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The Banach-Saks index of an Orlicz-Lorentz space Λ
𝜑,𝑤
(𝐼) for both function and sequence case, is computed with respect to its

Matuszewska-Orlicz indices of 𝜑. It is also shown that anOrlicz-Lorentz function space has weak Banach-Saks (resp., Banach-Saks)
property if and only if it is separable (resp., reflexive).

1. Introduction

Let (𝑋, ‖ ⋅ ‖) be a real Banach space. A bounded sequence
{𝑥𝑛} ⊂ 𝑋 is called a weak Banach-Saks sequence whenever
there exists a subsequence {𝑦𝑛} ⊂ {𝑥𝑛} such that its Cesàro
means converge in norm to zero; that is,

1

𝑛

𝑛

∑

𝑖=1

𝑦𝑖 󳨀→ 0. (1)

The space𝑋 is said to satisfy the weak Banach-Saks property,
in short𝑋 ∈ (𝑤𝐵𝑆), if every weakly null sequence {𝑥𝑛} in𝑋 is
a weak Banach-Saks sequence. Recall that a Banach space 𝑋
satisfies the Banach-Saks property (𝐵𝑆) if for every bounded
sequence {𝑥𝑛} in 𝑋, there is a subsequence {𝑦𝑗} such that its
Cesàro means converge; that is, the sequence {(1/𝑚)∑𝑚

𝑗=1
𝑦𝑗}

is convergent in norm. It is well known that a Banach space
has the (𝐵𝑆)-property if and only if it is reflexive and it has
the (𝑤𝐵𝑆)-property [1].

Schreier constructed a separable Banach space without
the weak Banach-Saks property [2] (which is called a Schreier
space) and later it was shown by Baernstein [3] that there
is a reflexive separable Banach space without the weak
Banach-Saks property. Hence the space ℓ∞ does not have the
weak Banach-Saks property, since every separable space is
embeddable in ℓ∞.

Following Johnson [4], given 1 ≤ 𝑝 ≤ ∞, a bounded
sequence {𝑥𝑛} ⊂ 𝑋 is called a 𝐵𝑆𝑝 sequence if there exists a
subsequence {𝑦𝑛} ⊂ {𝑥𝑛} such that

sup
𝑚∈N

𝑚
−1/𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑖=1

𝑦𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< ∞. (2)

Here 𝑚1/∞ = 1 for all 𝑚 ∈ N. We then say that 𝑋 has the 𝑝-
Banach-Saks property, shortly𝑋 ∈ (𝐵𝑆𝑝), if each weakly null
sequence contains a 𝐵𝑆𝑝 subsequence. It is clear that every
Banach space has a (𝐵𝑆1) property. The Banach-Saks index is
the number 𝛾(𝑋) = sup{𝑝 : 𝑋 ∈ (𝐵𝑆𝑝)}. The set Γ(𝑋) =
{𝑝 : 𝑋 ∈ (𝐵𝑆𝑝)} is always an interval [1, 𝛾(𝑋)) or [1, 𝛾(𝑋)].
TheBessaga-Pełczyńskimethod [5, Proposition 1.a.12] shows
that Γ(ℓ𝑝) = [1, 𝑝] and the Schur property of ℓ1 shows that
Γ(ℓ1) = [1,∞]. The Banach-Saks index of Nakano sequence
space was computed in [6].

The stronger property (𝑆𝑝) was introduced by Knaust and
Odell in [7]. It is said that 𝑋 has property (𝑆𝑝), 1 < 𝑝 ≤ ∞,
if every weakly null sequence in𝑋 has a subsequence {𝑥𝑘} so
that there is a constant 𝐶 > 0 such that, for all𝑚 ∈ N and all
real sequences 𝑎 = (𝑎𝑛) ∈ ℓ𝑝,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑗=1

𝑎𝑗𝑥𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶‖𝑎‖𝑝, (3)

where ‖𝑎‖𝑝 is the ℓ𝑝 norm.
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It is clear that (𝑆𝑝) ⇒ (𝐵𝑆𝑝) ⇒ (𝑤𝐵𝑆) for all 1 <
𝑝 ≤ ∞. The Elton 𝑐0-theorem [8, Theorem III 3.5] states
that (𝐵𝑆∞) ⇔ (𝑆∞) and a Banach space 𝑋 has (𝐵𝑆∞) if
and only if every normalized weakly null sequence contains
a subsequence which is equivalent to the unit vector basis of
𝑐0, which is equivalent to the case in which every subspace
of 𝑋 has the Dunford-Pettis property (for details see [9]). In
general, the two properties (𝐵𝑆𝑝) and (𝑆𝑝) are not equivalent
if 1 < 𝑝 < ∞ [10]; however, Rakov [11, Theorem 3] showed
that if 1 < 𝑞 < 𝑝 < ∞, then (𝐵𝑆𝑝) implies (𝑆𝑞). Various weak
Banach-Saks properties and their relations were shown in [6]
for Musielak-Orlicz sequence spaces.

In this paper we compute the Banach-Saks index of
Orlicz-Lorentz space Λ 𝜑,𝑤(𝐼) and show that Orlicz-Lorentz
function space Λ 𝜑,𝑤(𝐼) has the weak Banach-Saks property
(resp., Banach-Saks property) if and only if it is separable
(resp., reflexive). We start with several preliminary results
about Orlicz-Lorentz spaces.

2. Preliminaries

Let 𝐼 = N or 𝐼 = (0, 𝑎) with 0 < 𝑎 ≤ ∞, equipped with
the counting measure if 𝐼 = N and the Lebesgue measure
if 𝐼 = (0, 𝑎). If 𝐴 ⊂ 𝐼 is a measurable set, we denote by
|𝐴| its measure. By 𝐿0(𝐼) we denote the collection of all real
valued measurable functions on 𝐼. In the case when 𝐼 = N

the elements are sequences 𝑥 = (𝑥(𝑛)), and in the other cases
they are real valued Lebesgue measurable functions 𝑥.

