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We investigate a stochastic Food-Chain System dx(t) = [r,(t) — a,,()x — (a,(®)y/(1 + B, (t)x + p, (1) y))]xdt + o,(t)xdB,(t),
dy(t) = [1(8) - ay Oy + (anOx/(1+ B(O)x + 1 (D) — (anOz/(1 + By + 1, (O2)]ydt + 0,(£)ydB,(¢), d(t) = [-r,(t) +
(a5, () y/(1 + B, (1) y + y,()2)) — a5, (t)z]zdt + 05(t)zdB,(t), where B;(t), i =1, 2, 3, is a standard Brownian motion. Firstly, the
existence, the uniqueness, and the positivity of the solution are proved. Secondly, the stochastically ultimate boundedness of the
system is investigated. Thirdly, the boundedness of moments and upper-growth rate of the solution are obtained. Then the global
attractivity of the system is discussed. Finally, the main results are illustrated by several examples.

1. Introduction

In recent decades, a number of authors have studied the
predator-prey type systems [1-8], especially the simple Food-
Chain Systems [9-14]. These deterministic systems assume
that all parameters in the models are deterministic, and
some beautiful and valuable conclusions are obtained. Then
it is well known that biology systems are often subject to
environmental noise [15]. It is therefore useful to reveal how
the noise affects these systems. Though there are various types
of environmental noise, May [16] have claimed that the birth
rates in the system should be stochastic. At the same time, the
natural growth of many species vary with time, for example,
due to the seasonality.

On the other hand, basing on some natural phenomenon
and statistics in laboratory, the predator-dependent func-
tional response should be considered in the predator-prey
type systems. As we know, there are three classical predator-
dependent functional responses: Hassell and Varley [17],
Beddington et al. [18, 19], and Crowley and Martin [20].
Recently, Skalski and Gilliam [21] pointed out that these
functional responses can provide better descriptions, and
the Beddington-DeAngelis (B-D) type functional response
performed even better in some cases.

Based on this background, in this paper we will discuss
the following stochastic system:

ap, (t) y
L+B, ) x+y () y

dx (t) = [rl ) —ay; () x -

+0, (t)xdB, (1),

ay, (t) x
L+B () x+y (D) y

dy (8) = [rz () - ay (t) y +

_ a; (t) z
L+B, (O y+y )z

ydt+ 03 (t) )’de (t))

as (1) y
1+B, B y+y,(t)z

+ 05 () zdB; (1),

dz (t) = [—r3 (t) + —ay, (t) z | zdt

)

where B;(t), i = 1,2,3, is a Brownian motion defined on a
complete probability space (Q, #, %). All parametric func-
tions are continuous and bounded functions on R, . x(¢), y(t),
and z(t) denote the population density of resource, con-
sumer, and predator at time ¢, respectively. For convenience,


http://dx.doi.org/10.1155/2014/426702

the model, consisting of (1), together with x(0) = x, > 0,
y(0) = y, > 0,2(0) = 2z, > 0, will be referred to as
model SDE. On the other hand, for easy expression, if f(t)
is a continuous bounded function on R,, we define f* =
sup;cr, f(f) and f' = inf, g, f (£). Throughout this paper, we

assume that rf > 0,i = 1,2, 3, and the others are similar. The
notation K used in this paper expresses the positive constant,
for convenience, it denotes different constant in different
places, and they only differ in positive constant times.

The rest of the paper is organized as follows. In Section 2,
we show that the system has a global positive solution. In
Section 3, the stochastically ultimate boundedness of the
system is acquired. In Section 4, we obtain the asymptotic
moment estimation and the upper-growth rate of the solu-
tion. In Section 5, the global attractivity of SDE is investi-
gated. In Section 6, we illustrate our main results through
several numerical examples. Last but not least, conclusions
are drawn in Section 7.

The key method used in this paper is the analysis of
Lyapunov functions. This Lyapunov function analysis for
stochastic differential equations was developed by Khasmin-
skii [22] and has been used by many authors [23-28].

