
Review Article
An Overview of Recent Advances in the Iterative Analysis of
Coupled Models for Wave Propagation

D. Soares Jr.1 and L. Godinho2

1 Structural Engineering Department, Federal University of Juiz de Fora, Cidade Universitária, 36036-330 Juiz de Fora, MG, Brazil
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Wave propagation problems can be solved using a variety of methods. However, in many cases, the joint use of different numerical
procedures to model different parts of the problem may be advisable and strategies to perform the coupling between them must
be developed. Many works have been published on this subject, addressing the case of electromagnetic, acoustic, or elastic waves
and making use of different strategies to perform this coupling. Both direct and iterative approaches can be used, and they may
exhibit specific advantages and disadvantages. This work focuses on the use of iterative coupling schemes for the analysis of
wave propagation problems, presenting an overview of the application of iterative procedures to perform the coupling between
different methods. Both frequency- and time-domain analyses are addressed, and problems involving acoustic, mechanical, and
electromagnetic wave propagation problems are illustrated.

1. Introduction

The analysis of wave propagation, either involving electro-
magnetic, acoustic, or elastic waves, has been widely studied
by researchers using different strategies and methodologies,
as can be seen, for example, in [1–10], among many others. In
many cases, the interaction between different types of media,
such as fluid-solid or soil-structure interaction problems,
poses significant challenges that can hardly be tackled by
means of a single numericalmethod, requiring the joint use of
different procedures to model different parts of the problem.
Indeed, taking into consideration the specificities and partic-
ular features of distinct numerical methods, their combined
use, as coupled or hybridmodels, has been proposed bymany
authors, in order to explore the individual advantages of each
technique.

In acoustic and elastodynamic problems, coupledmodels,
including, for example, the joint use of the boundary element
method (BEM) and the method of fundamental solutions
(MFS) [11] or of the BEM and the meshless Kansa’s method
[12], have been successfully applied. Similarly, when mod-
elling dynamic fluid-structure and soil-structure interac-
tions, wave propagation in elasticmedia with heterogeneities,

or the transmission of ground-borne vibration, coupled
models using the finite element method (FEM) and the
BEM have been extensively documented in the literature
[13–19], mostly using the FEM to model the structure and
the BEM to model the hosting infinite or semiinfinite
medium. Although these approaches can be quite useful in
addressing many engineering problems, they mostly corre-
spond to standard direct coupling methodologies and thus
exhibit well-known limitations. Indeed, directly coupling
distinct methods involves assembling a single system matrix,
accounting for the contributions of each method and for
the required coupling interface conditions, which frequently
becomes poorly conditioned due to the different nature of the
methods. Since this system is formed from the contributions
of distinct methods, it is also usually not possible to make use
of their individual advantages in terms of optimized solvers
or memory storage (e.g., in BEM-FEM the final system will
no longer be banded and symmetric, etc.). In addition to
this limitation, by forming a single system of equations,
a very large problem usually arises, leading to increased
computational efforts and thus to a loss of performance.

All these limitations have justified the appearance of itera-
tive algorithms to obtain accurate solutions in amore efficient
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manner. Perhaps one of the first iterative techniques to be
developed for general problems is the well-known Schwarz
alternating strategy [20, 21], in which the domain of analysis
is partitioned in overlapping subdomains, and the solution is
found by successively iterating along these subdomains until
convergence is reached. This classical and simple to imple-
ment algorithm has been applied to many problem types,
including potential problems [22] or electromagnetic wave
propagation problems [23]. However, for the case of acoustic
problems or elastic wave propagation problems, formulated
in the frequency domain, the special oscillatory structure of
the solution leads to severe convergence problemswhenusing
such classic approaches, and more sophisticated and difficult
to implement strategies must be defined.

In recent years, more elaborate iterative domain decom-
position techniques have been proposed and discussed in
order to analyze a wide range of problems, providing good
results especially in terms of flexibility and efficiency. Mostly,
these techniques have been applied to nontransient applica-
tions, and they usually consider the analysis of coupled mod-
els, taking into account the interaction of different discretiza-
tion methods, physical phenomena, and so forth. In fact, for
complex models, iterative domain decomposition techniques
are recommended, usually providing a better approach for
the analysis. Indeed, a proper numerical simulation is hardly
achieved by a single numerical technique in those cases,
mostly because complex and quite different phenomena
interact, requiring particularized advanced expertise, and/or
large scale problems are involved, demanding high computa-
tional efforts.

Nowadays, several works are available discussing iterative
nonoverlapping partitioned analysis. Taking into account
elliptic problems, Rice et al. [24] presented a quite complete
discussion, considering several interface relaxation proce-
dures and comparing formulations and performances. As
a matter of fact, most of the publications on the topic are
focused on elliptic models, few being devoted to hyperbolic
problems. Taking into account computationalmechanics, one
of the first publications on the topicwas presented by Lin et al.
[25], which discussed a relaxed iterative procedure to couple
the FEM and the BEM, considering linear static analyses.
Similar approaches have been presented later on, considering
potential andmechanical static linear analyses [26, 27]. In the
works of Elleithy et al. [28, 29], concerning mechanical static
and potential problems, the authors propose that the domain
of the original problem is subdivided into subdomains, each
of them modeled by the finite element or boundary element
methods; the coupling between the different subdomains is
performed using smoothing operators on the interdomain
boundaries. Their strategy allows separate computations for
the BEM and FEM subdomains, with successive update of
the boundary conditions at the interfaces being performed
until convergence is achieved. In [30–32], similar approaches
for the analysis of different linear problems using domain
decomposition techniques were also presented. Further
developments of these strategies to nonlinear analysis in solid
mechanics can also be found in the works of Elleithy et al.
[33], using an interface relaxation finite element-boundary

element coupling method (FEM-BEM coupling) for elasto-
plastic analysis, or Jahromi et al. [34], who established a
coupling procedure based on a sequential iterative Dirichlet-
Neumann coupling algorithm for nonlinear soil-structure
interaction. It must be noted that the described works refer
to nontransient problems, either linear or nonlinear, and no
application to wave propagation analysis is focused on in
these works.

Taking into account time-domain wave propagation
models, the first work on the topic seems to have been
presented by Soares et al. [35], who described a relaxed
FEM-BEM iterative coupling procedure to analyze dynamic
nonlinear problems, considering different time discretiza-
tions within each sub-domain of the model. Later on, this
technique has been further developed to analyze other wave
propagation models, including acoustic, elastic, and electro-
magnetic wave propagation or solid-fluid interaction, taking
into account several different numerical procedures using the
FEM and the BEM [36–45] or the meshless local Petrov-
Galerkin method [46]. Most of these works are focused on
the iterative coupling of different numerical discretization
techniques, and a review considering the iterative coupling
of the FEM and the BEM, taking into account some wave
propagation models in computational mechanics, has been
presented in [47]. The coupling of acoustic and mechanic
wave propagation models, on the other hand, has been
reviewed in [48], taking into account different domain
decomposition techniques and considering several numerical
discretization techniques.

