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Neurofilament is an important type of intercellular cargos transmitted in neural axons. Given fluorescence microscopy images,
existing methods extract neurofilament movement patterns by manual tracking. In this paper, we describe two automated tracking
methods for analyzing neurofilament movement based on two different techniques: constrained particle filtering and tracking-by-
detection. First, we introduce the constrained particle filtering approach. In this approach, the orientation and position of a particle
are constrained by the axon’s shape such that fewer particles are necessary for tracking neurofilamentmovement than object tracking
techniques based on generic particle filtering. Secondly, a tracking-by-detection approach to neurofilament tracking is presented.
For this approach, the axon is decomposed into blocks, and the blocks encompassing the moving neurofilaments are detected by
graph labeling using Markov random field. Finally, we compare two tracking methods by performing tracking experiments on real
time-lapse image sequences of neurofilament movement, and the experimental results show that both methods demonstrate good
performance in comparison with the existing approaches, and the tracking accuracy of the tracing-by-detection approach is slightly
better between the two.

1. Introduction

Neurofilaments are defined as the long flexible protein poly-
mers that are transported along the axonal process between
neurons. Neurofilaments provide the protein polymers as
the major components of the axonal cytoskeleton, and
therefore, their movement patterns are important indicators
for the growth and repair of neurons. The diameter of
a neurofilament is about 10 nm and its length is about
many micrometers [1]. A neurofilament aligns to the long
axis of the axon and has an intermittent and bidirectional
motion [2–5]. The movement patterns of neurofilaments are
largely unpredictable and stochastic in nature according to
the neurology studies [4, 6]. To analyze the neurofilament
movement pattern, neurofilaments need to be tracked in
a time-lapse image sequence. By now, this tracking has
often been done manually, which is labor-intensive, and the
accuracy is undermined by human errors [7]. Therefore, it is
highly necessary to develop an automated tracking method

with improved tracking efficiency and no subjectivity and
variability associated with manual labeling.

Neurofilament tracking can be categorized under the
study of intracelluar movement tracking and is related to
visual object tracking in the computer vision literature. Jaqa-
man et al. [8, 9] solved a few problems in the correspondence
step such as the problems of disappearing, merging, and
splitting objects. Yang et al. [10] proposed an approach based
on Kalman filter for tracking particle motion. However,
these approaches demonstrate unsatisfactory performance
with images of low SNR [11–13]. For object tracking in noisy
image sequences, Smal et al. [13] presented a particle filtering
based approach. They devised a point-spread function (PSF)
to account for the imaging blur due to the diffraction-limit,
which is used to calculate a more sensible likelihood value in
the observationmodel. However, the inherent computational
complexity involved with generic particle filtering approach
was not studied in their approach.
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In this paper, we present two technical solutions to
solve the axonal neurofilament tracking problem based on
particle filtering and tracking-by-detection, respectively. For
the particle filtering approach, we take advantage of the fact
that axons have elongated shape within which neurofila-
ments move. As a result, the dynamics of neurofilament
movement are spatially constrained, and the searching space
for localizing the neurofilament in the following frame is
greatly reduced. Consequently, the particles can be reduced in
comparison to the generic particle filtering approach without
compromising the tracking accuracy. In the tracking-by-
detection approach, an axon is first divided into multiple
image blocks, and block-level neurofilament detection is
done using Markov random field (MRF). The corresponding
detections of a neurofilament are associated in successive
frames to form a continuous track.

The paper is organized as follows. In Section 2, we
describe the modeling method of the axon’s shape. In
Section 3, axon constraints in the particle filtering algorithm
is presented. In Section 4, we present the tracking-by-
detection approach. In Section 5, experimental results are
shown from the two approaches. In Section 6, we discuss
and conclude the paper.

2. Modeling the Axon Path

Common to the two approaches discussed in this paper, we
consider that it is necessary to model the axon path because
the neurofilament movement is constrained by the path [14].
Neural axons in fluorescence microscopy images appear as
smooth curved path. Smooth curves like quadratic/cubic
spline, Bezier curve, nonuniform rational B-spline (NURBS),
and so forth can be used to fit the axon shape. In this paper,
we choose to use cubic spline [15] for axon shape description
because it can fit the axon with small error, yet has easy-
to-compute derivatives. The function of the axon curve is
described by
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the polynomial coefficients of each segment. Because the
axon is fixed during the imaging process, maximum intensity
projection of the whole video sequence can be performed
to delineate the path of the filament for handling random
imaging noises. The knot number of the spline is chosen
by experiment to minimize the curve fitting error. Figure 1
shows models of the axon using this method.