2. Positive and Global Solutions

As the state of the SDE is the population density of species in
the system at time t, it should be nonnegative. Moreover, in
order for a stochastic differential equation to have a unique
global (i.e., no explosion in a finite time) solution for any
given initial data, the coefficients of the equation are generally
required to satisfy the linear growth condition and local
Lipschitz condition [25]. However, the coeflicients of each
equation in SDE neither obey the linear growth condition nor
local Lipschitz continuous. In this section, we show existence
and uniqueness of the positive solution.

Lemma 1. For any initial value x, > 0, y, > 0, z, > 0, system
(SDE) has a unique positive local solution (x(t), y(t), z(t)) for

t € [0, 1,) almost surely (a.s.), where 7, is the explosion time.

Proof. To begin with, consider the following equations:

du (t)

ay, (t) e
1+ B, (t)e“® +y, (t) e'®

= [bl t) - ay, (1)@ -
+oy(t)dB, (1),
dv(t)

a, (1) eH®
L+ B, () e*® +y, (t) e'®

= [bz (£) —ay () ey

ays (1) v ®

1+ By () e’ + 1y, (t) e ®

dt + 0, (t)dB, (1),
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dw (t)
as, (t)e"®
1+, (t)e'® +y, () er®

= [_bs () +

—ay, () e“’“)] dt + o5 (t) dB, (t)
(2)

ont > 0 with initial value u(0) = Inx, v(0) = Iny,,
w(0) = Inzy, where by (t) = r,(t) — 0.507(t), by(t) = ry(t) -
0.502 (), b5(t) = r5(t) +0.50§ (t). Notice that the last equations’
coeflicients satisfy the local Lipschitz condition; thus, there is
a unique solution (u(t), v(t), w(t)) on t € [0, 7,). Therefore,
it follows from Ito’s formula that x(¢) = &“?, y(t) = e'®,
z(t) = e“" is the unique positive local solution of SDE with
initial value x;, > 0, y, > 0, z, > 0. O

Theorem 2. Consider system SDE, for any given initial
value (xg, ¥0,2,) € R, and there is a unique solution
(x(8), y(t),z(t)) on t > 0 and the solution will remain in Ri
with probability 1, where > = {(x;,x,,%3) | x; > 0,i =
1,2,3}.

Proof. From Lemma 1, to complete the proof we only need
to show that 7, = co. Hence, let k, > 0 be sufficiently large
for x,, ¥y, and z, lying within the interval [k;", k,]. For each
integer k > k;, define the stopping times:

7. = inf {t elo,7,]:x(t) ¢ (kil,k) or
y(t) ¢ (k_l,k) or (3)
z(t) ¢ (K. k)}.

Clearly, 7, is increasing as k. — o00. Set 7, = lim _, . 73,
from which 7. < 7,. Now, we only need to prove 7., = 0o.
If this statement is false, there is a pair of constants T > 0
and € € (0,1) such that P{r,, < T} > €. Thus there exists an
integer k; > k, such that

Pln,<T}>e, k>k,. (4)

Define V(x, y,z) =x-1-Inx+y—-1-lny+z-1-Inz.
If (x(t), y(t), z(t)) € Ri, we have

av (x, y,z)

ap )y ] dt

=(x-1) [rl () —ay () x - L+ B () x+y (t)y
+0.507 (t) dt

ay (t) x
L+B ) x+y, () y

+(y-1) [rz(t‘)—a21 t)y+

_ ay (t) z
L+, (O y+p )z

] dt +0.50; (t) dt
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ay (1) y
L+B, ) y+y(t)z

+(z-1) [—r3 (t) +

—as, (t) z] dt +0.507 (t) dt

+(x-1)o, (t)dB, (t) + (y — 1) 0, (t) dB, (t)

+(z—-1)05(t)dB; (1)
{—ailxz P rat)x+ 22y 0.5[0’1‘]2} dt
r

IA

I 2 u u a1242 6133 ui2 d
+1{-ay )+ r2+a21+ﬁ—l y+r—l+0.5[02] t

1 2

+ {—aézzz + (a—%l + a’3‘2> z+1s+ 0.5[(7;‘]2} dt

B
+(x =10 (t)dB, (t) + (y - 1) 0, (t) dB, (1)
+(z-1) 0, (t) dB;s (1)

<Kdt+(x—1)o, (t)dB, (t) + (y - 1) 0, (t)dB, (t)

+(z—1)0; (t)dB,s (1).
(5)

Integrating both sides of the above inequality from 0 to 7 AT
and then taking the expectations lead to

EV(x (5 AT), y (5 AT),z(1e AT))
(6)
<V (xg, ¥Yp» 20) + KT.