In the analysis of wave propagation using frequency-
domain formulations, iterative coupling procedures can be
found in the literature, mostly considering acoustic-acoustic
and acoustic-elastodynamic coupling [49–54]. As it has
been reported, frequency-domain wave propagation analyses
usually give rise to ill-posed problems and, in these cases, the
convergence of the iterative coupling algorithm can be either
too slow or unachievable.This is the case in acoustic-acoustic,
acoustic-elastodynamic, and elastodynamic-elastodynamic
interacting models and, as discussed in this work, conver-
gence can be hardly achieved if no special procedure is
considered, especially if higher frequencies are focused on. As
referred in the literature, in order to deal with this ill-posed
problem and ensure convergence of the iterative coupling
algorithm, special techniques, such as the adoption of optimal
relaxation parameters, must be considered.

In this work, time- and frequency-domain analyses of
wave propagation models are reviewed, taking into account
relaxed iterative coupling procedures. In this context, several
wave propagation models (such as electromagnetic, acoustic,
mechanic) are considered, and several numerical procedures
(such as the finite element method, the boundary element
method, and meshless methods) are employed to discretize
the model. In the iterative coupling approach, each sub-
domain of the global model is analyzed independently (as an
uncoupled model) and a successive renewal of the variables
at the common interfaces is performed, until convergence
is achieved. These iterative methodologies exhibit several
advantages when compared to standard coupling schemes,
for instance,
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(i) different subdomains can be analysed separately,
leading to smaller and better-conditioned systems of
equations (different solvers, suitable for each sub-
domain, may be employed);

(ii) only interface routines are required when one wishes
to use existing codes to build coupling algorithms
(thus, coupled systems may be solved by separate
programmodules, taking full advantage of specialized
features and disciplinary expertise);

(iii) matching nodes at common interfaces are not
required, greatly improving the flexibility and versa-
tility of the coupled analyses, especiallywhendifferent
discretization methods are considered;

(iv) matching time steps at common interfaces are not
required (in time-domain analysis), allowing optimal
temporal discretizations within each sub-domain,
improving accuracy and stability aspects;

(v) nonlinear analyses (as well as other iterative-based
analyses)may be carried out in the same iterative loop
of the iterative coupling, not introducing a relevant
extra computational effort for the model;

(vi) more efficient analyses can be obtained, once the
global model can be reduced to several subdomains
with reduced size matrices.

As a matter of fact, Gauzellino et al. [55] compared the
iterative domain decomposition and global solution taking
into account three-dimensional Helmholtz problems. Their
numerical results show that iterative domain decomposition
methods perform far better than globalmethods. In addition,
they observed that iterative domain decomposition methods
involving small subdomains work better than those with
subdomains involving a large number of elements. Similar
results have been obtained by Soares et al. [51], taking into
account two-dimensional Helmholtz problems.

To give a detailed overview of the recent developments
found in many of the referred works, the remainder of
this paper will address a number of application examples
concerning different phenomena and methods. First, the
governing equations related to wave propagation models are
generically and briefly presented. In the sequence, an effi-
cient iterative coupling technique is described, including the
mathematical derivation of the optimized relaxationmethod-
ology. Some numerical applications are finally presented,
illustrating the accuracy, performance, and potentialities of
the discussed procedures, taking into account different wave
propagation models and discretization techniques.

2. Governing Equations

Wave propagation phenomena may be generically described
by the following time/frequency-domain governing equa-
tions:

𝑐
0
(𝑥, 𝑡) + 𝑐

1
(𝑥) �̈� (𝑥, 𝑡) + 𝑐
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𝑐
0 (
𝑥, 𝜔) − 𝜔

2
𝑐
1 (
𝑥) 𝑢 (𝑥, 𝜔) + 𝑖𝜔𝑐2 (

𝑥) 𝑢 (𝑥, 𝜔)

+ 𝑐
3
(𝑥) 𝜕𝑓 (𝑢 (𝑥, 𝜔)) = 0
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which can be further generalized in order to consider more
complex behavior, such as time varying coefficients (𝑐

𝑙
(𝑥, 𝑡),

𝑙 = 1, 2, 3), nonlinearities (𝑐
𝑙
(𝑥, 𝑢(𝑥, 𝑡)), 𝑙 = 0, 1, 2, 3; etc.)

Equation (1a) stands for the time domain governing equation,
whereas (1b) stands for its frequency-domain counterpart
(overbars indicate frequency-domain values). In these equa-
tions, 𝑢 represents the incognita field, which can be scalar,
vectorial, and so forth, according to the physical model in
focus. 𝑐

𝑖
stands for a general coefficient representation, which

can as well be a scalar, a tensor, and so forth. Overdots stand
for time derivatives, whereas 𝜕𝑓 indicates a spatial derivative
operator. The complex number is denoted by 𝑖 and the time,
frequency, and space domains are represented by 𝑡, 𝜔, and
𝑥, respectively (in this case, 𝑥 ∈ Ω, where Ω is the spatial
domain of the model).

The boundary conditions (𝑥 ∈ Γ, where Γ is the
boundary of the model) may be generically described as (for
simplicity, from this point onwards, overbars are no longer
used to indicate frequency-domain values and 𝜍 stands for 𝑡
or 𝜔, according to the case of analysis)

𝑓 (𝑢 (𝑥, 𝜍) , V (𝑥, 𝜍)) = 𝑐 (𝑥, 𝜍) , (2)

where, once again, 𝑐 stands for known terms. In (2), 𝑓
stands for a generic function, representing the combination
of its arguments. The variable V, which may be considered
prescribed at the boundary of the model, is a function
of 𝑢, and it is usually expressed considering some normal
projection (normal to the boundary) of the spatial derivatives
of 𝑢 (i.e., V = 𝜕𝑓

𝑛
(𝑢)).

To completely define the model, initial conditions (which
are usually adopted null in frequency-domain analyses) must
also be defined. In this case, a generic representation can be
given by 𝑓(𝑢(𝑥, 𝑡 = 0), �̇�(𝑥, 𝑡 = 0)) = 𝑐(𝑥), where notation
analogous to that of (2) is considered.

Taking into account coupled models in which different
domains interact by a common interface, interface conditions
must be stated, indicating how the domains interact.This can
be generically expressed as

𝑓
1
(𝑢 (𝑥
−
, 𝜍) , V (𝑥−, 𝜍)) = 𝑓

2
(𝑢 (𝑥
+
, 𝜍) , V (𝑥+, 𝜍)) , (3)

where 𝑥 ∈ Γ
𝐼
, 𝑥− ∈ Γ

𝐼
∪ Ω
1
, 𝑥+ ∈ Γ

𝐼
∪ Ω
2
, and Γ

𝐼
is

the common interface between domains Ω
1
and Ω

2
. In (3),

functions 𝑓
1
and 𝑓

2
describe how the interaction between

the coupled domains takes place by relating their boundary
values on the common interface.

