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Based on the norm in the Hilbert Space L*[0, 1], the second order detrended Brownian motion is defined as the orthogonal
component of projection of the standard Brownian motion into the space spanned by nonlinear function subspace. Karhunen-
Loeve expansion for this process is obtained together with the relationship of that of a generalized Brownian bridge. As applications,
Laplace transform, large deviation, and small deviation are given.

1. Introduction

Let X = {X(#),0 < t < 1} be a centered and continuous
Gaussian process on [0, 1] with covariance function

Ky (t,s) =EX(t) X (s). )

The Karhunen-Loeve expansion of X is given by the
(convergent in mean squares) series

X =Y mMfe ), @)
k=1

where {#;,k > 1} is a sequence of iid. N(0,1) random
variables and {A;,k > 1} is at most the countable set of
eigenvalues of Fredholm integral operator

1
Ty f (8) = L Ky (t,5) f(s)ds 3)

{fi(t),k > 1} and forms an orthogonal sequence in L%[0,1]

and [ Ky(t, £)dt < co.

Deheuvels et al. in [1-4] provided the Karhunen-Loéve
expansions for the processes that are related with Brown-
ian motion. The Karhunen-Loéve expansion for detrended
Brownian motion has been studied by Ai et al. [5]. Note

that the detrended Brownian motion in [5] can be viewed as
projection to a constant function subspace in L*[0, 1]. That is,

Jl W, (t)*dt = min Jl (WEt)—¢ - ozt)zdt. (4)
0 >0 0

To generalize the projection idea into nonlinear detre-
nded process, now we consider

1
) 2
nin JO (W (t)—c — ot - c3t2) dt (5)

and the optimal constant c; satisfy

o (! 2 )
a—CjL(W(t)—cl—czt—c3t2)dt:0, i=1,2,3. (6)

It is easy to obtain

1 1 1
a 9J W(s)ds—36j W(s)sds+3OJ W (s) s°ds,
0 0 0

Y
Il

1 1
—36J W (s)ds + 192J W (s)sds
0 0
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1
- 180 J W (s) s°ds,
0

1 1 1
%:301 W(s)ds—lSOJ W(s)sds+18OJ W (s) s°ds.
0 0 0

(7)
Let
9 =36 30
A= (aij)3>(3 = -36 192 -180 |; (8)
30 -180 180
we have
3 1 .
¢ = Z a;; Jo STW(s)ds, j=12,3. 9)

i=1
Now we can define the second order detrended process
W, =W - ) ¢t/
=1

=W (t) + (-9 + 36t — 30¢°) Il W (s)ds
¢ (10)

1
+ (36 - 192t + 1801.‘2) J- W (s)sds
0

1
+ (—30 + 180t — 180t2) J W (s) s°ds.
0

2. Main Results

We give the following lemma that provides the explicit
covariance function.

Lemma 1. For convenience, we add K x (s, t) into formula (11),
that is

Ky (s,t) = E(W, () W, (5))

3 ¢ tp+1 ) 5
=tASs— a _ - — Sql
£;1Pq<p p(p+1)

i+1
- E P 7!
il T~ 5
< i i(i+1)

i,j=1
3003 :
pti+2 i1 g1
+ a;;a - - s,
P%;“)JZI TP (p+1)(p+i+1)(i+1)
(11)

where a;;, a1, j, p,q = 1,2, 3 is given in (8).
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Proof. Consider

3
W,()=W(®) -/, 0<t<1 (12)
j=1

and W, (¢) is a mean zero Gaussian process; we obtain

E(W, ()W, (5))
= EW, () W, (s)
3 3
=E (W t) - Z c]-tj_1> <W(s) - Z cqsq_1>
= ! (13)
=E (W(t) - Z a; <I U W (w) du) t11>
ij=1 0
3 1
-E <W (s) - Z Apg (J VW (v) dv) sq_l) .
pa=1 0
We notice that
EW @)W (s)) =tAs, (14)
1
E(W(t)J VW (v) dv)
0
1
=E (J W)W (v) Vp_ldv>
0
= J-l (t Av) VP dy (15)
0
= Jt vdv + jl P dy
0 t
t tp+1
p plp+1)
E <J1 uW () du> (Jl VW (v) dv)
0 0
1 1
= J- u'E (W (u) J- VW (v) dv> du
0 0
(16)