Set O = {1 < T}; then it follows from inequality (4)
that P{Q),} > e. Clearly, for every w € Q, there is x(1;, w),
(1, w), or z(1y, w) which equals either k or k™!; therefore,
V(x(13, w), (13, ), (13, w)) is no less than

min{k -1 -Ink,k"' = 1+Ink}. )
Then an application of (6) results in

V (x0» ¥9-29) + KT 2 E [19 x (%),

y(n).z (Tk))]

>min{k-1-Inkk™ -1 +Ink},
(8)

where 1, is the indicator function of ). Letting k — oo
leads to the contradiction

00 > V (x5 ¥9» 29) + KT = 0. 9)

O

3. Stochastically Ultimate Boundedness

In the previous section, we have showed that the solutions
of SDE will remain in the positive cone R’ forever. However,
this nonexplosion property in a population dynamical system

is often not good enough while the property of ultimate
boundedness is more desired. Let us discuss it in this section.
We begin with giving the definition of stochastically ultimate
boundedness.

Definition 3. The SDE is said to be stochastically ultimate
bounded if for any € € (0, 1), there is a positive constant
H = H(e) such that for any initial value, the solution of SDE
has the property that

litm sup P { |(x (1), y 1),z @)

(10)

- RO+ O+2 0> H} <e.

Theorem 4. For any 6 € (0, 1) there is a positive constant H =
H(0) such that for any initial value, the solution of SDE has the
property that

lim sup E|(x (t), y (t), 2 (t))le < H. (11)

t— +00

In particular, the SDE is stochastically ultimate bounded.

Proof. Define

V(x,yz)=x"+y7 +2° (12)
Applying Itos formula gives
av (x, y,z)
_ 0,0 _ ‘112 ®)y
= 0x [”1 (t)—ay; () x— TYNOETENC )y] dt
+0.50 (0 — 1) x° ol (t)dt
0 B a, (1) x
0y |:r2(t) @y 1+ ) x+y, () y
_ ay (D) z ]
1+, y+1(t)z
+0.50 (0 - 1) yPo? (t) dt
0| _ a3 (£) y _ ]
+0z [ r3 (t) + PV NCETSNOY, as (t) z | dt

+0.50 (0 - 1) 2% (1) dt
+0x"0, (t)dB, (t) + 6’0, (t) dB, (t) + 62°0, (t) dB, (t)

S@xe[e +r1—a11x+050 ]dt

+6y° [6 +r2—a21y+ +056(02) ]dt

1

+0z [0 —d.,z +0.50(a%) ] dt
}

~V (x, y,2) dt + 0x%0, (t) dB, (t) + 6’0, (1) dB, (t)

+602%0, (1) dB, (1)



< Kdt -V (x, y,2) dt + 0x°0, (t)dB, (t) + 6’0, (1) dB, (t)

+02%, (1) dB; (1) .
(13)
Using Itos formula again we have
d (etV (x, y, z))
=e [V (x, y,2)dt +dv(x, y,2)]
(14)

< e'Kdt +e' [0x°0, () dB, () + 6y’0, (1) dB, (t)
+02%0; (1) dB, (t)] .