3. Iterative Coupling Analysis

In order to enable the coupling between sectioned domains
of a global model, an iterative procedure is employed here,
which performs a successive renewal of the relevant vari-
ables at the common interfaces. This approach is based on
the imposition of prescribed boundary conditions, properly
evaluated, at the interfaces of the sectioned domains, allowing
each domain of the global model to be analyzed separately.
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Since the sectioned domains are analyzed separately, the rele-
vant systems of equations are formed independently, before
the iterative process starts (in the case of linear analyses),
and are kept constant along the iterative process, rendering
a very efficient procedure. The separate treatment of the
sectioned domains allows independent discretizations to be
considered on each domain, without any special requirement
of matching nodes along the common interfaces. Moreover,
in the case of time-domain analysis, different time-steps
may also be considered for each domain. Thus, the coupling
algorithm can be presented for a generic case, in which
the interface nodes may not match, and the interface time
instants are disconnected, allowing exploiting the benefits of
the iterative coupling formulation.

To ensure and/or to speed up convergence, a relaxation
parameter 𝜆 is introduced in the iterative coupling algorithm.
The effectiveness of the iterative process is strongly related to
the selection of this relaxation parameter, since an inappro-
priate selection for 𝜆 can significantly increase the number of
iterations in the analysis or, even worse, make convergence
unfeasible. As it has been reported [49, 51], frequency-
domain analyses usually give rise to ill-posed problems and,
in these cases, the convergence of simple iterative coupling
algorithms can either be too slow or unachievable. In order to
deal with ill-posed problems and ensure convergence of the
iterative coupling algorithm, an optimal iterative procedure
is adopted here, with optimal relaxation parameters being
computed at each iterative step. As it is illustrated in the
next section, the introduction of these optimal relaxation
parameters allows the iterative coupling technique to be
very effective, especially in the frequency domain, ensuring
convergence at a low number of iterative steps.

3.1. Iterative Algorithm. Initially, in the kth iterative step of
the coupled analysis of domains 1 and 2, the so-called domain
1 is analyzed and the variables 𝑢 or V at the common interfaces
of the domain are computed, taking into account prescribed
values of V or 𝑢 at these common interfaces.These prescribed
values of V or 𝑢 are provided from the previous iterative step
(in the first iterative step, null or previous time-step values
may be considered). Once the variables 𝑢 or V are computed,
they are applied to evaluate the boundary conditions that
are prescribed at the common interfaces of domain 2, as
described by (3). Taking into account these prescribed 𝑢 or V
boundary conditions, the so-called domain 2 is analyzed and
the variables V or 𝑢 at the common interfaces of the domain
are computed. Then, the computed V or 𝑢 values are applied
to evaluate the boundary conditions that are prescribed at
the common interfaces of domain 1, reinitiating the iterative
cycle. A sketch of this cycle is depicted in Figure 1.

As previously discussed, relaxation parameters must be
considered in order to ensure and/or to speed up the
convergence of the iterative process. Thus, the values that
are computed after the analysis of the sectioned domain may
be combined with its previous iterative step counterpart,
relaxing the computation of the actual iterative step value.
Mathematically, this can be represented as follows:

𝑦
(𝑘+1)

= (𝜆) 𝑦
(𝑘+𝜆)

+ (1 − 𝜆) 𝑦
(𝑘)
, (4)

where 𝜆 is the adopted relaxation parameter and 𝑦 stands for
𝑢 or V, according to the case of analysis; one should note that
𝑦
(𝑘+𝜆) is the value computed at the end of the iterative step,

before the application of the relaxation parameter.
A proper selection for 𝜆 at each iterative step is extremely

important for the effectiveness of the iterative coupling
procedure. In order to obtain an easy to implement, efficient,
and effective expression for the relaxation parameter compu-
tation, optimal 𝜆 values are deduced in Section 3.2.

3.2. Optimal Relaxation Parameter. In order to evaluate an
optimal relaxation parameter, the following square error
functional is minimized here:

𝜀 (𝜆) =






Y(𝑘+1) (𝜆) − Y(𝑘) (𝜆)



2

, (5)

where Y stands for a vector whose entries are 𝑢 or V values,
computed at the common interfaces.

Taking into account the relaxation of the field values for
the (𝑘 + 1) and (𝑘) iterations, (6a) and (6b) may be written,
based on the definition in (4):

Y(𝑘+1) = (𝜆)Y(𝑘+𝜆) + (1 − 𝜆)Y(𝑘), (6a)

Y(𝑘) = (𝜆)Y(𝑘+𝜆−1) + (1 − 𝜆)Y(𝑘−1). (6b)
Substituting (6a) and (6b) into (5) yields

𝜀 (𝜆) =






(𝜆)W(𝑘+𝜆) + (1 − 𝜆)W(𝑘)
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= (𝜆
2
)






W(𝑘+𝜆)



2

+ 2𝜆 (1 − 𝜆) (W(𝑘+𝜆),W(𝑘))

+ (1 − 𝜆)
2



W(𝑘)



2

,

(7)

where the inner product definition is employed (e.g.,
(W,W) = ‖W‖

2) and new variables, as defined in the
following, are considered:

W (𝑘+𝜆) = Y(𝑘+𝜆) − Y(𝑘+𝜆−1) (8)
To find the optimal 𝜆 that minimizes the functional 𝜀(𝜆),

(7) is differentiated with respect to 𝜆 and the result is set to
zero, described as follows:

(𝜆)






W(𝑘+𝜆)



2

+ (1 − 2𝜆) (W(𝑘+𝜆),W(𝑘))

+ (𝜆 − 1)






W(𝑘)



2

= 0.

(9)

Rearranging the terms in (9) yields

𝜆 =

(W(𝑘),W(𝑘) −W(𝑘+𝜆))




W(𝑘) −W(𝑘+𝜆)



2
(10)

which is an easy to implement expression that provides an
optimal value for the relaxation parameter 𝜆, at each iterative
step.This expression requires a low computational cost, when
compared to other alternatives that can be found in the
literature (see, e.g., [28, 29]) and it provides very good results,
as it has been reported taking into account different physical
models and domain analyses [43, 44, 51–54]. The iterative
process is relatively insensitive to the value of the relaxation
parameter adopted for the first iterative step and 𝜆 = 0.5 can
be considered in this case, for instance.
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Figure 1: Sketch of the iterative coupling algorithm.
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(b) sketch for a temporal interpolation of time-step values on the interface: 𝑦+(𝑡+) = 𝐼(𝑦−(𝑡−), 𝑦−(𝑡− − Δ𝑡−)), and so forth, where 𝐼 stands for
a linear interpolation function.

