎ
2

12
+ 𝑂 (ℎ

4

) ,

𝑞𝑘 (1 + exp (−𝑞𝑘))
(1 − exp (−𝑞𝑘))

= 1 +
𝑞
2

𝑘
2

12
+ 𝑂 (𝑘

4

) .

(39)

Substituting the two formulae above into (38), we obtain

𝑅 = (−𝑢
(2,0)

− 𝑢
(0,2)

+ 𝑝𝑢
(1,0)

+ 𝑞𝑢
(0,1)

− 𝑓)

+
1

12
(−𝑝
2

𝑢
(2,0)

+ 2𝑝𝑢
(3,0)

− 𝑢
(4,0)

) ℎ
2

+
1

12
(−𝑞
2

𝑢
(0,2)

+ 2𝑞𝑢
(0,3)

− 𝑢
(0,4)

) 𝑘
2

+ 𝑂 (ℎ
4

+ 𝑘
4

) .

(40)

Assuming that the solution to differential equations (1) and
(2) satisfies 𝑢 ∈ 𝐶

4

(Ω), that is to say, 𝑢(𝑖,𝑗)(𝑥, 𝑦), (𝑖, 𝑗 =

0, 1, 2, 3, 4, 𝑖 + 𝑗 ≤ 4) are bounded by some constant, we use
the norm

‖𝑢‖
𝐶
4
(Ω)

= max
0≤𝑖, 𝑗≤4

𝑖+𝑗≤4

sup
(𝑥,𝑦)∈Ω

󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑖,𝑗)

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
, (41)

and assuming 𝑝(𝑥, 𝑦) ≤ 𝛼 and 𝑞(𝑥, 𝑦) ≤ 𝛽, then we can
easily see from (40) that the truncation error of the difference
approximation satisfies

𝑅 ≤ 𝐶
1
(ℎ
2

+ 𝑘
2

) ‖𝑢‖
𝐶
4
(Ω)

. (42)

Here the constant𝐶
1
= max{(𝛼2+2𝛼+1)/12, (𝛽

2

+2𝛽+1)/12},
which depends on the coefficients of differential operator 𝐿
defined in (1) but not onmesh steps ℎ, 𝑘, or𝑈. We summarize
the conclusion as below.

Lemma 1. Assuming that the solution 𝑢(𝑥, 𝑦) of differential
equations (1) and (2) satisfies 𝑢 ∈ 𝐶

4

(Ω), and both 𝑝(𝑥, 𝑦) ≤ 𝛼

and 𝑞(𝑥, 𝑦) ≤ 𝛽 are satisfied inΩ, the truncation error of EDS0
is of second-order which is shown in (42).

Remark 2. In all cases, (42) will hold for EDS0. For instance,
if 𝑝(𝑥, 𝑦) ≡ 0 in Ω, from (40) we can see that (42) still
holds with 𝐶

1
= max{1/12, (𝛽

2

+ 2𝛽 + 1)/12} . In particular,
if 𝑝(𝑥, 𝑦) ≡ 𝑞(𝑥, 𝑦) ≡ 0 in Ω, then (1) becomes Poisson’s
equation, and (42) holds with 𝐶

1
= max{1/12, 1/12} as well

known to us and so do other cases.
Now we complete the local truncation error estimation

for EDS0. As for EDS (32), if 𝑓(𝑥, 𝑦) ∈ 𝐶
1

(Ω), we can
see that EDS is just a slight modification of EDS0 without
changing the latter’s accuracy order since 𝛾

01
= −(𝑞𝑘

2

/12) +

(𝑞
3

𝑘
4

/720) − (𝑞
5

𝑘
6

/30240) + ⋅ ⋅ ⋅ , 𝛾
10

= −(𝑝ℎ
2

/12) +

(𝑝
3

ℎ
4

/720) − (𝑝
5

ℎ
6

/30240) + ⋅ ⋅ ⋅ .