Integrating the above inequality and then taking expectations
on both sides, we can see that

e'EV (x, 9,2) <V (%, ypr 29) + K (€' - 1) . (15)

This implies immediately that

EV (x,y,2) <K. (16)
On the other hand,
|(x(®),y @),z (t))|9 < 3% max {xe, 57, ze}
17)
< 3%% (x, y,2),
and then we have
. 0 )
htm sup E|(x (1), y (1), 2z (1)[" < 3"¥K (18)
— +00

which yields the required assertion by setting H = 3*%°K.
Especially, let 8 = 0.5; then

lim sup E|(x (£), y (£) 2 (£))|"* < H. 19)

t— +00

Now, for any ¢ ¢ (0,1), let H = " /€%, by Chebyshev’s
inequality,

Ev|(x (), y (1), z(0)]

P{|(x(t),y(®),z®)| > H} < VA

(20)

Hence,

P{(x (), y(®),2(®)] > H} < % —e (@

In other word, SDE is stochastically ultimate bounded. [

4. Boundedness of Moments and
Upper-Growth Rate Estimation

Theorems 2 and 4 show that the solutions of SDE will remain
in a subset of R>. Now let us construct different types of
Lyapunov functions to investigate how the solutions behave
o p3
inR7.

+
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Theorem 5. Consider system SDE for any positive numbers
Pi> Pas P3; 015 0,, 05, there exists a positive number K, such that,
for any initial value (xq, y,,2,) € R, the solution of SDE obeys

E Ué (p1x% () + poy™ () + p32™ (5)) ds]

lim sup <K.
t— oo t
(22)
Proof. Define
V (%, 3,2) = px? + p,y% + py 2% (23)

Applying Itos formula gives
av (x, y,z)

ap )y ]dt
L+B ) x+y () y

+0.5p,0, (6, — 1) x"107 (¢) dt

= plelxe1 [rl t)—ap; () x -

a, () x
L+B, ) x+y () y

B a; (t) z ]
L+B, O y+p )z

+0.5p,0, (6, — 1) y™072 (1) dt

+ p292y62 [”2 () —ay () y+

as (1) y
1+, M) y+y, )z

+0.50,05 (65 — 1) 2% 02 (1) dt

+ ps652% [—rs (t) + —as () z] dt

+p0,x% 0, (t)dB, (t) + p,6,y"0, (t) dB, (t)
+ py052% 0, (1) dB; (t)
< p,0,x" [9[1 +r—dl X+ 0.561((7;')2] dt
aj,

+ ,3292)/62 [921 +ry — aély + =+ 0.592(05‘)2] dt
1

+ p;032% [92“ + % —dyz+ 0.593(0;‘)2] dt
2

~V (x, y,2)dt + p,0,x% o, (t) dB, (t)
+ p,0,y%0, (1) dB, (t) + p,052% 0, (t) dB, (t)
< Kdt -V (x, y,z) dt + p,6,x" 0, (t) dB, (¢)

+p,0,y%0, (1) dB, (t) + p,0,2% 0, (t) dB, (t).
(24)
Integrating the above inequality and then taking expecta-
tions on both sides, we can see that
t
EV (x,y,2) + EJ V(x,y,z)ds < Kt +V (xg, Y9> 20) -
0
(25)
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Together with EV (x, y, z) > 0, this inequality shows that
t

EJ V(x,y,2)ds < Kt +V (xg, ¥p> Z0) - (26)
0

From this inequality, we obtain the desired assertion. O

This theorem, together with Theorem 2, denotes 0 <

E[(1/t) f; x(s)ds] < K, in other word, the average value of
x(t) on time and “space” is bounded. It is similar to y(¢) and

z(t).

Theorem 6. For any positive numbers o, a,, and a5, solutions
of SDE satisfy

In [x% y*22%]

lim sup <a+o,+a; as. (27)
t— 00 Int
Proof. Define
Vi(xy,z)=aInx+a,Iny+aslnz. (28)

Applying Ités formula gives

av, (x,3.2)

=0 [bl (t)—ay, () x— ap, (£) y ] 5

1+B B x+y () y

ay, (t) x
+a, [bz (t) —ay () y + 1+B,Ox+y, @)y
_ ay (1) 2 ] 29
L+, y+1, (D2

+ as (t) y
L+B B y+1(t)z

+0y0, (1) dB, (t) + 0,0, () dB, (£)