3.3. Interface Compatibility. As previously discussed, inde-
pendent spatial (and temporal, in time-domain analysis)
discretizations may be considered for each domain of the
model, not requiring matching nodes (or equal time steps)
at the common interfaces. Thus, special procedures must be
employed to ensure the interface spatial (and temporal) com-
patibility. In order to do so, interpolation and extrapolation
procedures are considered here. These procedures can be
generically described by

𝑦 (𝑥
𝑖
, 𝜍) =

𝐽

∑

𝑗=1

𝛼
𝑗
𝑦 (𝑥
𝑗
, 𝜍) , (11a)

𝑦 (𝑥, 𝑡
𝑛
) = 𝛽
0
𝑦 (𝑥, 𝑡

𝑚
) +

𝐽

∑

𝑗=1

𝛽
𝑗
𝑦 (𝑥, (𝑡 − 𝑗Δ𝑡)

𝑚/𝑛
) , (11b)

where (11a) stands for spatial interpolations and (11b) stands
for time interpolations/extrapolations (𝛼

𝑗
and 𝛽

𝑗
stand

for spatial interpolation coefficients and time interpola-
tion/extrapolation coefficients, respectively, where Δ𝑡 rep-
resents the time step). In Figure 2, simple sketches for the
spatial and temporal interpolation procedures are depicted,
taking into account linear interpolations.

Although time interpolations usually can be carried out
without further difficulties, time extrapolations may give rise
to instabilities if not properly elaborated.Thus, extrapolations
should be performed in consonancewith the field approxima-
tions being adopted within each time step and with the time
discretization procedures being considered in the analysis, in
order to formulate a consistent procedure. Once a consistent
methodology is elaborated, time interpolation/extrapolation
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procedures can be employed with confidence, as referred in
the literature [47, 48] and illustrated in the next section.
One should notice that usually different optimal (optimal
in terms of accuracy, stability and efficiency) time steps
are required when taking into account different numerical
methods, spatial discretizations, material properties, physical
phenomena, and so forth. Thus, in some cases, considering
different time steps within each domain of a coupled model
is of maximal importance to allow the effectiveness of the
analysis.

Using space(/time) interpolation(/extrapolation) proce-
dures, optimal modeling of each sectioned domain may be
achieved, which is very important inwhat concerns flexibility,
efficiency, accuracy, and stability aspects.

4. Numerical Applications

In this section, the general procedures previously discussed
are particularized and briefly detailed, taking into account
different physicalmodels anddiscretization techniques.Thus,
the discussed iterative coupling methodology is applied
considering a wide range of wave propagation models and
numerical methods, richly illustrating its performance and
potentialities.

In this context, time- and frequency-domain analyses
are carried out here, and electromagnetic, acoustic, and
mechanical wave propagation phenomena (as well as their
interactions) are discussed in the applications that follow.
Moreover, different numerical techniques (such as the finite
element method, the boundary element method, and mesh-
less methods) are applied to discretize the different domains
of the model, illustrating the versatility and generality of the
discussed iterative method.

4.1. Electromagnetic Waves. In electromagnetic models, vec-
torial wave equations describe the electric and the magnetic
field evolution [56, 57]. In this case, (1a) can be rewritten as
(in this subsection, time-domain analyses are focused on):

∇ × (𝜇(𝑥)
−1
∇ × E (𝑥, 𝑡)) + 𝜀 (𝑥) ̈E (𝑥, 𝑡) = − ̇J (𝑥, 𝑡) , (12a)

∇ × (𝜀(𝑥)
−1
∇ ×H (𝑥, 𝑡)) + 𝜇 (𝑥) Ḧ (𝑥, 𝑡)

= ∇ × (𝜀(𝑥)
−1J (𝑥, 𝑡)) ,

(12b)

and (3) can be rewritten as

n (𝑥) × (E (𝑥+, 𝑡) − E (𝑥−, 𝑡)) = 0, (13a)

(D (𝑥
+
, 𝑡) −D (𝑥

−
, 𝑡)) ⋅ n (𝑥) = 𝜌 (𝑥, 𝑡) , (13b)

(B (𝑥+, 𝑡) − B (𝑥−, 𝑡)) ⋅ n (𝑥) = 0, (13c)

n (𝑥) × (H (𝑥
+
, 𝑡) −H (𝑥

−
, 𝑡)) = J (𝑥, 𝑡) , (13d)

where E and H are the electric and magnetic field intensity
vectors, respectively; D and B represent the electric and
magnetic flux densities, respectively; and J and 𝜌 stand for the
electric current and electric charge density, respectively. The
parameters 𝜀 and 𝜇 denote, respectively, the permittivity and

permeability of themediumand itswave propagation velocity
is specified as 𝑐 = (𝜀𝜇)

−1/2. n is the normal vector, from
domain 1 to domain 2. Equations (13a) and (13b) state that the
tangential component of E is continuous across the interface
and that the normal component of D has a step of surface
charge on the interface surface, respectively. Equations (13c)
and (13d) state that the normal component ofB is continuous
across the interface and that the tangential component ofH is
continuous across the interface if there is no surface current
present, respectively.

In the present application, the electromagnetic fields
surrounding infinitely long wires are studied [41]. Two cases
of analysis are focused here, namely, (a) case 1, where onewire
is considered; (b) case 2, where two wires are employed. For
both cases, the wires are carrying time-dependent currents
(i.e., 𝐼(𝑡) = 𝑡 or 𝐼(𝑡) = 𝑡

2) and they are located along the
adopted 𝑧-axis. A sketch of the model is depicted in Figure 3.

The spatial and temporal evolution of the electric field
intensity vector is analyzed here taking into account a finite
element method (FEM)—boundary element method (BEM)
coupled formulation. In this context, the FEM is applied
to model the region close to the wires, whereas the BEM
simulates the remaining infinity domain. As it is well known,
the BEM employs fundamental solutions which fulfill the
radiation condition.Thus, this formulation is very suitable to
perform infinite domain analysis, once reflected waves from
infinity are avoided [58].

The adopted spatial discretization is also described in
Figure 3. In this case, 2344 linear triangular finite elements
and 80 linear boundary elements are employed in the analyses
(see references [57, 58] for more details regarding the FEM
and the BEMapplied to electromagnetic analyses).The radius
of the FEM-BEM interface is defined by 𝑅 = 1m and
matching nodes are considered at the interface. For temporal
discretization, the selected time step is given byΔ𝑡 = 5⋅10−11s
for both domains.Thephysical properties of themedium (air)
are 𝜇 = 1.2566 ⋅ 10−6H/m and 𝜀 = 8.8544 ⋅ 10−12 F/m.