3.2. Convergence Analysis. For continuing our analysis we
show a discrete maximum principle next.
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Lemma 3 (maximum principle). If 𝑈 is a mesh function such
that 𝐿

ℎ
𝑈
𝑗
≤ 0 (𝐿

ℎ
𝑈
𝑗
≥ 0) for any 𝑥

𝑗
∈ Ω
ℎ,𝑘
, then𝑈 attains its

maximum (minimum) value for some 𝑥
𝑗
∈ Γ
ℎ,𝑘
.

Proof. From discussions in Section 2, the difference operator
𝐿
ℎ
defined in (32) is of positive type, so it satisfies the discrete

maximum principle. Detailed proof can be seen in [29].
The maximum principle leads to a stability estimate in

the discrete maximum norm, as we will now demonstrate
it. In this paper, we write discrete maximum norm for mesh
functions:

|𝑈|
𝑆
= max
𝑥
𝑗
∈𝑆

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑗

󵄨󵄨󵄨󵄨󵄨
. (43)

Lemma 4. With 𝐿
ℎ
defined in (32), if 𝑝(𝑥

𝑖
, 𝑦
𝑖
) ≥ 𝛼 > 0 (or

𝑞(𝑥
𝑖
, 𝑦
𝑖
) ≥ 𝛽 > 0) in Ω

ℎ,𝑘
, we have, for any mesh function 𝑈,

|𝑈|
Ω
ℎ,𝑘

≤ |𝑈|
Γ
ℎ,𝑘

+
1

𝛼

󵄨󵄨󵄨󵄨𝐿ℎ𝑈
󵄨󵄨󵄨󵄨Ω
ℎ,𝑘

(or |𝑈|
Ω
ℎ,𝑘

≤ |𝑈|
Γ
ℎ,𝑘

+
1

𝛽

󵄨󵄨󵄨󵄨𝐿ℎ𝑈
󵄨󵄨󵄨󵄨Ω
ℎ,𝑘

) .

(44)

Proof. We only consider the case 𝑝(𝑥, 𝑦) ≥ 𝛼 > 0. Set
𝑊(𝑥, 𝑦) = 𝑥 and define the mesh function 𝑊

𝑖
= 𝑊(𝑥

𝑖
, 𝑦
𝑖
);

then𝑊
𝑖
≥ 0 and 𝐿

ℎ
𝑊
𝑖
= 𝑝
𝑖
≥ 𝛼 inΩ

ℎ,𝑘
. Furthermore, setting

𝑉
±

𝑖
= ±𝑈
𝑖
− (1/𝛼)|𝐿

ℎ
𝑈|
Ω
ℎ,𝑘

𝑊
𝑖
, we get

𝐿
ℎ
𝑉
±

𝑖
= ±𝐿
ℎ
𝑈
𝑖
−
1

𝛼

󵄨󵄨󵄨󵄨𝐿ℎ𝑈
󵄨󵄨󵄨󵄨Ω
ℎ,𝑘

𝐿
ℎ
𝑊
𝑖

= ±𝐿
ℎ
𝑈
𝑖
−
𝑝
𝑖

𝛼

󵄨󵄨󵄨󵄨𝐿ℎ𝑈
󵄨󵄨󵄨󵄨Ω
ℎ,𝑘

≤ 0,

(45)

and since 𝑊
𝑖
≥ 0 for (𝑥

𝑖
, 𝑦
𝑖
) ∈ Γ
ℎ,𝑘
, it follows from Lemma 3

that 𝑉±
𝑖
≤ |𝑈|
Γ
ℎ,𝑘

. Since𝑊
𝑖
≤ 1 in Ω

ℎ,𝑘
, so

|𝑈|
Ω
ℎ,𝑘

≤ |𝑈|
Γ
ℎ,𝑘

+
1

𝛼

󵄨󵄨󵄨󵄨𝐿ℎ𝑈
󵄨󵄨󵄨󵄨Ω
ℎ,𝑘

|𝑊|
Ω
ℎ,𝑘

≤ |𝑈|
Γ
ℎ,𝑘

+
1

𝛼

󵄨󵄨󵄨󵄨𝐿ℎ𝑈
󵄨󵄨󵄨󵄨Ω
ℎ,𝑘

.