+ o, [—b3 () —as, (1) z] dt

+as0;5 (t)dB; (t).
Let
V (% 3,2) = €'V (%, 7,2), (30)
where 6 > 0, and by the Its formula, we have

v, (x, y,2)
= 0"V, (x, y,2)

ap () y

ot
+oge’ | by () —ay () x - 1+, M) x+y, @)y

ay, (1) x
L+ B ) x+y (D) y
B ay; (t)z ] J

B 0ynoz]”

+ oczeet [bz B —ay ) y+

as (1) y
L+B, M) y+1 1)z

+aze” [—b3 (t) + —ay, () z] dt

+a,e”o, (t)dB, (t) + aye’ o, (t) dB, (t)

+aze o, (t)dB, ().
(31)
Therefore,

Vi (% 3.2)

t
Os
=V, (%> ¥p> 29) + 0 L e’V (% y.2)

+ o J'Ot e” [bl (s) —ay, (s) x — %2 (8) ¥ ] ds

L+ B, (s)x+vy,(s)y
ay (s) x
L+ B () x+y,(s)y
B a3 (s)z ]d
Y ASEESNOF) A

+a, L % [bz (s) —ay (s) y +

as (s)y
L+ B, () y+ 1, (s

+ oy Lt e” [—b3 (s)+ T as, (s) z] ds

t ¢
+ o J e, (s)dB, (s) + a, J ¢*a, (s)dB, (s)
0 0

t
+ oy J. 69503 (s)dB; (s).
0
(32)
Define

t
M. (t) = j 0 (5)dB.(s), i=1,23  (33)
0
Notice that the quadratic variation of M;(t) is
t
(M, (t), M, (t)) = J &%a? (s) ds. (34)
0

Lete € (0,1)and A > 1.In view of the exponential martingale
inequality, for every k > 1 and i = 1, 2, 3, we have

Ok
p { sup [M; (1) - 0.5ee ™ (M; (1), M, ()] > Ae elnk}
0<t<k
<k
(35)

An application of Borel-Cantelli lemma yields that, for almost
any w € (), there is a random integer k, = k,(w) such that,
for k > ky,

sup [M; (£) - 0.5¢e”" (M, (£), M; ()] <

0<t<k

. (36)

e In k
€



So

0k
Ae” Ink (37)

t
M, (t) < 0.5e¢ % J ezesai2 (s)ds +
0

for 0 < t < k, k > k; a.s. Substituting the above inequality
into (32), we have

v, (x,9,2)
t
<V, (%05 Yoo 29) + 0 Jo eesVI (x, 3, 2)

ap (s) y
L+ B, (s)x+y,(s)y

t

+o J &% [bl (s) —ay, (s) x —
0

+ 0.507 (s) eee(s_k)] ds

ay (s) x
L+ B, (s)x+y (s)y

t
+a, L &% [b2 () —ay () y +

B ay;(s)z
1+ B,()y+y,(s)z

+ 0.50% (s) eee(sfk)] ds

as () y
1+B,(8)y+yp,(8)z

+oy jt e* [—b3 (s) +

0

~ a3, (s) 2 +0.507 (s) eee(s_k)] ds

A% Ink
+ (o + oy +3) .
ok
<V, (%9, ¥or 20) + K(eet - 1) + (o) + oy + 03) Ae lnk'
€
(38)
In other words, we have shown that
In [x* y™22%]
0(k—t)
< eietV2 (x> Yor 20) + K+ () + ay + 3) Ae™ Tlnk lnk.
(39)
Thus, for all k > ky, k — 1 < t < k, we have
In [x% y*22%] e (%0 Y0 20) LK
Int B e lnt Int
(40)
() + 0y +0t3) (/\ee(kft) In k/e)
In(k-1)
Then
1 oy L0 0 0
lim supM < (o +o, +ay) Ai. (41)
t— 0o ln t €

Lettinge — 1,A — 1,and® — 0, we can obtain the
required assertion. O
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Based on this theorem, obviously, the upper-growth rate
is linear.

5. Global Attractivity

In this section, we turn to establishing sufficient criteria for
the global attractivity of system SDE. Firstly, we prepare some
useful lemmas.