! i—l(u ub*! )
J u —_— - du
0 p plp+1)

p+i+2
(p+1)(p+i+1)(+1)

Substituting (16), (17), and (19) into (15), we derive

E (W, (t) W, (5))

3 p+l
=tAs— Z apq(t t—))sq_l

S M\p p(pt



Abstract and Applied Analysis

i1
303
pt+i+2 i1 g-1
+ ; t
p;h; ]Pq(p+l)(p+z+1)(z+l)
17)
O

Lemma 2 (see [3]). Ift € [0,1], ¢;(t) = X2, wk\/ﬁ,jek)]-(t),

j=1,2,..., then the condition

J & (t) dt ’“_‘“J & (1) dt (18)
[0,1] [0,1]

is equivalent to the identity

Ak,l = Ak,Z Vk > ]. (19)

In the following, we will give some preliminaries, notions,
and facts that are needed in Theorem 3. For v > -1, J,(-) is
Bessel function [6] with index v and the positive zeros of ], ()
are infinite sequence 0 < z,; < z,, < ---. When v = 3/2,
v = 5/2, the positive zeros of J5, x, J5/2x ar€ 235 4> Z5/240 k =
1,2,..., and they are in such a way that

0 <z351 <Zspp1 < Zappp <ot (20)

Now we can state one of the main results of this paper.

Eleorem 3. For the second order detrended Brownian motion
W,(t) and a generalized Brownian bridge B,(t) withn = 2 in
7],

B, (t) = B(t) - (60t +18t - 67) B(1)
1
—t(60t2—96t+11)J B(s)ds (21)
0
1
+10t(12t2—18t+1)J B(s)sds.
0

One has the distribution identities

law 1 2
j W, (0)%de & j B,(#)dt
0

(22)
2 *2
law Mk Mk

k1 423/2 k 4zs/z k

where {n,k > 1} and {n;,k > 1} denote two independent
sequences of independently and identically distributed N(0, 1)
random variables.

Proof. By straightforward induction based on the equation
and splitting the integration range from ¢, we get

t 1
AF(8) = L sf(s)ds+tJt £(s)ds

tp+l

_pi— Pq(zi p(p+1)>J S Gds

i+1
Z ot IJ <§_ i(:+l)>f(s)ds

i,j=1

3003
pti+2 i1
2 t
; Z‘ ’Pq(p+1 Y(p+i+1)(i+1)
lesqflf(s)ds.
0
(23)

By differentiation of both sides of (23) with respect to ¢, we
have

s
A () = J f(s)ds- Z apq L s (s)ds

=1

i+1

3 1
) N N
2}2( j=1at L (f_ i(i+1))f(5)ds

i=

»

pg=li=

i . (p+i+2)(j-1) i
. i Pq (p+1)(p+i+1)@i+1)

x Jl sTf (s)ds.

0
(24)

By differentiation of both sides of (24) with respect to ¢, we
have

A" () + f @)

3 2(p+i+2)
Y. Ay

!
(P+1)(p+z+1)(l+1)J f(s)ds

i,p,q=1
3

1 s Si+1
_22% L (?“ i(i+1))f(s)ds

i=

3 1
+ Z ay J sTf (s)ds
0
3 1
Z ay J sTHf (s) ds> t
0

+ (Z a3, J: sTHf(s) ds> £

(25)



We can simplify this equation to
A" (&) + f(£) + by + byt + byt* =0, (26)
where

2(p+i+2)
b= —
1 i,;%ﬁ ié Plip+1)(p+i+1)(i+1)

3 1 s Si+1
+22ai3j (;—i(i+l)>f(s)ds

i=1 0

J s f (s)ds

3 1
Dy s

g=1
(27)
3 1
b= - Zaij STUf (s) ds, (28)
=1 0
3
Z J STUf () ds. (29)