For a measurable function 𝑥, the decreasing rearrange-
ment of 𝑥 will be denoted by 𝑥∗, defined as 𝑥∗(𝑡) = inf{𝑠 >
0 : 𝑑|𝑥|(𝑠) ≤ 𝑡}, 𝑡 ≥ 0, where 𝑑𝑥(𝑠) = |{𝑡 : 𝑥(𝑡) ≥ 𝑠}|, 𝑠 ≥ 0.
For two measurable functions 𝑥 and 𝑦, the relation 𝑥 ≺≺ 𝑦
means that, for all 𝑡 ≥ 0, we have

∫

𝑡

0

𝑥
∗
(𝑠) 𝑑𝑠 ≤ ∫

𝑡

0

𝑦
∗
(𝑠) 𝑑𝑠. (4)

For a sequence 𝑥 = (𝑥(𝑛)), 𝑥∗ will denote the decreasing
rearrangement of 𝑥. That is, letting 𝑥(𝑡) = ∑∞

𝑛=1
𝑥(𝑛)𝜒[𝑛−1,1),

we have 𝑥∗(𝑛) = 𝑥∗(𝑛 − 1) for all 𝑛 ∈ N. For sequences 𝑥 and
𝑦, 𝑥 ≺≺ 𝑦means that for all 𝑛 ∈ N, we have

𝑛

∑

𝑘=1

𝑥
∗
(𝑘) ≤

𝑛

∑

𝑘=1

𝑦
∗
(𝑘) . (5)

Let 𝜑 : R+ → R+ be an Orlicz function; that is, 𝜑
is convex, strictly increasing, and 𝜑(0) = 0. Let the weight
function 𝑤 ∈ 𝐿0(𝐼) be nonnegative and nonincreasing. For
𝐼 = (0, 𝑎), 0 < 𝑎 ≤ ∞, the Orlicz-Lorentz space Λ 𝜑,𝑤(𝐼) =
Λ 𝜑,𝑤(0, 𝑎) is the collection of all functions 𝑓 ∈ 𝐿0(0, 𝑎) such
that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜑,𝑤
= inf {𝜖 > 0 : 𝐼 (

𝑓

𝜖
) ≤ 1} < ∞, (6)

where 𝐼(𝑓) = 𝐼𝜑,𝑤(𝑓) = ∫𝐼 𝜑(𝑓
∗
)𝑤. Analogously in case when

𝐼 = N, the Orlicz-Lorentz sequence space 𝑑(𝜑, 𝑤) = Λ 𝜑,𝑤(N)
contains all real sequences 𝑥 = (𝑥(𝑛)) such that

‖𝑥‖ = ‖𝑥‖𝜑,𝑤 = inf {𝜖 > 0 : 𝐼 (𝑥
𝜖
) ≤ 1} < ∞, (7)

where 𝐼(𝑥) = 𝐼𝜑,𝑤(𝑥) = ∑
∞

𝑛=1
𝜑(𝑥
∗
(𝑛))𝑤(𝑛). It is well known

that the space (Λ 𝜑,𝑤(𝐼), ‖ ⋅ ‖) is a rearrangement invariant
(r.i.) Banach function space satisfying the Fatou property
[12–15]. The space Λ0

𝜑,𝑤
(0, 𝑎) (resp., 𝑑0(𝜑, 𝑤)) is the order

continuous part ofΛ 𝜑,𝑤(0, 𝑎) (resp., 𝑑(𝜑, 𝑤)). In the sequence
case 𝑑0(𝜑, 𝑤) is the closure of the linear span of the unit
vectors (𝑒𝑖) in 𝑑(𝜑, 𝑤). If 1 ≤ 𝑝 < ∞ and 𝜑(𝑢) = 𝑢𝑝, then
𝑑(𝜑, 𝑤) = 𝑑(𝑝, 𝑤) and Λ 𝜑,𝑤(0, 𝑎) = Λ 𝑝,𝑤(0, 𝑎) [16]. If 𝑤 ≡ 1,
then Λ 𝜑,𝑤(0, 𝑎) = 𝐿𝜑(0, 𝑎) is an Orlicz function space, and
𝑑(𝜑, 𝑤) = ℓ𝜑 is an Orlicz sequence space. In this case also
Λ
0

𝜑,𝑤
(0, 𝑎) = 𝐿

0

𝜑
(0, 𝑎) and 𝑑0(𝜑, 𝑤) = ℓ0

𝜑
are subspaces of

order continuous elements in Orlicz spaces.
We may assume that 𝜑(1) = 1. In fact, the space Λ 𝜓,𝑤(𝐼),

where𝜓(𝑡) = 𝜑(𝛼𝑡)with 𝜑(𝛼) = 1, is isometric toΛ 𝜑,𝑤(𝐼); we
have ‖𝑓‖

𝜓,𝑤
= 𝛼‖𝑓‖

𝜑,𝑤
.

Definition 1. Given an Orlicz function 𝜑, one defines
the growth conditions connected to its lower and upper
Matuszewska-Orlicz indices in three different categories, at
zero, at infinity, and on R+.