Lemma 7. Let (x(t), y(t),z(t)) be a solution to SDE with
initial value (x, y,,2,) € R>. Then for all p > 1, there exist
three constants related to p: L;(p) fori = 1,2, 3, such that

limsup E [x” (t)] < L, (p).,

t— 00

limsup E [y* (t)] < L, (p), (42)

t— 0o
limsup E [2” (t)] < L5 (p).
t— oo

Proof. Define W(y) = y? for y € R,. Making use of Itds
formula we have

dw (y)

ay (1) x
L+B, ) x+y () y

= Pyp ry(t) —ay () y +

B ay; (t) z
1+B, M) y+y, )z

+ po, (t) yPdB, (t).

+05(p-1)0; (t) | dt

(43)

Applying Ités formula again to e'W(y) and then taking
expectations on both sides, we can see that

E[e'y’ (1))

t u
Syg+p-[0 e’y? [p_l +r;‘—a2Lly+ % +0.5p(0§‘)2 ds
1
< yb+pK (e -1),
(44)

which is the desired assertion of limsup,_,  E[y*(t)] <
L,(p), and the other two inequalities can be proved simi-
larly. O

Lemma 7 tells us that thereisa T' > 0, such that E(x(t)) <
L.5L,(p), E(y*(t)) < 1.5L,(p), and E(z”(t)) < 1.5L5(p) for
all t > T. At the same time, it follows from the continuity of
E(xP(t)), E(yP(t)), and E(zP(t)) that there exist L,(p) > 0,
Ly(p) > 0,and L;(p) > 0 such that E(x?(t)) < L,(p),
E(yP(t)) < L,(p), and E(zF(t)) < Ls(p) for all 0 <
t < T. Denote L(p) = max{l.SLl(p),fl(p)}, H(p) =

max{l.SLz(p),iz(p)}, and G(p) = max{1.5L3(p),f,3(p)}.
Then forall t > 0,

E(x*®)<L(p), EQF®)<H(p),

45)
E(Z" () <G(p).
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Lemma 8 (see [29]). Suppose that an n-dimensional stochastic
process X(t) on t > 0 satisfies the condition

EIX () - X ()P < c|t - s|"*P,

for some positive constants 3, f3,, and c. Then there exists a
continuous modification X(t) of X(t) which has the property

that for every v € (0, B,/ ;) there is a positive random variable
h(w) such that

0<s, t<oo, (46)

X (tw) - X (t,0)| L2
T 1-2v

P{w: sup

0<|t—s|<h(w),0<s,t<c0 |t - S| v

=1
(47)

In other words, almost every sample path of X(t) is locally but
uniformly Holder continuous with exponent v.

Lemma 9. Let (x(t), y(t), z(t)) be a solution of SDE ont > 0
with initial value (x,, vy, z,) € R>; then almost every sample
path of (x(t), y(t), z(t)) is uniformly continuous ont > 0.

Proof. The second equation of SDE is equivalent to the
following stochastic integral equation:

y ()
=y + J 0, (s) y(s)dB, (s)
0

+ ay (8) x
1+ B, ()x+y(s)y

t
[ rolne-aoy
0

_ a;(s)z
1+ B, () y+1p,(8)z

(48)
We estimate

E ‘y (S) [1’2 (S) —dy (5) y + 2y (S)x

L+ B, (s)x+vy,(s)y
P

_ a; (8) 2 ]
1+B,(8)y+p,(8)z

< 0.5E|y (s)|2p

ay, (8) x
L+ B (s)x+vy,(s)y

2p

+ 0.5E

r,(s)—ay () y +

B Ay (s)z
1+ B, () y+7(s)z

<05 <|H (2p) + 4%F7! [(r;‘)zf’ +(a“)*PH (2p)

(@)

(49)

On the other hand, as an application of the moment
inequality for stochastic integrals [30], we see that for 0 <
t, <t,and p > 2,

P
E

t
L 0, (s) y(s)dB, (s)

<[(6) T [05p (p - DI"*P(t, - 1,)*°"? Lz E|y (s)|"ds

< [(@] 1059 (p - 1I°* (8, - 1,)" P H (p).
(50)