Figure 4 shows the modulus of the electric field intensity
obtained at points A and B (see Figure 3) considering the
iterative couplingmethodology. Analytical time histories [58]
are also depicted in Figure 4, highlighting the good accuracy
of the numerical results. In Figure 5, charts are displayed,
indicating the percentage of occurrence of different relax-
ation parameter values (evaluated according to expression
(10)), in each analysis. As can be observed, for all considered
cases, optimal relaxation parameters aremostly in the interval
0.7 ≤ 𝜆 ≤ 0.8. In fact, an optimal relaxation parameter
selection is extremely case dependent. It is function of the
physical properties of the model, geometric aspects, adopted
spatial and temporal discretizations, and so forth. Equation
(10) provides a simple expression to evaluate this complex
parameter.

In order to illustrate the effectiveness of the methodology
when considering different time discretizations for different
domains, Figure 6 depicts results that are computed consider-
ing Δ𝑡 = 2.5 ⋅ 10−11 s for the FEM and Δ𝑡 = 2.0 ⋅ 10−10 s for the
BEM (i.e., a difference of 8 times between the time steps). For
simplicity, results are presented considering just the first case
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Figure 3: Sketch of the electromagnetic models and adopted FEM/BEM spatial discretizations: (a) case 1, one wire; (b) case 2, two wires.
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Figure 4: Time history results for the electric field intensity at points A and B considering 𝐼(𝑡) = 𝑡 and (a) case 1 and (b) case 2; 𝐼(𝑡) = 𝑡2 and
(c) case 1 and (d) case 2.
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Figure 5: Percentage of occurrence of different relaxation parameter values during the analysis, considering 𝐼(𝑡) = 𝑡 and (a) case 1 and (b)
case 2; 𝐼(𝑡) = 𝑡2 and (c) case 1 and (d) case 2.

of analysis, that is, case 1 and 𝐼(𝑡) = 𝑡. As one can observe
in Figure 6(a), good results are still obtained taking into
account the iterative formulation, in spite of the existing time
disconnections at the interface. In Figure 6(b), the evolution
of the relaxation parameter is depicted, taking into account
this last configuration. As one can observe, in this case,
optimal relaxation parameter values are between 0.7 and 1.0
and mostly concentrate on the interval (0.9, 1.0). In fact, it
is expected that these values get closer to 1.0 when smaller
time steps are considered. In the present analysis, an average
number of 4.92 iterations per time step is obtained (taking
into account 800 FEM time steps), which is a relatively low
number, illustrating the good performance of the technique
(it must be remarked that a tight tolerance criterion was
adopted for the convergence of the iterative analysis).

4.2. Acoustic Waves. In acoustic models, a scalar wave equa-
tion describes the acoustic pressure field evolution [1]. In this
case, (1b) can be rewritten as (in this subsection, frequency-
domain analyses are focused)

∇ ⋅ (𝜅 (𝑥) ∇𝑝 (𝑥, 𝜔)) + 𝜔
2
𝜌 (𝑥) 𝑝 (𝑥, 𝜔) = 𝛾 (𝑥, 𝜔) (14)

and (3) can be rewritten as

(𝑝 (𝑥
+
, 𝜔) − 𝑝 (𝑥

−
, 𝜔)) = 0, (15a)

(𝑞 (𝑥
+
, 𝜔) − 𝑞 (𝑥

−
, 𝜔)) = 𝑔 (𝑥, 𝜔) , (15b)

where 𝑝 is the hydrodynamic pressure and 𝛾 and 𝑔 stand
for domain and surface sources, respectively. The parameters
𝜌 and 𝜅 denote, respectively, the mass density and com-
pressibility of the medium and its wave propagation velocity
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Figure 6: Results considering different time steps for each domain: (a) electric field intensity at points A and B; (b) optimal relaxation
parameters for each iterative step.
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Figure 7: (a) Sketch for the heterogeneous medium with multiple subregions; (b) boundary and domain point distribution, considering the
spatial discretization of an inclusion and adjacent fluid.

is specified as 𝜐 = (𝜅/𝜌)
1/2. The hydrodynamic fluxes on

the interfaces are represented by 𝑞, and they are defined by
𝑞 = 𝜅 ∇𝑝 ⋅ n, where n is the normal vector, from domain
1 to domain 2. Equation (15a) states that the pressure is
continuous across the interface, whereas (15b) states that the
flux is continuous across the interface if there is no surface
source.

The advantages of using iterative coupling procedures are
revealed when more complex configurations are analyzed.
In this subsection, the case of a heterogeneous domain,
composed of a homogeneous fluid incorporating multiple
circular inclusions with different properties, is analyzed.

For this purpose, consider the host medium to allow the
propagation of sound with a velocity of 1500m/s, and this
medium is excited by a line source located at 𝑥

𝑠
= −5.0m

and 𝑦
𝑠
= 0.0m. Within this fluid, consider the presence of

8 circular inclusions; all of them are with unit radius and
filled with a different fluid, allowing sound waves to travel at
3000m/s, as depicted in Figure 7.

The above-described system has been analyzed taking
into account the proposed iterative coupling procedure
making use of the Kansa’s method (KM) to model all the
inclusions and of the method of fundamental solutions
(MFS) to model the host fluid (see references [12, 59–61]
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Figure 8:Hydrodynamic pressures along the common interface of the 8th inclusion for (a)𝜔 = 400Hz and (b)𝜔 = 1000Hz (—, real-iterative;
- - - -, Imag-iterative; I, Real-direct; ◻, Imag-direct).

for more details regarding the KM and the MFS applied
to acoustic analyses). One should note that, since the real
source is positioned at the outer region, the iterative process
is initialized with the analysis of the MFS model, considering
prescribed Neumann boundary conditions at the common
interfaces. Once the boundary pressures for the outer region
are computed, these values are transferred to the closed
regions by imposing Dirichlet boundary conditions, incor-
porating information about the influence of each inclusion
on the remaining heterogeneities. Then, each KM subregion
is analysed independently and the internal boundary values
(normal fluxes) are evaluated autonomously for each inclu-
sion. The iterative procedure then goes further, including
the calculation of the relaxation parameter at each iterative
step, as well as the correction of boundary variables, until
convergence is achieved.

To model the system, each MFS boundary is discretized
by 55 points. 331 KM domain points are equally distributed
within each inclusion, and 66 KM boundary points (around
31 points per wavelength) are used (see Figure 7(b)). The
complexity of the model hinders the definition of a closed
form solution; thus, the results are checked against a numer-
ical model which performs the direct (i.e., noniterative)
coupling between both methods. In that model, 66 boundary
points are used in the MFS to define the boundary of
each inclusion, and 66 and 331 KM boundary and domain
points, respectively, are adopted for the discretization of each
inclusion (analogously to the iterative coupling procedure).
Figure 8 compares the responses computed by the iterative
and the direct coupling methodologies. Results are depicted
along the boundary of the 8th inclusion, for excitation fre-
quencies of 400Hz (Figure 8(a)) and 1000Hz (Figure 8(b)).
As can be observed in the figure, there is a perfect match
between both approaches, with the iterative procedure clearly
converging to the correct solution.