We solve the inhomogeneous second differential equation
to obtain

f(t) =¢ cos % + ¢, sin % +2Ab, — by — byt — byt”. (30)

We substitute f(t) into (28) and (29) to obtain

\/XsinL +6)tcosL - 12)&\/XsinL +6)L>C
( VA VA VA '

1 1
+( =V cos — + 61 sin —
( VA VA

1
+ 12AVA cos — — 124V + \/X)
Vi E

= 0)
1
—2VXsin — — 141 cos — + 30A\/Xsm - 16)L) c
( VA \//T VA !
1 1
+(2VXcos — - 141 sin —
(2hc0s (- 1rsin 5
— 30AVA cos —— + 30AVA - 3\/_)
VA

(31)
In order that there are nonzero choices for ¢,c,, the
determinant of the above two equations has to be zero, which

can be written as

Dy, Dy, — Dy, Dy =0, (32)
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1 1 1
D;; = VAsin — + 61 cos — — 12AVA sin — + 6,
! VA VA VA

1 1 1
D,, = — VAcos — + 6\ sin — + 121 VA cos —
. Vi VA

VA
~ 124V + VA,
D, = —2VAsin 2 14\ cos L
VA VA
1
+30AVAsin — - 16,
Vi
1 1
D,, = 2VA cos — — 141 sin — — 30AVA cos —
2 VA \/X VA
+30AVA - 3V
(33)
We obtain, after some simplification,
240V + 42V
1 1
= (24A% = 1) sin — + (24A*VA - 8A VL) cos —.
(202 2)sin L Jeos L
(34)

Then A #0 is an eigenvalue if and only if (34) holds. We
therefore obtain

D)= -720((2427"% =17} sinA'/2
+ (2407 = 817) cos A7 - 2417 - 41 77),
(35)
with D(0) = 1.
According to the trigonometric function formula
sin L. 2sin L Ccos ——=
Vi 2VA 2 \/_
(36)
cos L. 2cosZL -1=1- 2sinZL
VA 2V 2Vl

we can observe that

1 1
Dy Dy = DDy, = 127“/_]3/2 ( \/_> s/ <2\_/X> =0,

(37)
where J;,(2), J5,(2) are Bessel functions as follows:
V2r-z (sinz cosz
312 (2) = ( >~ ))
s z z
(38)
V2m -z 1 3 . 3
Js2 (2) = ((——+—3>smz——2cosz>,
z z

which gives two sequences of eigenvalues of (37), namely,
(2235;) " and (2255;)
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Similarly, we can obtain the two eigenvalues (2z, /z’k)—z)

(2z5 /2,k)_2 corresponding to those of integral operator of a
generalized Brownian bridge B,(t). Note that the integral
operator is

Jl K, (s,t) f (s)ds. (39)

0

Actually, in Lemma 2, we have the distribution identities

1 1
J W, (t)*dt la=wj B,(t)*dt
0 0

(40)
2 %2
law i A
- 2 2 .
o1 Y5 k=1 450
O

Remark 4. From (11) and (22), we derive that
1 1 1
J Ky (t, 1) dt = J E(Wy(t)*)dt = EJ W, (t)*dt
0 0 0

Yoy (a1

2
=1 %500 k14550
1 1 3
= — 4+ — = —
40 56 140

by using the Rayleigh's formula, for v = 3/2 and v = 5/2 (see,
e.g., [3, (1.91), page 77] and [6, page 502]).
To check (41), from (11), we infer that

1
J Ky (t,t)dt
0
1 3 1 thta >
= t— a e —
J'0|: p,qz_lpq<p plp+1)
3 tj fi+j
_iJZ::laif<7_i(i+1)>

o pt+i+2
(p+D)(p+i+1)@i+1)

¢ita ] dt

(42)
which is in agreement with (41).

3. Applications

In this section, the relevant applications of Karhunen-Loeve
expansion are given.