(46)

This proves Lemma 4.

Lemma 4 immediately shows the existence and unique-
ness of the solution of the EDS0. We are now ready for an
error estimate.

Theorem 5. Let 𝑈 and 𝑢 be the solutions of difference scheme
(32)-(33) and differential equation (1)-(2), respectively, and
assuming 𝑢 ∈ 𝐶

4

(Ω) and conditions for Lemmas 1 and 4 are
satisfied, then

|𝑈 − 𝑢|
Ω
ℎ,𝑘

≤ 𝐶 (ℎ
2

+ 𝑘
2

) ‖𝑢‖
𝐶
4
(Ω)

, (47)

where 𝐶 = 𝐶
1
/𝛼.

Proof. From (3) and (32), the error 𝑒
0
= 𝑈
0
− 𝑢
0
satisfies, at

the interior reference mesh points,

𝐿
ℎ
𝑒
0
= −𝑅
0
. (48)

Since𝑅
0
≤ 𝐶
1
(ℎ
2

+𝑘
2

)‖𝑢‖
𝐶
4
(Ω)

, from (42), the result therefore
follows by application of Lemma 4 to 𝑒

𝑗
, since 𝑒

𝑗
= 0 for

(𝑥
𝑗
, 𝑦
𝑗
) ∈ Γ
ℎ,𝑘
.

If 𝑓(𝑥, 𝑦) ∈ 𝐶
1

(Ω), that is, 𝑓(𝑖,𝑗)(𝑥, 𝑦), (𝑖, 𝑗 = 0, 1, 𝑖 + 𝑗 ≤

1) are bounded by some constant, say by𝐶
3
. Since 𝛾

01
, 𝛾
10
can

be considered as just relatively minor modifications of EDS0
(equal to second-order), so the truncation error of EDS is
still of second-order accuracy. The maximum principle and
convergent theorem holds too for EDS.

Remark 6. So far all the derivation process and analysis of
EDS are based on the fact that 𝑝(𝑥, 𝑦) ≥ 0 and 𝑞(𝑥, 𝑦) ≥ 0,
but, in fact, in case of 𝑝(𝑥, 𝑦) ≤ 0, 𝑞(𝑥, 𝑦) ≤ 0 (see that it will
not change the sign of 𝜔

𝑖
(𝑖 = 0, 1, 2, 3, 4) from (25)–(29)),

the method is still effective and similar theoretical analysis as
we have shown above could be done.

4. Numerical Experiments

In this section, we test our methods with four examples.
Example 7 is a convection-diffusion equation with constant
coefficients and has exponential boundary layers. Example 8
is the one with constant coefficients and has no boundary
layers, but the convection terms have singular lines on the
boundary; that is, 𝑝(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) vanish on some part of
the boundary. Example 9 is convection-dominated equation
with variable coefficients and has corner exponential bound-
ary layer (Figure 5). At last, we provide Example 10 with both
exponential and parabolic boundary layers.

We discuss the accuracy and stability of the EDS in
comparison with CDS and UDS methods and some results
given by other authors.

Still the computational domain for all the following
problems is a unit square Ω = (0, 1) × (0, 1). For the
sake of simplicity, we assume that the step sizes ℎ and 𝑘

are equal. However, this is not a restriction at all for the
methods proposed in this paper. The mesh points Ω

ℎ,𝑘
and

the boundary points Γ
ℎ,𝑘

can be simplified to be denoted by
Ω
ℎ
and Γ
ℎ
.