It is important, at this point, to highlight the differences
in the computational times of the direct and of the iterative

coupling approaches. For the present model configuration,
the direct coupling approach had to deal simultaneously with
528 boundary points and a total of 2648 internal points (i.e.,
considering a coupled matrix of dimension 3704), which is
implied in 373.89 s of CPU time in a Matlab implementation
(being this CPU time independent of the frequency in focus).
For the iterative coupling approach, using 55 boundary points
for the MFS and 66 boundary points for the KM, it was
possible to obtain analogous results considering 12.06 s of
CPU time for the frequency of 200Hz and 32.32 s for the
frequency of 1000Hz (i.e., 3.23% and 8.64% of the com-
putational cost of the direct coupling methodology, resp.).
Even if the same number of boundary points is used in the
iterative coupling approach for the MFS (i.e., 66 points), the
final CPU time would just increase up to 35.71 s (9.55% of
the computational cost of the direct coupling methodology).
These results are summarized in Table 1, where the number
of iterations and the CPU time are presented for the first
scenarios (i.e., 55 boundary points for the MFS) and for
frequencies between 50Hz and 1000Hz.The values described
in Table 1 further confirm that the difference in calculation
times between the iterative and the direct coupling approach
is striking and reveal an excellent gain in performance
favouring the iterative coupling technique. It is important
to understand that this gain is strongly related to the pos-
sibility of dealing with smaller-sized matrices when using
the iterative coupling procedure. Moreover, it is possible to
invert (or triangularize, etc.) the relevant matrices only at
the first iterative step and then proceed with the calculations
using the inverted matrices (or forward/back substituting,
etc.). As a consequence, after the first iteration, only matrix
vector multiplication operations are required, and very high
savings in what concerns computational time are achieved. In
fact, considering that the number of operations required for
matrix inversion can be assumed to be of the order of𝑁3 (𝑁
being thematrix size), a simple calculation allows concluding
that, for the current model, the relative cost of inverting the
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Table 1: Total number of iterations and relative CPU time (itera-
tive/direct coupling) for the acoustic model.

Frequency (Hz) Iterations Relative CPU time (%)
50 14 2.09
100 18 2.43
150 29 3.19
200 31 3.23
250 26 2.78
300 40 3.86
350 31 3.13
400 32 3.20
450 30 3.02
500 49 4.49
550 48 4.40
600 45 4.18
650 68 5.94
700 34 3.28
750 39 3.66
800 110 9.20
850 98 8.28
900 78 6.75
950 104 8.83
1000 100 8.64

eight KM matrices (each one being a square matrix with
397 × 397 entries) and the MFS matrix (with 440 × 440
entries) is less than 2% of the cost of inverting a larger 3704
× 3704 matrix, as required for the direct coupling strategy.
Similar conclusions can be obtained considering other solver
procedures, such as matrix triangularizations, demonstrating
that a considerably less expensive methodology is obtained
if the different subdomains are analysed separately (even
considering an eventual high number of iterative steps in the
iterative analysis).

Analyzing the difference in computational times between
the two analyzed frequencies (i.e., 200Hz and 1000Hz) also
reveals a significant difference between them.This difference
is related to the number of iterations required for conver-
gence, which was higher when the excitation frequency of
1000Hz was considered. The plot in Figure 9 indicates the
number of iterations required for convergence along a range
of frequencies between 10Hz and 1000Hz, using a constant
number of boundary (55 for theMFS and 66 for the KM) and
internal points (331 for the KM). As expected, the number of
iterations increases with the frequency. It is interesting to note
that the maximum necessary number of iterations occurred
for a frequency of 990Hz, requiring 170 iterations and a CPU
time of 54.80 s to converge, which is less than 15% of the CPU
time required by the direct coupling for the same frequency.

In Figure 10, the wavefield produced within and around
the inclusions is illustrated for excitation frequencies of
600Hz and 1000Hz. As expected, as the frequency increases,
the multiple inclusions generate progressively more complex
wave fields, with the interaction between them becoming
very significant for the higher frequency. Observation of
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Figure 9: Total number of iterations considering different frequen-
cies and 55 collocation points for the MFS and 66 boundary points
for the KM, at each circular inclusion.

these results also reveals a strong shadow effect produced by
the inclusions, with much lower amplitudes being registered
in the region behind the inclusions placed further away
from the source. This effect is even more pronounced for
the higher frequency. Interestingly, for both frequencies,
the space between the two lines of inclusions works as a
guiding path, along which the sound energy travels with less
attenuation.

4.3. Mechanical Waves. In dynamic models, a vectorial wave
equation describes the displacement field evolution [1]. In this
case, considering linear behaviour, (1a) can be rewritten as (in
this subsection, time-domain analyses are focused)

∇ × (𝜇 (𝑥) ∇ × u (𝑥, 𝑡))

− ∇ ((𝜂 (𝑥) + 2𝜇 (𝑥)) ∇ ⋅ u (𝑥, 𝑡)) + 𝜌 (𝑥) ü (𝑥, 𝑡)

= f (𝑥, 𝑡) ,

(16)

and (3) can be rewritten as:

(u (𝑥+, 𝑡) − u (𝑥−, 𝑡)) = 0, (17a)

(𝜎 (𝑥
+
, 𝑡) − 𝜎 (𝑥

−
, 𝑡))n (𝑥) = 𝜏 (𝑥, 𝑡) , (17b)

where u is the displacement vector and f and 𝜏 stand for
domain and surface forces, respectively. The terms 𝜂 and 𝜇
denote the so-called Lamé parameters, and 𝜌 is the mass
density of the medium. In this case, the wave propagation
velocities are specified as 𝑐

𝑠
= (𝜇/𝜌)

1/2 (shear wave) and
𝑐
𝑑
= ((𝜂 + 2𝜇)/𝜌)

1/2 (dilatational wave). The stress tensor
is denoted by 𝜎 and n is the normal vector, from domain 1
to domain 2. Equation (17a) states that the displacements are
continuous across the interface, whereas (17b) states that the
tractions are continuous across the interface if there are no
surface forces on it.

One main advantage of the discussed coupling algorithm
is that other iterative processes can be carried out in the same
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Figure 10: 3D plots of the sound field for frequencies of (a) 600Hz and (b) 1000Hz.
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Figure 11: (a) Sketch of the circular cavity; (b) FEM-BEM discretization; (c) BEM-BEM discretization.

iterative loop needed for the coupling.Thus, consideration of
coupled nonlinear models, as for example, may not demand
a superior amount of computational effort, which is very
beneficial.