We say that, for 1 ≤ 𝑝 < ∞, 𝜑 ∈ Δ∗𝑝
0
, 𝜑 ∈ Δ∗𝑝

∞
, and

𝜑 ∈ Δ
∗𝑝, whenever

sup
0<𝑎≤1
0<𝑡<1

𝜑 (𝑎𝑡)

𝜑 (𝑡) 𝑎
𝑝
< ∞, sup

0<𝑎≤1
𝑡>1

𝜑 (𝑎𝑡)

𝜑 (𝑡) 𝑎
𝑝
< ∞,

sup
0<𝑎≤1
𝑡>0

𝜑 (𝑎𝑡)

𝜑 (𝑡) 𝑎
𝑝
< ∞,

(8)

respectively. Analogously we say that, given 1 ≤ 𝑞 < ∞, 𝜑 ∈
Δ
𝑞

0
, 𝜑 ∈ Δ𝑞

∞
, and 𝜑 ∈ Δ𝑞, whenever

inf
0<𝑎≤1
0<𝑡<1

𝜑 (𝑎𝑡)

𝜑 (𝑡) 𝑎
𝑞
> 0, inf

0<𝑎≤1
𝑡>1

𝜑 (𝑎𝑡)

𝜑 (𝑡) 𝑎
𝑞
> 0,

inf
0<𝑎≤1
𝑡>0

𝜑 (𝑎𝑡)

𝜑 (𝑡) 𝑎
𝑞
> 0,

(9)

respectively.
The Matuszewska-Orlicz indices, lower 𝛼0

𝜑
, 𝛼∞
𝜑
, and 𝛼𝜑

and upper 𝛽0
𝜑
, 𝛽∞
𝜑
, and 𝛽𝜑, are then defined as follows:

𝛼
0

𝜑
= sup {𝑝 : 𝜑 ∈ Δ∗𝑝

0
} , 𝛼

∞

𝜑
= sup {𝑝 : 𝜑 ∈ Δ∗𝑝

∞
} ,

𝛼𝜑 = sup {𝑝 : 𝜑 ∈ Δ∗𝑝} ,

𝛽
0

𝜑
= inf {𝑞 : 𝜑 ∈ Δ𝑞

0
} , 𝛽

∞

𝜑
= inf {𝑞 : 𝜑 ∈ Δ𝑞

∞
} ,

𝛽𝜑 = inf {𝑞 : 𝜑 ∈ Δ𝑞} .
(10)

It is clear that 𝛼𝜑 = min(𝛼0
𝜑
, 𝛼
∞

𝜑
) and 𝛽𝜑 = max(𝛽0

𝜑
, 𝛽
∞

𝜑
).

We say that 𝜑 satisfies conditions Δ0
2
, Δ∞
2
, and Δ 2, whenever

sup
0<𝑡<1

𝜑 (2𝑡)

𝜑 (𝑡)
< ∞, sup

𝑡>1

𝜑 (2𝑡)

𝜑 (𝑡)
< ∞, sup

𝑡>0

𝜑 (2𝑡)

𝜑 (𝑡)
< ∞,

(11)



Abstract and Applied Analysis 3

respectively. Let 𝜑1 and 𝜑2 be Orlicz functions. We call them
equivalent at zero, equivalent at infinity, or just equivalent, if
there is 𝐷 > 0 such that 𝜑1(𝐷

−1
𝑡) ≤ 𝜑2(𝑡) ≤ 𝜑1(𝐷𝑡), for all

0 < 𝑡 < 1, 𝑡 > 1, or for all 𝑡 > 0, respectively. It is well known
and easy to prove that Matuszewska-Orlicz indices of Orlicz
functions are preserved by the corresponding equivalence
relations (e.g., see [17]); that is, if 𝜑1 and 𝜑2 are equivalent
(resp., equivalent at 0 and equivalent at∞), then 𝛼𝜑

1

= 𝛼𝜑
2

(resp., 𝛼0
𝜑
1

= 𝛼
0

𝜑
2

and 𝛼∞
𝜑
1

= 𝛼
∞

𝜑
2

). Similar equalities hold for
upper indices. Recall also that any upper index of 𝜑 is finite if
and only if 𝜑 satisfies the corresponding conditionΔ 2 [17, 18].

We also have that if the Orlicz functions 𝜑1 and 𝜑2 are
equivalent (resp., equivalent at infinity and equivalent at
zero), then Λ 𝜑

1
,𝑤(0,∞) = Λ 𝜑

2
,𝑤(0,∞) (resp., Λ 𝜑

1
,𝑤(0, 𝑎) =

Λ 𝜑
2
,𝑤(0, 𝑎), 𝑎 < ∞; 𝑑(𝜑1, 𝑤) = 𝑑(𝜑2, 𝑤)) with equivalent

norms.
The spaceΛ 𝜑,𝑤(0,∞) (resp.,Λ 𝜑,𝑤(0, 𝑎) (𝑎 < ∞); 𝑑(𝜑, 𝑤))

is separable if and only if 𝜑 ∈ Δ 2 and 𝑊(∞) = ∞ (resp.,
𝜑 ∈ Δ

∞

2
; 𝜑 ∈ Δ0

2
and𝑊(∞) = ∞), if 𝑎 = ∞ (resp., 𝑎 < ∞;

𝐼 = N).The separability is also equivalent to the case in which
the space Λ 𝜑,𝑤(0,∞) does not contain the isomorphic copy
of ℓ∞ [12, 15, 19].

Lemma 2. Let 1 ≤ 𝑝, 𝑞 < ∞;

(1) ([20, Lemma 6], [21, Lemma 3], and [22]) An Orlicz
function 𝜑 ∈ Δ∗𝑝 (resp., 𝜑 ∈ Δ∗𝑝

∞
; 𝜑 ∈ Δ∗𝑝

0
) if and only

if there exists an Orlicz function 𝜓 equivalent (resp.,
equivalent at∞; equivalent at 0) to 𝜑 such that 𝜓(𝑡1/𝑝)
is convex;

(2) ([20, Lemma 5], [21, Lemma 2], and [22]) An Orlicz
function 𝜑 ∈ Δ𝑞 (resp., 𝜑 ∈ Δ𝑞

∞
; 𝜑 ∈ Δ𝑞

0
) if and only

if there exists an Orlicz function 𝜓 equivalent (resp.,
equivalent at ∞ and equivalent at 0) to 𝜑 such that
𝜓(𝑡
1/𝑞
) is concave.