The exact solutions for these problems are known, so
the maximum pointwise error at all mesh points can be
calculated using the formula

𝐸
ℎ
:= max
𝑖∈Ω
ℎ

󵄨󵄨󵄨󵄨𝑈𝑖 − 𝑢
𝑖

󵄨󵄨󵄨󵄨 , (49)

where 𝑢 is the exact solution and𝑈 is the numerical solution.
The rate of convergence is defined by

rate =
log (𝐸

2ℎ
/𝐸
ℎ
)

log 2
. (50)

Example 7. Consider convection-diffusion equation with
constant coefficients:

−𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

+ Re (𝑢
𝑥
+ 𝑢
𝑦
) = 0, (𝑥, 𝑦) ∈ Ω, (51)
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Figure 2: Exact solution of Example 7 for different values of Re.
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Figure 3: Max absolute errors of EDS, Example 7.
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Table 1: Maximum absolute errors with Re = 1 (left) and Re = 100 (right), Example 7.

ℎ = 𝑘
Re = 1 Re = 100

UDS CDS EDS UDS CDS EDS
1/8 3.57𝑒 − 3 8.05𝑒 − 5 1.55𝑒 − 15 2.66𝑒 − 7 — 1.21𝑒 − 22

1/16 1.87𝑒 − 3 2.03𝑒 − 5 6.83𝑒 − 15 2.45𝑒 − 4 — 2.96𝑒 − 21

1/32 9.63𝑒 − 4 5.12𝑒 − 6 2.70𝑒 − 14 7.70𝑒 − 3 — 1.03𝑒 − 18

1/64 4.87𝑒 − 4 1.28𝑒 − 6 1.03𝑒 − 13 3.03𝑒 − 2 1.70𝑒 − 2 4.19𝑒 − 17

1/128 2.44𝑒 − 4 3.20𝑒 − 7 4.06𝑒 − 13 3.22𝑒 − 2 6.68𝑒 − 3 2.10𝑒 − 16

1/256 1.23𝑒 − 4 8.00𝑒 − 8 1.58𝑒 − 12 2.01𝑒 − 2 1.64𝑒 − 3 9.42𝑒 − 16

—means CDS diverges for Re = 100 when the mesh size is big.

Table 2: Absolute errors for EDS solution of Example 7 with different values of Re.

ℎ = 𝑘 Re = 5 Re = 50 Re = 500 Re = 5000
1/8 8.60𝑒 − 16 5.36𝑒 − 19 1.86𝑒 − 82 0.00𝑒 + 0

1/16 4.30𝑒 − 15 7.74𝑒 − 18 9.78𝑒 − 42 0.00𝑒 + 0

1/32 1.82𝑒 − 14 2.71𝑒 − 16 4.49𝑒 − 28 1.33𝑒 − 204

1/64 7.43𝑒 − 14 1.57𝑒 − 15 1.01𝑒 − 20 2.06𝑒 − 84

1/128 2.87𝑒 − 13 6.73𝑒 − 15 3.20𝑒 − 18 6.39𝑒 − 52

1/256 2.72𝑒 − 14 2.72𝑒 − 14 9.58𝑒 − 17 1.79𝑒 − 26

1/512 1.08𝑒 − 13 1.08𝑒 − 13 8.79𝑒 − 17 6.81𝑒 − 22

and with boundary condition:

𝑢 (𝑥, 0) = 0, 𝑢 (𝑥, 1) =
exp (Re𝑥) − 1

exp (Re) − 1
,

𝑢 (0, 𝑦) = 0, 𝑢 (1, 𝑦) =
exp (Re𝑦) − 1

exp (Re) − 1
.

(52)

In order to prevent overflow of the computer, we rewrite (52)
as

𝑢 (𝑥, 0) = 0, 𝑢 (𝑥, 1) =
exp (Re (𝑥 − 1)) − exp (−Re)

1 − exp (−Re)

𝑢 (0, 𝑦) = 0, 𝑢 (1, 𝑦) =
exp (Re (𝑦 − 1)) − exp (−Re)

1 − exp (−Re)
.