Thenfor0 < t; <t,,t, -
that

Ely (t,) - y (1)["

t, <1, p ' +4q " =1, we obtain

tZ
=E L 0, (s) y(s)dB, (s)

1

+Jzy(5) [rz(s>—c721 )y
t
ay, (s) x
1+B,(8)x+y,(s)y

B a;(s)z ]d
1+ By +1n©z] T

p

<2M'E

L »(s) [rz (5) = a3 () y

ay, (8) x
L+B,(s)x+y,(s)y

- ay (s)z ]d‘p
1+B,()y+y,(s)z s

p
+2P'E

L " 5,(s) () dB, (s)

<2P7(t, - 1,)PC(p)

+ 277 (0] [05p (p - 1)) (1, - 1,)" P H (p)

<277 (t, - 1,)" " [1+ [05p (p- 1)]* ] K.
(51)

Then it follows from Lemma 8 that almost every sample
path of y(¢) is locally but uniformly Holder-continuous with
exponent v for every v € (0, (p —2)/2p) and therefore almost
every sample path of y(t) is uniformly continuous on t > 0.
Similarly, we can show that almost every sample path of x(t)
and z(t) is uniformly continuous on ¢ > 0.

Lemma 10 (see [31]). Let f be a nonnegative function defined
on R, = [0, 00) such that f is integrable on R, and is uniformly
continuous on R,.. Then lim, _, ., f(t) = 0.



Now, we give our main result of this section.

Definition 11 (see [32]). Let A,(t) = (x,(t), y,(t),z,(¢)) and
A,(t) = (x,(1), y,(t),2,(t)) be two arbitrary solutions of
system SDE with initial values A,(0), A,(0) € Ri. If

lim Jx, () = x, ()] = lim [y, (8) = 3, ()]
(52)

lim |z1 (t) — 2z, (t)| =0, as.,
t— 00

then we say that the system is globally attractive.

Theorem 12. lIfA =al l—afz‘z —a;‘zﬁ'fl/yi >0,B:=a), —lai‘z -
as — sy /v, — @y /B > 0, C = ay, —ay; —a5,7, /B, > 0,
then system SDE is globally attractive.

Proof. Define

V(t) = |1n x; () - Inx, (t)l + |1n y, () —Iny, (t)|

53)
+ |1n z, (t) - Inz, (t)| ,

then it is a continuous and positive functionont > 0. A direct
calculation of the right differential of V'(¢), and then applying
Ito’s formula, we have

d*V (1)
dt

= sgn (x; - x,)

N ap (O n
L+ B, () x; +y ()

3 ap (1) y, }
L+ B () x, +y, (B) y,

+sgn(y, - »,)

x {_an () (x; = x)

[25) (t) X1
X {—aﬂ ®) (y1 = y2) + 1+ B, (t)x, +y, () »y
_ ay, (f) x, _ o (1) 2
L+ x+ M)y, 1+B O+ 0z
a; (t) z, }
L+B, )y, +1, () 2,
+sgn (z, — z,)
as; (¥) N
X {—a32 ®) (21— 2) + 1+B,0) y, +7, 1)z
 ay }
L+ B, (1) y2 + 1, (1) 2,
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t

FIGURE 1: The curve of In[xyz]/Int for initial values (x,, ¥y, 2,) =
(0.6,0.5,0.5) and At = 0.01.

< _ail le - le - “il |J’1 - J’zl - aéz |Zl - zzl
u

+ alfz_; %1 = x| +a; 71 = s
1

+ay, |x1 _le +ay,— |)’1 _J’2|

W

g
u

vt Py vt e
Y2

v

il

=—A|x1—le—B|y1—y2|—C|z1—z2|.

+ay |21 = 2| + ay |y -yl
(54)
Integrating both sides gives

V()< V(0)

t
- | (Al =l + Bl - ol +Cley - 2l s
(55)

Therefore,

t
V(t>+j [Alx, x| + B|ys — 2| + Cley - 25|] ds
0 (56)

<V (0) < o0.