We will use the following functions:

𝑊(𝑡) = ∫

𝑡

0

𝑤 (𝑠) 𝑑𝑠 for 𝑡 ∈ (0, 𝑎) , or

𝑊(𝑚) =

𝑚

∑

𝑖=1

𝑤 (𝑖) for 𝑚 ∈ N.
(12)

Recall that theweight𝑤 is regularwhenever there exists𝐶 > 0
such that𝑊(𝑠) ≤ 𝐶𝑠𝑤(𝑠) for all 𝑠 ∈ 𝐼. Since always 𝑠𝑤(𝑠) ≤
𝑊(𝑠), the weight 𝑤 is regular if the functions𝑊(𝑠) and 𝑠𝑤(𝑠)
are equivalent on 𝐼. Notice that for any regular weight 𝑤 on
𝐼 = (0,∞) or 𝐼 = N it holds that𝑊(∞) = ∞.

A Banach lattice is said to be 𝑝-convex (resp., 𝑝-concave)
for some 1 ≤ 𝑝 < ∞ if there is a constant𝐾 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑛

∑

𝑖=1

|𝑥𝑖|
𝑝
)

1/𝑝󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐾(

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

𝑝
)

1/𝑝

(resp. (
𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

𝑝
)

1/𝑝

≤ 𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑛

∑

𝑖=1

|𝑥𝑖|
𝑝
)

1/𝑝󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

(13)

for every choice of vectors 𝑥1, . . . , 𝑥𝑛 in𝑋. A Banach lattice is
said to satisfy upper 𝑝-estimate (resp., lower 𝑝-estimate) if the
definition of 𝑝-convexity (resp., 𝑝-concavity) holds true for
any choice of disjointly supported elements 𝑥1, . . . , 𝑥𝑛 in𝑋. It
is known that, given 1 ≤ 𝑝 < ∞, if 𝑋 is 𝑝-convex (resp., 𝑝-
concave), then𝑋 is 𝑟-convex (resp., 𝑟-concave) for 1 ≤ 𝑟 ≤ 𝑝
(resp., 𝑟 ≥ 𝑝) [23, 24].

Theorem 3 (see [25]). The spaceΛ 𝜑,𝑤(0,∞) (resp.,Λ 𝜑,𝑤(0, 𝑎)
(𝑎 < ∞); 𝑑(𝜑, 𝑤)) has finite concavity if and only if 𝜑 satisfies
the Δ 2 (resp., Δ∞2 ; Δ

0

2
) condition and the weight 𝑤 is regular.

Recall that a Banach lattice has the finite concavity if and
only if it is of finite cotype [26].

Theorem 4 (see [19]). Let 1 ≤ 𝑝 ≤ ∞;

(1) [19, Theorem 7.18] For 𝐼 = (0,∞), the following
conditions are equivalent:

(i) ℓ𝑝 (replaced by 𝑐0 when 𝑝 = ∞) is order
isomorphic to a sublattice of Λ0

𝜑,𝑤
(0,∞),

(ii) either 𝑝 ∈ [𝛼0
𝜑
, 𝛽
0

𝜑
] ∪ [𝛼

∞

𝜑
, 𝛽
∞

𝜑
] = [𝛼𝜑, 𝛽𝜑] or, for

some 𝑐 > 0, ∫∞
0
𝜑(𝑐𝑡
−1/𝑝
)𝑤(𝑡)𝑑𝑡 < ∞;

(2) [19, Theorem 6.13] For 𝐼 = (0, 𝑎), 𝑎 < ∞, the following
assertions are equivalent:

(i) ℓ𝑝 (replaced by 𝑐0 when 𝑝 = ∞) is order
isomorphic to a sublattice of Λ0

𝜑,𝑤
(0, 𝑎),

(ii) 𝑝 ∈ [𝛼∞
𝜑
, 𝛽
∞

𝜑
],

(iii) ℓ𝑝 (replaced by 𝑐0 when 𝑝 = ∞) is order
isomorphic to a sublattice of 𝐿0

𝜑
(0, 𝑎);

(3) [19, Theorem 7.8] For 𝐼 = N the following statements
are equivalent (where 𝑐0 is meant in place of ℓ𝑝 if 𝑝 =
∞):

(i) ℓ𝑝 is order isomorphic to a sublattice of 𝑑0(𝑤, 𝜑),
(ii) ℓ𝑝 is isomorphic to a subspace of 𝑑0(𝑤, 𝜑),
(iii) 𝑝 ∈ [𝛼0

𝜑
, 𝛽
0

𝜑
],

(iv) ℓ𝑝 is isomorphic to a subspace of ℎ𝜑.