(53)

Comparison of (51) with (1) shows that

𝑝 (𝑥, 𝑦) = Re, 𝑞 (𝑥, 𝑦) = Re, 𝑓 (𝑥, 𝑦) = 0. (54)

The exact solution of this problem is

𝑢 (𝑥, 𝑦) =
exp (−Re (1 − 𝑥)) − exp (−Re)

1 − exp (−Re)

⋅
exp (−Re (1 − 𝑦)) − exp (−Re)

1 − exp (−Re)
.

(55)

Figure 2 shows that there is no boundary layer when Re =
1, but when Re is large the boundary layers will emerge near
𝑥 = 1 and 𝑦 = 1. Notice that since the source term 𝑓(𝑥, 𝑦) =

0, so EDS and EDS0 are virtually identical.
The Gauss-Seidel iteration is used to solve the resulting

systems of equations. The convergence criterion for the

iteration is chosen to be 3𝑒−16, which is almost theminimum
positive machine-precision number (the minimum positive
machine-precision number is 2.22045 ∗ 10

−16 in double-
precision computer system). The maximum absolute errors
for different values of ℎ and 𝑘 are given in Table 1.

From Table 1 we can see that EDS gives more accurate
results compared with CDS and UDS. In fact, the result
of the EDS is almost as accurate as the machine-precision
just because EDS is the exact scheme for Example 7. An
exact difference scheme [30] is one for which the computed
solution agrees exactly with the true solution at the mesh
points. It is easy to verify this fact because if we substitute the
exact solution (55) and the values of the coefficients (25)–(29)
into the truncation error (37) we will get

𝑅
0
= 𝜔
0
𝑢
0
− (𝜔
1
𝑢
1
+ 𝜔
2
𝑢
2
+ 𝜔
3
𝑢
3
+ 𝜔
4
𝑢
4
)

= 𝜔
0
𝑢 (𝑥
0
, 𝑦
0
) − (𝜔

1
𝑢 (𝑥
0
+ ℎ, 𝑦

0
) + 𝜔
2
𝑢 (𝑥
0
, 𝑦
0
+ 𝑘)

+𝜔
3
𝑢 (𝑥
0
− ℎ, 𝑦

0
) + 𝜔
4
𝑢 (𝑥
0
, 𝑦
0
− 𝑘))

= 0

(56)

at any reference point.
Table 2 shows clearly that with Re increases, the results

become more and more accurate which validates the uncon-
ditional numerical stability in solving these linear system of
equations of the EDS scheme. Figure 3 shows the absolute
errors of EDS for Example 7, with mesh steps ℎ = 𝑘 = 1/32.

We continue to implement our experiments; the conver-
gence criterion for the Gauss Seidel iteration is chosen to be
10
−10 for the following problems.
We prefer to apply the Richardson extrapolation tech-

nique here to compute a fourth-order accurate solution since
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Table 3: Maximum absolute errors and rate of convergence, Example 8 with 𝑃 = 100.

ℎ = 𝑘
UDS EDS0 EDS

Errors Rate Errors Rate Errors Rate
1/8 3.07𝑒 − 2 2.37𝑒 − 2 1.00𝑒 − 2

1/16 1.75𝑒 − 2 0.81 8.64𝑒 − 3 1.46 5.07𝑒 − 3 0.98
1/32 9.31𝑒 − 3 0.91 2.51𝑒 − 3 1.78 1.68𝑒 − 3 1.60
1/64 4.80𝑒 − 3 0.96 6.59𝑒 − 4 1.93 4.48𝑒 − 4 1.90
1/128 2.44𝑒 − 3 0.98 1.67𝑒 − 4 1.98 1.14𝑒 − 4 1.97
1/256 1.23𝑒 − 3 0.99 4.19𝑒 − 5 1.99 2.88𝑒 − 5 1.98

Table 4: Maximum absolute errors and rate of EDS0-RE and EDS-RE, Example 8 with 𝑃 = 100.