Making use of V(t) > 0 and the known conditions result in
that

|x; (t) = x, (t)| € L' [0, 00),
[y (6) = , ()] € L' [0,00), (57)
|z, () - 2, ()] € L' [0,00).

Then the required assertion follows from Lemmas 9 and 10
immediately. O
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t t
— n1(®) - 3] — lz1() = 2,(1)]

FIGURE 2: The curves of |x,(t) — x,(t)], [y, (t) — y,(t)| and |z,(t) — z,(t)| for initial values (x,(0), ,(0),z,(0)) = (0.8,0.8,0.8) and
(x,(0), ,(0), ,(0)) = (0.1,0.1,0.1), At = 0.01.

6. Numerical Results Zh1 = 2k

We present numerical experiments in this section to show
how the proposed model works in the constructive examples. + 2z [—r3 (kAt) +
The results enhance the readers to understand the theoretical
conclusions from the practical applications.
Here, we use the Milstein method [33] to construct the _
discretization equation of SDE. That is, 52 (kA1) Zk] At + 0 (kAe) 2, Ve

ay, (kAt) yy
1+ B, (kAt) yy + y, (kAE) 2,

Xiey1 = Xg
o + 0.5(7; (kAt) zi (Eﬁ - 1) At,
+ x; | 1) (KAY) — ay, (kAT x;, (58)
ay, (KAL) y, where (i, 1, and &, k = 1,...,n, are the Gaussian random
15 B, (kA®) x + 7, (kA ] variables. We obtain the following results.
! kTN % As we pointed out in Theorem 6, limsup,_ . In
+ 0, (kAE) x, VAL, +0.50% (kAt) x° ((i _ 1) At, [x"1y%z%]/Int < o + «, + a3 a.s., and Figure 1 confirms
this. Here we choose r(f) = 9 + sin(f), r,(f) = 5 + sin(¢),
Vir1 = Vi ry(t) = 0.1 + 0.05sin(t), a;;(t) = a,(t) = 1 + 0.1sin(¢),
ap(t) = ay(t) = 0.4 + 0.2sin(t), ay(t) = 0.1 + 0.05sin(t),
+ ¥ | 7y (KAL) — ay, (KAL) az; = 5+0.05sin(t), az, (1) = 0.5+0.1sin(¢), 3, (t) = y,(¢) = 1,
Bo(t) = p,(t) = 2, 0,(t) = 0,(t) = 05(t) = 1 + 0.1sin(¢), and
N ay, (kAt) x; Q=0 =03 = 11;‘1 hat th loball
Figure 2 confirms that the system is globally attractive
L By (eAD) xic + vy (RAD) e (Theorem 12). Here ry(t) = 1.1 + sin(f), ry(t) = 0.1 +
B a3 (KAL) 2 ] 0.05sin(t), 75(t) = 2 + 0.1sin(t), a,,(t) = ay () = 10.1 +
1+ B, (kAt) yy + y, (kAt) z;, 0.1sin(t), a;,(t) = ay,(t) = ay;(t) = az () = 0.8 + 0.2 sin(t),

ag(t) = 4 +sin(t), Bi (1) = y1(1) = L, Bo() = y(8) = 10,
+ 0, (kAt) y VAt +0.50; (kAt) y; (i — 1) At, o,(t) = o,(t) = 2+ 0.1sin(t), o5(t) = 0.4 + 0.1sin(t).
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The initial values are (x, (0), y,(0),z,(0)) = (0.8,0.8,0.8) and
(x,(0), ¥,(0),2,(0)) = (0.1,0.1,0.1). Then A = 8, B = 6,
C =1, and the assumptions of Theorem 12 are satisfied.

7. Conclusions

This paper studies a stochastic nonautonomous food-chain
system with Beddington-DeAngelis functional response. This
system retains some conventional properties of stochastic
systems. That is, it has a unique global positive solution
for any initial conditions, the moments of the solutions
are bounded, and the solutions are global attractive and
stochastically ultimate bounded.

Nevertheless, there are rooms to continue working on
this issue. It is interesting to study other parameters; for
example, a;;(f) are stochastic. The permanence and extinction
of the system and the stability in distribution deserve to be
investigated too.
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