3. Main Results

Theorem 5. If 1 < 𝑝 < ∞ and 𝜑 ∈ Δ∗𝑝 (resp., 𝜑 ∈ Δ∗𝑝
∞

and
𝜑 ∈ Δ

∗𝑝

0
), then Λ 𝜑,𝑤(0,∞) (resp., Λ 𝜑,𝑤(0, 𝑎), 𝑎 < ∞; 𝑑(𝜑, 𝑤))

is 𝑝-convex. If Λ 𝜑,𝑤(0,∞) (resp., Λ 𝜑,𝑤(0, 𝑎), 𝑎 < ∞; 𝑑(𝜑, 𝑤))
is 𝑝-convex for some 1 < 𝑝 < ∞, then 𝑝 ≤ 𝛼𝜑 (resp., 𝑝 ≤ 𝛼∞𝜑 ;
𝑝 ≤ 𝛼

0

𝜑
).
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Proof. (1) By Lemma 2 we assume that 𝜓(𝑡) = 𝜑(𝑡1/𝑝) is
convex.Then we have the equality ‖𝑓‖

Λ
(𝑝)

𝜓,𝑤
(𝐼)
= ‖𝑓‖

𝜑,𝑤
, where

Λ
(𝑝)

𝜓,𝑤(𝐼) is a 𝑝-convexification of Λ 𝜓,𝑤(𝐼). Indeed,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Λ
(𝑝)

𝜓,𝑤
(𝐼)
=
󵄩󵄩󵄩󵄩|𝑓|
𝑝󵄩󵄩󵄩󵄩

1/𝑝

𝜓,𝑤

= inf
{

{

{

𝜖
1/𝑝
> 0 : ∫

𝐼

𝜓(

(
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
)
∗

𝜖
) ≤ 1

}

}

}

= inf {𝜖1/𝑝 > 0 : ∫
𝐼

𝜑(
𝑓
∗

𝜖1/𝑝
) ≤ 1} =

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜑,𝑤
.

(14)

Since 𝜓 is a convex Orlicz function, the space Λ 𝜓,𝑤(𝐼) is
a Banach space, so its 𝑝-convexification Λ(𝑝)𝜓,𝑤(𝐼) = Λ 𝜑,𝑤(𝐼) is
𝑝-convex [26].

We only show the second part in the case of 𝐼 = (0,∞).
If 𝑝 > 𝛼𝜑 = min(𝛼0

𝜑
, 𝛼
∞

𝜑
), then, by Theorem 4(1), there is

𝛼𝜑 ≤ 𝑟 < 𝑝 such that ℓ𝑟 is an order copy in Λ 𝜑,𝑤(0,∞), and
thus the space cannot be 𝑝-convex.

Example 6. In general, the parallel statement on concavity in
Theorem 5 does not hold. As shown by Pisier in [26, Example
1.f.19], the Lorentz space 𝑑(𝑝, 𝑤), where𝑤𝑛 = 𝑛

1/𝑝
−(𝑛−1)

1/𝑝

and 1 < 𝑝 < 2, is not 2-concave even though the function
𝜑(𝑡) = 𝑡

𝑝 satisfies condition Δ 2 and 𝑤 is regular.

Proposition 7. Let 1 < 𝑝 ≤ 2. If 𝜑 ∈ Δ∗𝑝 and 𝜑 ∈ Δ 2 if
𝑎 = ∞ (resp., 𝜑 ∈ Δ∗𝑝

∞
and 𝜑 ∈ Δ∞

2
in the case when 𝑎 < ∞)

and 𝑤 is regular, then Λ 𝜑,𝑤(0, 𝑎), 0 < 𝑎 ≤ ∞, has type 𝑝.

Proof. By Theorem 5 the space is 𝑝-convex, and thus in
view of Theorem 3 and by applying the well-known fact [26,
Proposition 1.f.3], the space has type 𝑝.

Rakov [27, Theorem 1] showed that if a Banach space has
type 1 < 𝑝 ≤ 2, then it has 𝑝-Banach-Saks property. Hence
we get the following.

Theorem 8. If a Banach space 𝑋 has type 𝑝 for some 1 < 𝑝 ≤
2, then𝑋 ∈ (𝐵𝑆𝑝). Consequently 𝑝 ≤ 𝛾(𝑋).

Notice that for every separable r.i. space 𝐸 on [0, 1], it is
shown in [28] that 𝛾(𝐸) ≤ 2. Because every r.i. function space
𝑋 on [0,∞) contains the r.i. space 𝑋 = {𝑓𝜒[0,1] : 𝑓 ∈ 𝑋}
isometrically, we get the following.

Proposition 9 (see [29]). If𝑋 is a separable r.i. space on (0, 𝑎),
0 < 𝑎 ≤ ∞, then 𝛾(𝑋) ≤ 2.

Recall that a Banach space 𝑋 is said to be 𝑝-smooth (1 ≤
𝑝 ≤ 2) if its modulus of smoothness 𝜌𝑋(𝜖) is majorized by the
function 𝜖𝑝. That is, there is a constant 𝐴 > 0 such that, for
all 𝜖 > 0,

𝜌𝑋 (𝜖) := inf
{‖𝑥‖=‖𝑦‖=1}

󵄩󵄩󵄩󵄩𝑥 + 𝜖𝑦
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝜖𝑦

󵄩󵄩󵄩󵄩 − 2

2
≤ 𝐴𝜖
𝑝
. (15)

Rakov [27, Theorem 1] showed that if 𝑋 is a 𝑝-smooth
space, then it has the (𝑆𝑝) property. It is well known [26] that
a Banach lattice is isomorphic to a 𝑝-smooth Banach space
for some 1 < 𝑝 ≤ 2 if and only if it has the type 𝑝 and satisfies
a lower 𝑞-estimate for some 1 ≤ 𝑞 < ∞. Notice also that
the finite concavity is equivalent to the lower 𝑞-estimate for
some 𝑞 < ∞ [26]. Then we obtain immediately the following
corollary as a consequence of definition of lower indices and
by Propositions 7 and 9 andTheorem 8.