EDS0-RE
ℎ = 𝑘 1/8 1/16 1/32 1/64 1/128
error 3.20𝑒 − 3 4.71𝑒 − 4 4.03𝑒 − 5 2.83𝑒 − 6 2.62𝑒 − 7

Rate 2.76 3.55 3.83 3.43

EDS-RE error 1.46𝑒 − 3 3.26𝑒 − 4 3.80𝑒 − 5 2.75𝑒 − 6 2.55𝑒 − 7

Rate 2.16 3.10 3.79 3.43

Table 5: Maximum absolute errors in the computed solution,
Example 8 with 𝑃 = 1000.

ℎ = 𝑘 UDS EDS0 EDS EDS0-RE EDS-RE
1/8 3.51𝑒 − 2 3.45𝑒 − 2 2.20𝑒 − 2 1.16𝑒 − 2 1.46𝑒 − 3

1/16 1.89𝑒 − 2 1.78𝑒 − 2 1.56𝑒 − 2 5.17𝑒 − 3 3.26𝑒 − 4

1/32 9.96𝑒 − 3 8.39𝑒 − 3 7.64𝑒 − 3 1.93𝑒 − 3 3.80𝑒 − 5

1/64 5.08𝑒 − 3 3.56𝑒 − 3 3.14𝑒 − 3 5.29𝑒 − 4 2.75𝑒 − 6

1/128 2.57𝑒 − 3 1.29𝑒 − 3 1.14𝑒 − 3 8.82𝑒 − 5 2.55𝑒 − 7

1/256 1.29𝑒 − 3 3.88𝑒 − 4 3.54𝑒 − 4

the technique will not destroy the unconditional stability
of EDS0 and EDS. Now we denote by 𝑈

ℎ,𝑘

𝑖,𝑗
the difference

solution at any mesh point (𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ,𝑘
; the Richardson

extrapolation can be written as

𝑈
ℎ,𝑘

𝑖,𝑗
=

2
𝑟

𝑈
ℎ/2,𝑘/2

2𝑖,2𝑗
− 𝑈
ℎ,𝑘

𝑖,𝑗

2𝑟 − 1
, (57)

where 𝑟 = 2 is the order of accuracy before the extrapolation
and the order of accuracy will be increased to 𝑟 + 2 after the
extrapolation.

Example 8. Consider

−𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

+ 𝑃𝑥𝑢
𝑥
+ 𝑃𝑦𝑢

𝑦
= 𝑓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω, (58)

where boundary condition:

𝑢 (𝑥, 0) = 0, 𝑢 (𝑥, 1) = 0,

𝑢 (0, 𝑦) = 0, 𝑢 (1, 𝑦) = 0,

(59)

holds in Ω. The source term 𝑓(𝑥, 𝑦) is determined so as
𝑢(𝑥, 𝑦) = 𝑥𝑦(1 − 𝑥)(1 − 𝑦) being a solution of (58).

The figure of the exact solution is presented on the left
in Figure 4. The solution has no relation to 𝑃 and has no
boundary layer.

From Table 3 we can see that EDS0 and EDS get better
results than UDS for Example 8, and as step ℎ decreases, the
rate of EDS0 and EDS get closer and closer to second-order,
whereas the rate of UDS gets closer to 1.

In order to get much more accurate results, we carry
out Richardson’s extrapolation. In this paper, we denote the
method of the EDS0 (EDS) with Richardson’s extrapolation
by EDS0-RE (EDS-RE). The results are given in Table 4. We
can see that Richardson’s extrapolation really increases the
accuracy a lot.

Table 5 shows that EDS is a little bit more accurate than
EDS0, but EDS-RE is more accurate than EDS0-RE.