Proposition 5. For each 0 € R, one has

92 1 e
Eexp (—— J Wz(t)zdt)
2 Jo

={-720((2407 - 67°) sin 6 + (-240~° + 86™°) cos 0

+ 2467 +4670)} ",

(43)

Proof.
02 1 e
E exp (—— J Wz(t)zdt)
2 Jo
92 00 5
= Eexp( -— ) L&
243

(1+0,6%) " = (D(-62)) "

—18

>
I

1

={-720((2467" - 67 ) sin 6 + (—246"° + 86°) cos 6

+ 2467 4 267)}
(44)

where A; > A, >+ >0and Y2, A, < 00. O

Proposition 6. If x > 0, then

lA
P<J Wj(t)dt>x>
0
1 O k+1
=— ) (-1

“ Jsz <e_”x/2
Yak-1
X <u < |—720 ((24u77/2 - ufs/z) sin u'/?

+ (24u_4 - 8u_3) cosu'’?

24yt - 4u’3)|)1/2)_1> du,

(45)

wherey, = A, k=1,2,...

Proof. It can be proved by the Smirnov formula [8, 9], for-
mula (23), and the definition of the Fredholm determinant.
Similar proof method can be found from Proposition 3.3 in
[10]. O

Next, we give the large deviation and small deviation
probabilities of the second order detrended Brownian motion
with respect to the norm in the Hilbert Space L*[0, 1].



Proposition 7. Consider x — 00,

1 —
P (J W, (t)*dt > x>
0

2\'/? -2 12 2
=(1+o0(1)) (;) (2z3)5,) "x 12 exp (—2z3/2’1x)
3 9 13 .
) {720 ((‘?%/2,1 + §Z3/2,1) $in2z3,,
3 10 9 -8 l 6
+ <_§Z3/2,1 + 5673021~ ?%/2,1)

3 0 .3 5\
X COS 223/2’1 + 523/2,1 + 523/2,1 .
(46)

Proof. By Deheuvels [2] and Martynov [8], we have for all x >
0

1 —
P<L W,(t)*dt > x)
2 1/2 . , “12 (47)
= +o)(2) ' (-D'(n))

x x 1/ exp <—%>;

we take D(A) and y; = (22 /2)1)2 into (47), and then the proof
is completed. O

Proposition 8. There exists a constant ¢ > 0 such that

P (Ll W, (t)*dt < e)

_ 1
= 1))e? (——), 0.
(c+o(l))e “exp S as e —

(48)

Proof. We start with proving (48) by recalling Li, 1992 [11, 12].
Given two sequences g, > 0 and b, > 0 with

Zak<oo, Zbk<oo, Zl—% <00, (49)
k>1 k>1 k>1 k
we have,ase — 0,
P (Z a& < s)
k>1
" (50)
=(1+0(1)) <]‘[@> P<Z b& < e>.
ko1 % k>1

By the asymptotic formula for zeros of Bessel function

Zyas = (k5 )+ O(KY), k— oo,
(51)
zspi=(k+)m+0(k), k— oo,
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then a, = Ay, by, = ((2k + 1)m) %, and by, = ((2k + 2)7) 2,
k € N, which satisfy (49) and by the distribution identity

1 —~ *
,[0 W)t = Yot Agperié + ior At and (50), there
exists a constant ¢;, such that

P IW(t)ZdtSs
(] morar<:)

= P(Z Aot + Z Ay < 8)

k>1 k>1

1/2
=(1+o(1>)1‘[<@) P(ZbkEiSs>

k=1 ™ % k=1

=1+o0(1)¢q

& &
P(,; (2k + 1) 7)? +,§1 ((2k +2) 7)* =¢

= (1+0(1))CIP<Z(k+2)_2€i 337r2>, as ¢ — 0.

k=1

(52)

Also, for all d > —1, there exists a constant ¢, > 0, such
that,ase — 0,

P(Z (k+d)°E < sn2> =(1+0(1)ce Yexp <_i>

k=1 8¢
(53)

Connecting (52) with (53), we can obtain the proposi-
tion.
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