Corollary 10. Let 1 < 𝑝 ≤ 2. If 𝜑 ∈ Δ∗𝑝 and 𝜑 ∈ Δ 2 if 𝑎 = ∞
(resp., 𝜑 ∈ Δ∗𝑝

∞
and 𝜑 ∈ Δ∞

2
in the case when 𝑎 < ∞) and 𝑤 is

regular, then Λ 𝜑,𝑤(0, 𝑎), 0 < 𝑎 ≤ ∞, has the 𝑆𝑝-property.
Consequently, if 𝜑 ∈ Δ 2 when 𝑎 = ∞ (resp., 𝜑 ∈ Δ∞

2
in the

case when 𝑎 < ∞) and 𝑤 is regular, then

min (2, 𝛼𝜑) ≤ 𝛾 (Λ 𝜑,𝑤 (0,∞)) ,

min (2, 𝛼∞
𝜑
) ≤ 𝛾 (Λ 𝜑,𝑤 (0, 𝑎)) ,

𝑎 < ∞.

(16)

The next corollary is a result of the facts that 𝛾(ℓ∞) = 1
and that if 𝜑 does not satisfy appropriate condition Δ 2, then
Λ 𝜑,𝑤(𝐼) contains an isomorphic copy of ℓ∞.

Corollary 11. If 𝜑 ∉ Δ 2 when 𝑎 = ∞, 𝜑 ∉ Δ∞
2
in the case

when 𝑎 < ∞, and 𝜑 ∉ Δ0
2
when 𝐼 = N, then

𝛾 (Λ 𝜑,𝑤 (0,∞)) = 1, 𝛾 (Λ 𝜑,𝑤 (0, 𝑎)) = 1,

𝑎 < ∞, 𝛾 (𝑑 (𝜑, 𝑤)) = 1.

(17)

Corollary 12. An Orlicz-Lorentz space Λ0
𝜑,𝑤
(0,∞) (resp.,

Λ
0

𝜑,𝑤
(0, 𝑎), 𝑎 < ∞; 𝑑0(𝑤, 𝜑)) does not contain an isomorphic

copy of ℓ1 if and only if 𝛼𝜑 > 1 (resp., 𝛼∞𝜑 > 1; 𝛼
0

𝜑
> 1).

Proof. This hypothesis for sequence spaces is an immediate
consequence of Theorem 4(3).

Let now 𝑎 < ∞. From [19, Corollary 3.5(2), (3)], the
space Λ0

𝜑,𝑤
(0, 𝑎) contains an isomorphic copy of ℓ1 if and

only if either ℓ1 is an order isomorphic copy, that is, in view
of Theorem 4(2), 𝛼∞

𝜑
= 1, or the sequence of functions

min(𝑡−1, 𝑛) is bounded in 𝐿𝜑(0, 𝑎). However 𝛼
∞

𝜑
> 1 implies

that there exists 𝑝 > 1 such that 𝜑(𝛽𝑢) ≥ 𝐾𝛽𝑝𝜑(𝑢) for all
𝑢, 𝛽 ≥ 1 and some 𝐾 > 0. Hence for any constant 𝑐 > 0 and
large enough 𝑛 ∈ N,

∫

𝑎

0

𝜑 (𝑐min (𝑡−1, 𝑛)) 𝑑𝑡 ≥ ∫
1/𝑛

0

𝜑 (𝑐𝑛) 𝑑𝑡

≥ ∫

1/𝑛

0

𝐾𝑐
𝑝
𝑛
𝑝
𝜑 (1) 𝑑𝑡

= 𝐾𝜑 (𝑐) 𝑛
𝑝−1
󳨀→ ∞.

(18)

Thus whenever 𝛼∞
𝜑
> 1 the sequence min(𝑡−1, 𝑛) is not

bounded, and the proof is done in case of finite interval.
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Assume that 𝑎 = ∞. Again applying Corollary 3.5(2)
in [19], we get dichotomy that ℓ1 is an isomorphic copy in
Λ
0

𝜑,𝑤
(0,∞) if and only if either ℓ1 is an order isomorphic copy

inΛ0
𝜑,𝑤
(0,∞) or the sequence min(𝑡−1𝜒(0,1)(𝑡), 𝑛) is bounded

in 𝐿𝜑(0,∞). Assuming now that 𝛼𝜑 > 1, we can show
similarly as above that the second alternative cannot occur.
Recall then that, by Theorem 4(1), ℓ1 is an order isomorphic
copy in the space if and only if either 𝛼𝜑 = 1 or, for some
𝑐 > 0, ∫∞

0
𝜑(𝑐𝑡
−1
)𝑤(𝑡)𝑑𝑡 < ∞. We will exclude again the

second possibility. In fact if 𝛼𝜑 > 1, then for some 𝑝 > 1
and 𝐾 > 0 and for all 𝛽 ≥ 1 and 𝑢 ≥ 0, 𝜑(𝛽𝑢) ≥ 𝐾𝛽𝑝𝜑(𝑢).
Therefore for every 𝑐 > 0 and some 𝑡0 < 1 such that𝑤(𝑡0) > 0,
we have

∫

∞

0

𝜑 (𝑐𝑡
−1
)𝑤 (𝑡) 𝑑𝑡 ≥ ∫

𝑡
0

0

𝜑 (𝑐𝑡
−1
)𝑤 (𝑡0) 𝑑𝑡

≥ 𝐾𝜑 (𝑐) 𝑤 (𝑡0) ∫

𝑡
0

0

𝑡
−𝑝
𝑑𝑡 = ∞,

(19)

and this completes the proof.

Corollary 13. Assume that Λ 𝜑,𝑤(0, 𝑎), 0 < 𝑎 ≤ ∞, does not
contain an isomorphic copy of ℓ1, equivalently that 𝛼𝜑 > 1 in
case 𝑎 = ∞ and 𝛼∞

𝜑
> 1 in case 𝑎 < ∞. Then

𝛾 (Λ 𝜑,𝑤 (0,∞)) ≤ min (2, 𝛼𝜑) ,

𝛾 (Λ 𝜑,𝑤 (0, 𝑎)) ≤ min (2, 𝛼∞
𝜑
) ,

𝑎 < ∞.