3. The Constrained Particle Filtering

In this section, we introduce the first tracking approach: the
constrained particle filtering [14]. The key idea is as follows:
because a neurofilament always moves within the axon path,
we can limit its position and orientation according to the
shape of the axon path. Such a reduction in search space
requires fewer samples to cover it in the particle filtering
approach and, therefore, yields an efficient solution without
comprising tracking accuracy. Consider a neurofilament
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whereN represents a normal distribution with 𝜎
𝑥
, 𝜎
𝑦
, and 𝜎

𝜃

being its deviation for location and orientation components.
Considering that the particle’s orientation is constrained

by the axon path, we include the orientation constraint into
the dynamic state model as in (2):
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and the orientation corresponds to the tangent direction of
the curve at point (𝑥
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, 𝑦
𝑡
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In addition, the axon also limits the position of the
neurofilament with the extending of axon path. We model
the axon as a narrow strip with a width of 2𝑤∗ along the
cubic spline curve. The strips’ width 2𝑤∗ is determined by
the maximum width of the axon in the image, which is 10
pixels given the magnification level and physical size of the
samples used in our dataset. A rejection sampling scheme is
employed to generate samples that distribute according to the
position constraint: if the distance (𝑤

𝑡
) of a particle from the

axis is less than𝑤∗, the particle will be accepted; otherwise, it
is rejected.Thus, we can devise a constrained particle filtering
approach to simultaneously account for the orientation and
position constraints.

4. Tracking-by-Detection Approach

The tracking-by-detection approach works by first decom-
posing the axon into multiple equally sized blocks [16]. The
axon path is modeled by a cubic spline curve as discussed in
Section 2. Rectangular blocks with fixed width and height are
then generated along the axon, as shown in Figure 2. Similar
to the strip width in the particle filtering approach, the block
size is determined by the maximum width of the axon in the
image, which is related to themagnification level and physical
size of the axon.

After block decomposition of an axon, we perform
neurofilament detection to find blocks containing the neu-
rofilaments. We cast it as a labeling problem: a Label 1 is
assigned to the neurofilament block and 0 otherwise. Denote
the label configuration of all blocks along the axon by x =

{𝑥
0
, 𝑥
1
, . . . , 𝑥
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} ∈ {0, 1}

𝑛. Given the image observation
y = {𝑦

0
, 𝑦
1
, . . . , 𝑦
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}, the the maximum a posterior (MAP)

optimal label configuration is inferred by x∗ = argmax𝑃(x |
y), where 𝑃(x | y) denotes the posterior probability.
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(a) (b) (c)

Figure 1: Modeling the axon path. (a) A single frame. (b) Axon path acquired by a maximum intensity projection. (c) The curve fit.

Figure 2:The blocks with bright/dark colors represent the neurofil-
ament and background axon blocks.

We consider that the labeling of a block depends on its
local image observation 𝑦

𝑖
and its immediate neighboring

labels. It is assumed that the probabilistic dependencies
among variables satisfy theMarkovian property. In this sense,
the corresponding undirected probabilistic graph is aMarkov
random field (MRF). In this sense, the posterior probability
can be written in the following form:

𝑃 (x | y) = 1

𝑍 (x)
exp {−𝐸 (x; y)} , (5)

where 𝑍(x) = ∑x∈L𝑛{−𝐸(x; y)} is the normalization factor
named the partition function and 𝐸(x; y) is the energy
function. The energy function is comprised of the clique
potentials, that is, 𝐸(x; y) = ∑
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clique within the MRF. For our case, the unary and pairwise
potentials are considered:
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The local observation and the neighboring consistency are
taken care of by the unary and pairwise potentials, respec-
tively.

Considering each block independently, the unary poten-
tial is defined as the negative log-likelihood for a block label:
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where 𝜃 is the parameter vector obtained by training. For
training the classifier, positive and negative sample blocks are
chosen from selected images with manual labeling.

The pairwise potential tends to assign identical labels to
neighboring blocks unless their image observations strongly
violate such assignment. We define the prior depending on
feature similarity as follows:
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where ℎ
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are the intensity histograms obtained from

the image observations 𝑦
𝑖
and 𝑦

𝑗
, 𝑏(⋅) the Bhattacharyya

coefficient between two histograms, and 𝜆 the parameter for
controlling the smoothness.

The formulation above satisfies the submodular require-
ment [17] for the pairwise potentials; that is,
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Minimizing the energy 𝐸(x; y) as defined in (6) can be
efficiently solved by graph cut algorithms. Due to the space
limit, we do not discuss the details for constructing the 𝑠-
𝑡 graph and solving for the minimum 𝑠-𝑡 cut and refer the
readers to [18].