In the present application, a nonlinear model is consid-
ered and elastoplastic analyses are carried out (for details
about elastoplastic analyses, one is referred to [33–35, 62–
64]). Moreover, two discretization approaches are employed
here, one taking into account FEM-BEM coupling proce-
dures, and another considering BEM-BEM coupled tech-
niques (for more details about these coupled models, one
is referred to [37, 43]). In this context, a nonlinear infinity
domain is analyzed here, in which a circular cavity is loaded.
The region expected to develop plastic strains is discretized by
the finite element method, in the case of the FEM-BEM cou-
pled analysis, or by the domain boundary element method
(D-BEM), in the case of the BEM-BEM coupled analysis.The
remainder of the infinity domain is discretized by the time-
domain boundary element method (TD-BEM). A sketch of
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BEM and coupled TD-BEM/FEM analyses: linear and nonlinear
results at point A.
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Figure 13: TD-BEM/FEM analyses: (a) number of iterations per time step considering optimal relaxation parameters; (b) optimal relaxation
parameters for each iterative step.

the model is depicted in Figure 11, as well as the adopted
discretizations. The FEM-BEM discretization is depicted
in Figure 11(b). In this case, 1944 linear triangular finite ele-
ments and 80 linear boundary elements are employed in the
coupled analysis. The BEM-BEM discretization is depicted
in Figure 11(c). In this case, 46 linear boundary elements
are employed in the BEM-BEM coupled analysis (20 linear
boundary elements for the TD-BEM and 26 linear boundary
elements for the D-BEM), as well as 270 linear triangular cells
(D-BEM formulation). In the BEM-BEM coupled analysis,
the double symmetry of the problem is taken into account.
An interesting feature of the boundary element formulation
is that symmetric bodies under symmetric loads can be
analysed without discretization of the symmetry axes. This
can be accomplished by an automatic condensation process,
which integrates over reflected elements and performs the
assemblage of the finalmatrices in reduced size [64].The time
discretization adopted is given byΔ𝑡 = 0.04 s for the FEMand
Δ𝑡 = 0.20 s for the D-BEM and the TD-BEM.

The physical properties of the model are 𝜇 = 2.652 ⋅

10
8N/m2, 𝜂 = 2.274 ⋅ 10

8N/m2, and 𝜌 = 1.804 ⋅ 10
3 kg/m3.

A perfectly plastic material obeying theMohr-Coulomb yield
criterion is assumed, where 𝑐

𝑜
= 4.8263⋅10

6N/m2 (cohesion)
and 𝜙 = 30

∘ (internal friction angle). The geometry of the
problem is defined by 𝑅 = 3.048m (the radius of the TD-
BEM circular mesh is given by 5𝑅).

In Figure 12, the displacement time history at point A is
depicted, considering linear and nonlinear analyses. As one
can notice, good agreement is observed between the FEM-
BEM and BEM-BEM results. It is important to highlight that,
for the FEM-BEM analyses, a difference of 5 times between
the FEM and BEM time steps is considered, illustrating the
effectiveness of the time interpolation/extrapolation proce-
dures adopted in the analyses.

The number of iterations per time step and the optimal
relaxation parameters, evaluated at each iterative step, are
depicted in Figure 13, taking into account the FEM-BEM
coupled analyses. As one may observe, basically the same

Table 2: Total number of iterations (considering all time steps) for
the dynamic model.

Relaxation parameter Elastic analysis Elastoplastic analysis
1.00 3730 3740
0.90 3392 3443
0.80 3973 3993
0.70 4772 4777
Optimal 3287 3346

computational effort (i.e., number of iterative steps) is nec-
essary for both linear and nonlinear analyses, highlighting
the efficiency of the proposed methodology for complex
phenomena modeling. It is also important to remark the
low number of iterative steps necessary for convergence,
with a maximum of 7 iterations being necessary, within a
time step, taking into account the entire linear and non-
linear analyses. For the focused configurations, the optimal
relaxation parameters are intricately distributed within the
interval (0.75; 1.00), as depicted in Figure 13(b).

In Table 2, the total number of iterations is presented,
considering analyses with optimal relaxation parameters and
with some constant preselected 𝜆 values. As onemay observe,
an inappropriate selection for the relaxation parameter can
considerably increase the associated computational effort.
Thus, the optimization technique is extremely important in
order to provide a robust and efficient iterative coupling
formulation. In Figure 14, the computed 𝜎

𝑥𝑦
stresses are

depicted, considering the BEM-BEM elastoplastic analysis.
An advantage of the D-BEM is that it employs nodal stress
equations [37], allowing computing continuous stress fields,
in counterpart to the FEM, which computes stresses based
on displacement derivatives, obtaining discontinuous stress
fields at element interfaces.

4.4. Coupled Acoustic-Mechanical Waves. In this case, differ-
ent wave equations, as indicated in Sections 4.2 and 4.3 (see
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Figure 15: (a) Sketch of the coupled acoustic-dynamic model; (b) MFS collocation points (o) and virtual sources (x); (c) FEMmesh when 20
nodes are used along the solid-fluid interface; (d) node distribution for the meshless methods when 20 nodes are used along the solid-fluid
interface.

(14) and (16)), describe different domains of the globalmodel.
The interface conditions for the acoustic-dynamic coupling
(3) can then be written as (in this subsection, frequency-
domain analyses are focused)

(n (𝑥) ⋅ 𝜎 (𝑥+, 𝜔)n (𝑥) − 𝑝 (𝑥−, 𝜔)) = 0, (18a)

(−𝜔
2n (𝑥) ⋅ u (𝑥+, 𝜔) − 𝜐(𝑥−)2𝑞 (𝑥−, 𝜔)) = 0, (18b)

where u is the displacement vector and 𝜎 is the stress tensor
of the dynamic model (domain 1). 𝑝 is the hydrodynamic
pressure and 𝑞 is the hydrodynamic flux of the acoustic
model (domain 2). n is the normal vector, from domain 1 to
domain 2. The acoustic wave propagation velocity is denoted
by 𝜐. Equation (18a) states that the normal components of
the dynamic tractions are equal to the acoustic pressures
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Figure 16: (a) Reference pressure result; absolute error considering (b) 20 and (c) 40 boundary nodes in the solid, along the solid-fluid
interface.

and (18b) relates the normal components of the dynamic
accelerations to the acoustic fluxes.

In the present application, a model in which a concrete
wall of 10.0 m high is coupled to a fluid waveguide, filled
with water, is analyzed. A sketch of the model is depicted in
Figure 15(a). For this case, a pressure source is positioned in
the waveguide, at (−10.0; 0.5), illuminating the system. The
concrete structure corresponds to a wall with variable cross-
section, exhibiting thicknesses of 4.0m at its basis and of
2.0m at its top.