(20)

Proof. By Proposition 9 the Banach-Saks index of any r.i.
space over the interval (0, 𝑎) cannot be bigger than 2. On the
other hand, recall that Γ(ℓ𝑝) = [1, 𝑝] for 1 < 𝑝 < ∞ and
Γ(𝑐0) = Γ(ℓ1) = [1,∞]. The space ℓ∞ does not have 𝑤𝐵𝑆
property, so Γ(ℓ∞) = 1. HenceTheorem 4 shows that

𝛾 (Λ 𝜑,𝑤 (0, 𝑎))

≤ 𝐴

:= inf {𝑝 > 1 : ℓ𝑝 is an isomorphic copy in Λ 𝜑,𝑤 (0, 𝑎)} ,
(21)

where 𝐴 ≤ 𝛼𝜑 when 𝑎 = ∞ and 𝐴 ≤ 𝛼∞
𝜑

if 𝑎 < ∞.

Finally by Corollaries 10 and 11 we get the result on
Banach-Saks index in the Orlicz-Lorentz spaces over the
interval (0, 𝑎), 𝑎 ≤ ∞.

Theorem 14. Assume that Λ 𝜑,𝑤(0, 𝑎), 0 < 𝑎 ≤ ∞, does not
contain an isomorphic copy of ℓ1 and equivalently that 𝛼𝜑 > 1
in case 𝑎 = ∞ and 𝛼∞

𝜑
> 1 in case 𝑎 < ∞. Assume also that

𝜑 ∈ Δ 2 when 𝑎 = ∞, 𝜑 ∈ Δ∞
2
when 𝑎 < ∞, and 𝑤 is regular.

Then

min (2, 𝛼𝜑) = 𝛾 (Λ 𝜑,𝑤 (0,∞)) ,

min (2, 𝛼∞
𝜑
) = 𝛾 (Λ 𝜑,𝑤 (0, 𝑎)) ,

𝑎 < ∞.

(22)

Using the Bessaga-Pełczynski method, we get the follow-
ing.

Theorem 15. Let 1 < 𝑝 < ∞. If an order continuous
sequence space 𝑋 is 𝑝-convex, then 𝑋 has the (𝑆𝑝) property.
Consequently 𝑝 ≤ 𝛾(𝑋).

Proof. Since𝑋 is order continuous, the standard unit vectors
{𝑒𝑛} form a basis of 𝑋. Suppose that {𝑥𝑛} is a normal-
ized weakly null sequence in 𝑋. By the Bessaga-Pełczyński
method [5, Proposition 1.a.12], we may assume that 𝑥𝑛 =
𝑦𝑛 + 𝑧𝑛 for all 𝑛, where {𝑦𝑛} is a block basic sequence of {𝑒𝑛}
and ‖𝑧𝑛‖ ≤ 1/2

𝑛 for all 𝑛. Then for real numbers 𝑎1, . . . , 𝑎𝑛
with ∑𝑛

𝑗=1
|𝑎𝑗|
𝑝
≤ 1, the 𝑝-convexity of 𝑋 and disjointness of

the supports of 𝑦𝑛’s show that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑗=1

𝑎𝑗𝑥𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑗=1

𝑎𝑗𝑦𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑧𝑗

󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗𝑦𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ (

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

(

𝑛

∑

𝑗=1

1

2𝑗𝑞
)

1/𝑞

≤ 2𝐶(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

+ (

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

(

𝑛

∑

𝑗=1

1

2𝑗𝑞
)

1/𝑞

≤ (2𝐶 + 1)(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

,

(23)

where𝐶 is the constant from the𝑝-convexity of𝑋 and 𝑞 is the
conjugate of𝑝 satisfying 1/𝑝+1/𝑞 = 1.The proof is done.

As a consequence of the aboveTheorems 15 and 5 about𝑝-
convexity andTheorem4 about ℓ𝑝-copies, we get the Banach-
Saks index in sequence spaces as follows.

Theorem 16. Assume that𝑑(𝜑, 𝑤) does not contain an isomor-
phic copy of ℓ1 and equivalently that 𝛼0

𝜑
> 1. Assume also that

𝜑 ∈ Δ
0

2
and𝑊(∞) = ∞. Then

𝛾 (𝑑 (𝜑, 𝑤)) = 𝛼
0

𝜑
. (24)

Proof. ByTheorems 5 and 15, 𝛼0
𝜑
≤ 𝛾(𝑑(𝜑, 𝑤)) and

𝛾 (𝑑 (𝜑, 𝑤)) ≤ inf {𝑝 > 1 : ℓ𝑝 ⊂ 𝑑 (𝜑, 𝑤)} . (25)

Since 𝛾(ℓ𝑝) = 𝑝 (1 < 𝑝 < ∞), Theorem 4 completes the
proof.

We finishwith a result on theweak Banach-Saks property.
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Theorem 17. A separable Orlicz-Lorentz spaceΛ 𝜑,𝑤(0, 𝑎), 𝑎 ≤
∞, has the weak Banach-Saks property.