5. Experiments

In this section, the performance of two tracking methods,
particle filtering and tracking-by-detection, has been tested
using the video of neurofilament movement.

All of the image sequences of neurofilament movement
were on the neurons cultured and recorded by the Brown Lab
at The Ohio State University. The raw output image from the
microscope measured 512 × 512 in area and the pixel factor
was 0.131 𝜇m/pixel and was cropped to remove irrelevant
regions. In the constrained particle filtering approach, the dis-
tance 𝑤∗ was selected to be 5 pixels. The positional variances
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Figure 3: Tracking results using particle filtering. These data
correspond to frames 52, 55, 61, and 77 of Movie 1 and frames 71, 76,
81, and 88 ofMovie 2. (a) Generic particle filtering with 100 particles
in Movie 1. (b) Constrained particle filtering with 50 particles in
Movie 1. (c) Constrained particle filtering with 50 particles in Movie
2.

(𝜎
𝑥
and 𝜎

𝑦
) are 25 pixels and the angular variance (𝜎

𝜃
) is 0.5

rad. In the tracking-by-detection approach, the minimum 𝑠-
𝑡 cut algorithm is based on the implementation of Boykov-
Kolmogorov algorithm [18] by graph-tool. The block size is
10 pixels.The smoothness prior factor 𝜆 is 2. Both approaches
are implemented using Python/NumPy. We use MetaMorph
software to manually track the neurofilament motion for
achieving the ground true velocity value of the neurofilament
motion. For the tracking-by-detection approach, we need to
train theMRFmodel by manual labeling of training data. For
our experiment, we have selected 20 images for training and
used all the remaining for testing. The labeling is done by
using MetaMorph software.

Figure 3(a) shows the tracking results of Generic Particle
Filtering using 100 particles in Movie 1. We can see large
tracking errors. Figures 3(b) and 3(c) show spatially con-
strained particle filtering with only 50 particles in Movie 1
and Movie 2, which show the good tracking results. Figure 4
shows the corresponding estimated neurofilament velocities
acquired by the constrained particle filtering approach with
50 particles and actual neurofilament velocities in Movie 1.
Thus, we can see that generic particle filtering gives many
tracking errors and the constrained particle filtering shows
more accurate tracking performance with fewer particles.

Figure 5 shows the image frames and tracking results,
only the neurofilament in the middle is moving, and we only
plot the results for this one for clarity.The leading and trailing
ends are marked by crosshairs in the figure. The qualitative
tracking results on both sequences are quite accurate.

Figure 6 shows that the neurofilament velocities between
manual labeled method and our method for Movie 1. The
calculated velocities from our method are very close to the
manually labeled results. Moreover, comparing the tracking
results of two methods in Movie 1 in Figures 4 and 6, we find
that the tracking-by-detection is more accurate than particle
filtering approach.

The runtime performance is important for the through-
put of neurology analysis. For our current prototype
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Figure 4: The estimated and actual velocities using the constrained
particle filtering with 50 particles in Movie 1.

(a)

(b)

Figure 5: Neurofilament fluorescence microscopy image sequences
and the tracking results. Top rows: the fluorescence microscopy
image sequences. Bottom rows: the tracking results (4x zoomed into
the region of interest).

implementation using Python running on a laptop with
2.6GHz i7 processor and 8GB RAM, the average durations
for processing one frame are around 3 seconds and 0.2
seconds for the particle filtering and tracking-by-detection
approaches, respectively. The latter is more computationally
efficient. We expect that a reimplementation using low-level
programming language and GPGPU techniques can dramat-
ically improve the runtime performance of the tracking-by-
detection approach and makes it practically useful for high-
throughput neurofilament movement analysis.
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Figure 6: Comparison of the neurofilament velocities between
manually labeled method and our method for Movie 1.

6. Conclusions

In this paper, we propose two tracking approaches for neu-
rofilament movement analysis based on particle filtering and
tracking-by-detection. For the constrained particle filtering
approach, we combine two constraints of the orientation
and position into the generic particle filtering algorithm
such that the tracking accuracy and efficiency are largely
improved. For the tracking-by-detection approach, wemodel
the detection problem as a Markov random field and use
graph cut algorithm to solve the detection problem efficiently.
Experiment results on fluorescence microscopy images of
neurofilament movement demonstrate that both particle
filtering and tracking-by-detection based approaches can
achieve the satisfactory performance, but the latter has better
tracking accuracy.
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