Example 9. Consider convention-dominated problem with
variable convection coefficient:

−𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

+ 𝑃 (1 + 𝑥) 𝑢
𝑥
+ 𝑃 (1 + 𝑦) 𝑢

𝑦
= 𝑓 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ Ω,

(60)

with boundary condition

𝑢 (𝑥, 0) = 1, 𝑢 (𝑥, 1) =
1 − exp (−𝑃 (1 − 𝑥))

1 − exp (−𝑃)
,

𝑢 (0, 𝑦) = 1, 𝑢 (1, 𝑦) =
1 − exp (−𝑃 (1 − 𝑦))

1 − exp (−𝑃)
.

(61)

The source term 𝑓(𝑥, 𝑦) is determined so as 𝑢(𝑥, 𝑦) = (1 −

exp(−𝑃(1 − 𝑥𝑦)))/(1 − exp(−𝑃)) being a solution of (60).
Corner boundary layer occurs at 𝑥 = 1 and 𝑦 = 1. Table 6

lists maximum absolute errors in the computed solution of
the problem. Table 6 again shows that EDSmethod getsmuch
more accurate results for convection-dominated problems.

Example 10. Consider a constant coefficient convection-
diffusion equation (1) with 𝑝(𝑥, 𝑦) = 1/𝜖, 𝑞(𝑥, 𝑦) = 0, and
𝑓(𝑥, 𝑦) = 0; that is,

−𝜖 (𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦
) + 𝑢
𝑥
= 0, (𝑥, 𝑦) ∈ Ω. (62)
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Table 6: Maximum absolute errors in the computed solution of Example 9.

ℎ = 𝑘
𝑃 = 10 𝑃 = 100 𝑃 = 1000

UDS EDS UDS EDS UDS EDS
1/8 4.60𝑒 − 1 1.32𝑒 − 1 8.00𝑒 − 2 3.44𝑒 − 9 8.45𝑒 − 3 0.00𝑒 + 0

1/16 4.88𝑒 − 1 3.19𝑒 − 1 1.47𝑒 − 1 6.00𝑒 − 5 1.63𝑒 − 2 0.00𝑒 + 0

1/32 6.19𝑒 − 1 5.43𝑒 − 1 2.61𝑒 − 1 2.13𝑒 − 3 3.17𝑒 − 2 0.00𝑒 + 0

1/64 7.64𝑒 − 1 7.35𝑒 − 1 4.13𝑒 − 1 5.58𝑒 − 2 6.15𝑒 − 2 3.52𝑒 − 12

1/128 8.65𝑒 − 1 8.56𝑒 − 1 4.90𝑒 − 1 2.51𝑒 − 1 1.17𝑒 − 1 3.73𝑒 − 6

Table 7: Maximum absolute errors and rate in the computed solution, Example 10 with 𝜖 = 0.1.

ℎ = 𝑘
UDS CDS EDS EDS-RE

Errors Rate Errors Rate Errors Rate Errors Rate
1/8 2.41𝑒 − 1 7.50𝑒 − 2 7.93𝑒 − 3 3.51𝑒 − 5

1/16 1.39𝑒 − 1 0.79 1.65𝑒 − 2 2.19 2.02𝑒 − 3 1.96 2.16𝑒 − 6 3.93
1/32 7.76𝑒 − 2 0.84 4.19𝑒 − 3 1.98 5.09𝑒 − 4 1.99 1.32𝑒 − 7 3.98
1/64 4.11𝑒 − 2 0.92 1.04𝑒 − 3 2.01 1.28𝑒 − 4 2.00 8.16𝑒 − 9 4.00
1/128 2.12𝑒 − 2 0.96 2.59𝑒 − 4 2.00 3.19𝑒 − 5 2.00
Note. The convergence criterion of the Gauss Seidel iteration for EDS-RE scheme is chosen to be 3 × 10−16 to obtain highly accurate results.
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Figure 4: Exact and EDS numerical solution for Example 8.
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Figure 6: Exact solution of Example 10.

Table 8: Max absolute error in the computed solution, Example 10
with 𝜖 = 0.001.