To simulate this coupled system, several approaches
are employed. For the fluid medium, the MFS is used in
all cases, allowing the use of the Green’s function for a
waveguide (see [61] for details concerning this function).This
Green’s function is written as a summation of modes, and its
convergence is very difficult when the source and the receiver

are positioned along the same vertical line, thus posing severe
difficulties for its use together with a BEM formulation. The
structure is modelled using three different methods, namely,
the FEM, a local collocation method (CM) (see [65] for
details about this procedure), and a meshless local Petrov-
Galerking technique (MLPG) (see [65, 66] for details about
this procedure). Representations of the node distribution for
each one of the methods can be found in Figures 15(b)–15(d).

Since no analytical solution can be found in the literature
for the present case, a numerical solutionmaking use of a full
BEM model ensuring the correct coupling between the solid
and the fluid is used. For this case, the rigid bottom of the
waveguide is accounted for using an image-source Green’s
function, while the free surface is fully discretized up to a
distance of 60.0m from the concrete wall; after this, an ane-
choic termination is considered, imposing adequate Robin
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Figure 17: Number of iterations required for convergence: (a) MFS-FEM; (b) MFS-CM; (c) MFS-MLPG.

boundary conditions. For the solid, full-space Green’s
functions are adopted, and 60 nodal points are used along
the solid-fluid interface, ensuring that accurate results can be
obtained. A total of 796 boundary elements are used to build
this model. Details on the mathematical formulation of this
technique can be found in the works of Tadeu and Godinho
[7].

Figure 16(a) illustrates the reference response in terms
of real and imaginary components of the acoustic pressure
at a receiver located at (−1.0; 3.0), for frequencies between
1Hz and 150Hz. This position is chosen so that the effect
of the vibration of the concrete wall and thus of the solid-
fluid coupling can be evident in the responses. As can be
seen in the figure, two peaks with significant amplitude
can be observed, corresponding to vibration modes of the
wall coupled to the fluid; after these peaks, the response
exhibits a smoother form. Figures 16(b) and 16(c) illustrate

the absolute difference, to the reference solution, calculated
for the three different approaches, namely, theMFS-FEM, the
MFS-CM, and the MFS-MLPG. For the fluid, 10 nodes are
positioned along the interface, while for the solid, results are
presented for 20 (Figure 16(b)) and 40 nodes (Figure 16(c)).
When 20 nodes are used, the responses provided by the three
approaches are very similar, with the two meshless methods
exhibiting a lower error level at the lower frequencies, and
with a worse behaviour of the CM being observable in the
higher frequencies. Observing the figure, it is apparent that
the MLPG is providing a more accurate response throughout
the analysed frequency range, exhibiting a lower error than
the FEM even at high frequencies. When more nodes are
used (Figure 16(c)), the error levels provided by all methods
improve, although the MLPG still exhibits a better overall
behaviour than the remaining methods.
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Figure 18: Real ((a) and (b)) and imaginary ((c) and (d)) parts of the deformation of the solid structure (amplified) when the excitation
frequency is 125Hz. Results are shown for 20 ((a) and (c)) and 40 ((b) and (d)) boundary nodes in the solid, along the fluid-solid interface,
when using the FEM (×), CM (∘), and MLPG (∙).

It is important to notice that, although different error
levels are observed for each method, the iterative coupling
algorithm always quickly converges even for frequencies in
the vicinity of the response peaks referred to before. Figure 17
illustrates the number of iterations required for convergence,
for the three approaches, considering 40 nodes along the
interface to model the solid. Clearly, all three approaches
exhibit very similar curves, requiring similar numbers of
iterations for the iterative process to reach convergence at
each frequency. It is also very clear that, for this case, the

number of iterations is always small, slightly exceeding 20
iterations only at a few specific frequencies. For the remaining
frequencies, only about 10 to 15 iterations are necessary
to attain convergence. In the same figure, the number of
iterations required, when a fixed relaxation parameter is used
(i.e., 𝜆 = 0.5), is also depicted. Comparison between the
curves calculated with optimal and fixed parameters reveals
a striking difference, with the optimal parameter always lead-
ing to significantly less iterations and ensuring convergence
for all frequencies. When the relaxation parameter is fixed,
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Figure 19: Variation of the complex relaxation parameter throughout the iterative process: (a) MFS-FEM; (b) MFS-CM; (c) MFS-MLPG.

convergence cannot be reached at two sets of frequencies,
associated with specific dynamic behaviours of the system.
These results once again illustrate the importance of using
a well-chosen relaxation parameter to ensure that effective
analyses are obtained.

The set of plots shown in Figure 18 illustrates the defor-
mation of the structure at frequency 125Hz. In the plotted
results, a grey patch is used to identify the reference response,
while marks are used to depict the (amplified) deformed
shape of the structure when analysed by the three iteratively
coupled approaches. The left column reveals the response for
20 nodes positioned in the solid along the interface, whereas
the right column shows the equivalent result computed for
40 nodes. It can be observed that, for all approaches, the
response improves significantly when more nodes are used,
indicating that the convergent behaviour of the methods can
be observed. The computed responses reveal very similar
shape and displacement amplitudes when compared to the
reference solution, with the response provided by the MFS-
CM approach being somewhat worse than the remaining
two. In fact, the MFS-MLPG and the MFS-FEM exhibit very
similar behaviours, with lower discrepancies being registered
for the meshless method. Finally, Figure 19 illustrates the
variation of the complex relaxation parameter throughout the
iterative process, showing its real and imaginary components,
together with its absolute value. Those plots reveal a very
similar evolution of the parameter for all combinations of
methods; again, this indicates that the discussed iterative
procedure is quite independent of the discretizationmethods
involved in the analyses.

5. Conclusions

This paper presents an overview of the application of itera-
tive coupling strategies to the analysis of wave propagation
problems. Different methods were considered, including

mesh-based and meshless methods, ranging from the more
classic BEM and FEM to the less usual MLPG, collocation
methods, or MFS. Several examples of the iterative cou-
pling technique were presented in Section 4, including the
application of the scheme to electromagnetic, acoustic, elas-
tic/elastoplastic, and acoustic-elastic interaction problems.
The generality and flexibility of the iterative scheme allowed
an efficient analysis of these problems, either using time or
frequency domainmodels.Theuse of an optimized relaxation
parameter (which is the basis of this scheme) proved to
be quite important, clearly accelerating (or in some cases
ensuring) convergence; for all tested cases, this parameterwas
shown to unpredictably vary throughout the iterative process,
and thus its appropriate recalculation at each iterative step
becomes important.The illustrated analyses clearly indicated
that the strategy can be effectively used for different methods
and that the performance of the iterative technique is quite
insensitive to the discretization methods employed in the
analyses.

It should be highlighted that the coupling technique
presented here is based on previous experience and works of
the authors and, although the paper is focused in wave prop-
agation problems, the iterative strategy presently discussed
can be regarded as a quite generic framework to perform
the coupling between different methods in many types of
applications.
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