ℎ = 𝑘 UDS EDS EDS-RE MDC
1/8 8.12𝑒 − 3 1.15𝑒 − 4 3.51𝑒 − 5

1/16 1.60𝑒 − 2 3.21𝑒 − 5 2.16𝑒 − 6 1.31𝑒 − 4

1/32 3.13𝑒 − 2 8.98𝑒 − 6 1.32𝑒 − 7 5.82𝑒 − 5

1/64 6.07𝑒 − 2 2.58𝑒 − 6 8.15𝑒 − 9 2.72𝑒 − 5

1/128 1.15𝑒 − 1 2.58𝑒 − 6 8.15𝑒 − 9 2.72𝑒 − 5

Note. The last column of data comes from [31] of the MDC finite-element
solution.
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Figure 7: Errors of EDS for Example 10with 𝜖 = 0.01, ℎ = 𝑘 = 1/32.

The boundary condition is prescribed as

𝑢 (𝑥, 0) = 0, 𝑢 (𝑥, 1) = 0,

𝑢 (0, 𝑦) = sin (𝜋𝑦) , 𝑢 (1, 𝑦) = 2 sin (𝜋𝑦) .
(63)

The exact solution [31] is

𝑢 (𝑥, 𝑦) = (exp ( 𝑥

2𝜖
) sin (𝜋𝑦)

× [2 exp (− 1

2𝜖
) sinh (𝜃𝑥) + sinh (𝜃 (1 − 𝑥))])

× (sinh (𝜃))−1,
(64)

where 𝜃2 = 𝜋
2

+ 1/(4𝜖
2

).
This problem represents a convection dominated flowand

was used as one of the test problems by Gupta et al. [18] and
many other authors [31, 32]. Figure 6 shows the exact solution
with 𝜖 = 0.1 and 𝜖 = 0.001. For most part of the domain, the
exact solution is smooth, but it has a steep boundary layer
(exponential layer) along the downstream edge at 𝑥 = 1 and
has parabolic layers along the edges at 𝑦 = 0 and 𝑦 = 1.

Results of Example 10 from different methods are shown
in Table 7. We see that EDS and Richardson’s extrapolation
for EDS get more accurate results.

Figure 7 draws errors of EDS for Example 10 with 𝜖 =

0.01, ℎ = 𝑘 = 1/32. The errors of different schemes along
𝑥 = 0.5 and 𝑦 = 0.5 are plotted in Figure 8. We can see that
UDS cannot approximate the exact solution quite well near
the exponential layer. With fixed coordinate 𝑦, the errors of
all the methods increase with 𝑥 which increases from 𝑥 = 0

to 𝑥 = 1 along the horizontal 𝑥 axis, but EDS and EDS-RE get
much better results (Table 8).

5. Conclusions

Idea of direction changing and order reducing has been
used to construct a compact exponential FD scheme over
a five-point stencil for 2D convection-diffusion problem
in the paper. The scheme is of concise exponential type
and unconditionally stable; the convergent accurate order is
second. Four numerical examples show that EDS0 and EDS
can get much highly accurate results for different kinds of
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Figure 8: Errors of numerical results, Example 10 with 𝜖 = 0.01, ℎ = 𝑘 = 1/32.

problems, including those with boundary layers and without
layers. Richardson’s extrapolation can improve the accurate
order to four.

We should mention that if one takes a scheme for its
1D analogue to form the “tensor product” of the scheme in
2D case, one can directly arrive at a scheme on five-point
stencil but not on a nine-point stencil. But ourmethod can be
applied to constructmuchmore accurate scheme over a nine-
point stencil. Also, the idea can be used to form schemes on
nonuniform grids. Theoretically, idea of direction changing
and order reducing can also be used to solve varieties of
problems, for example, parabolic equation 𝑢

𝑡
+ 𝑏(𝑥)𝑢(𝑥) =

]𝑢
𝑥𝑥
, and so forth.Thosewill be investigated in future studies.
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