Proof. Let {𝑥𝑛} ⊂ Λ 𝜑,𝑤(0, 𝑎) be weakly null and assume
without loss of generality that ‖𝑥𝑛‖ = 1, 𝑛 ∈ N. Then by [29,
Proposition 3.2] there exists a subsequence {𝑥󸀠

𝑛
} splitted into

three subsequences

𝑥
󸀠

𝑛
= 𝑦𝑛 + 𝑧𝑛 + 𝑑𝑛, (26)

such that {𝑦𝑛}, {𝑧𝑛}, {𝑑𝑛} ⊂ Λ 𝜑,𝑤(0, 𝑎) are bounded and

(a) 𝑦∗
1
= 𝑦
∗

𝑛
, ‖𝑦𝑛‖ ≤ 1, and 𝑦𝑛 → 0 weakly;

(b) 𝑧𝑛𝑧𝑚 = 0 for 𝑛 ̸=𝑚, ‖𝑧𝑛‖ ≤ 2, 𝑧𝑛 → 0 in measure,
and 𝑧𝑛 → 0 weakly;

(c) ‖𝑑𝑛‖ → 0.

We need to show that there is a subsequence of {𝑥󸀠
𝑛
} whose

Cesàro means approach zero in norm. It is obvious that we
can do it for the sequence {𝑑𝑛} satisfying (c). We will show
this now for the sequence {𝑦𝑛}. By [29, Proposition 4.3] there
exists a subsequence {𝑦𝑛(𝑘)} ⊂ {𝑦𝑛}, 𝑥 ∈ 𝐿1(0, 𝑎) + 𝐿∞(0, 𝑎),
such that

1

𝑁

𝑁

∑

𝑘=1

𝑦𝑚(𝑘) 󳨀→ 𝑥 (27)

in 𝐿1(0, 𝑎) + 𝐿∞(0, 𝑎) for all further subsequences {𝑦𝑚(𝑘)} ⊂
{𝑦𝑛(𝑘)} (we can assume that 𝑦𝑚(1) = 𝑦1). Hence

1

𝑁

𝑁

∑

𝑘=1

𝑦𝑚(𝑘) 󳨀→ 𝑥 in measure on (0, 𝑎) . (28)

(Recall that if 𝑥𝑛 → 0 in any r.i. space 𝑋, then 𝑥𝑛 → 0 in
measure.) Since 𝑦𝑛(𝑘) → 0 weakly in Λ 𝜑,𝑤(0, 𝑎), we have, for
any subsequence (𝑚(𝑘)) of (𝑛(𝑘)),

1

𝑁

𝑁

∑

𝑘=1

𝑦𝑚(𝑘) 󳨀→ 0 weakly in 𝐿1 (0, 𝑎) + 𝐿∞ (0, 𝑎) . (29)

Applying now [29, Lemma 4.4] we get that

1

𝑁

𝑁

∑

𝑘=1

𝑦𝑚(𝑘) 󳨀→ 0 in 𝐿1 (0, 𝑎) + 𝐿∞ (0, 𝑎) (30)

for all subsequences {𝑦𝑚(𝑘)} ⊂ {𝑦𝑛(𝑘)}. Let now {𝑦𝑚(𝑘)} be an
arbitrary subsequence of {𝑦𝑛(𝑘)}. Set

𝑎𝑁 =
1

𝑁

𝑁

∑

𝑘=1

𝑦𝑚(𝑘). (31)

By 𝑦∗
𝑚(𝑘)
= 𝑦
∗

1
and by subadditivity of the operator 𝑡 󳨃→ ∫𝑡

0
𝑓
∗,

𝑓 ∈ 𝐿
0
(𝐼), we get, for 𝑡 ≥ 0,

∫

𝑡

0

(
1

𝑁

𝑁

∑

𝑘=1

𝑦𝑚(𝑘))

∗

≤
1

𝑁

𝑁

∑

𝑘=1

∫

𝑡

0

𝑦
∗

𝑚(𝑘)
= ∫

𝑡

0

𝑦
∗

1
; (32)

that is,

𝑎𝑁 ≺≺ 𝑦1. (33)

Since 𝑎𝑁 → 0 in measure and 𝑎𝑁 ≺≺ 𝑦1 for every𝑁 ∈ N, by
[29, Proposition 4.2],

1

𝑁

𝑁

∑

𝑘=1

𝑦𝑚(𝑘) 󳨀→ 0 (34)

in Λ 𝜑,𝑤(0, 𝑎), which finishes the case (a).
In the case (b), by [19, Theorem 5.5], there exists a

subsequence {𝑧𝑛(𝑘)} ⊂ {𝑧𝑛} such that any further subsequence
{𝑧𝑚(𝑘)} of {𝑧𝑛(𝑘)} is equivalent to the unit vector basis in some
Orlicz sequence space ℓ0

𝜓
. Thus 𝑧𝑛(𝑘) → 0 weakly in ℓ0

𝜓
, and

by𝑤𝐵𝑆-property of ℓ0
𝜓
(see, e.g., [27]), there is a subsequence

{𝑧
󸀠

𝑘
} ⊂ {𝑧𝑛(𝑘)} such that (1/𝑛)∑𝑁

𝑘=1
𝑧
󸀠

𝑘
→ 0 in ℓ0

𝜓
and

thus in Λ 𝜑,𝑤(0, 𝑎). This completes case (b) and proves the
theorem.

A Banach space 𝑋 is said to have the (resp., weakly)
alternative signs Banach-Saks property (ABS) (resp., (wABS))
if, for every bounded (resp., weakly null) sequence (𝑥𝑛)

∞

𝑛=1
,

there is a subsequence (𝑦𝑛) and a sequence (𝜖𝑛) of signs such
that the Cesàro averages are norm convergent to zero.That is,

lim
𝑛→∞

1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝜖𝑖𝑦𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (35)

It is shown by Rosenthal [30, 31] that if𝑋 has the (ABS), then
𝑋 has the weak Banach-Saks property. In case that𝑋 does not
contain ℓ1, then (ABS) is equivalent to the weak Banach-Saks
property [31]. It is clear that ℓ1 does not have the (ABS) and
has the weak Banach-Saks property. Hence a Banach space
𝑋 has the (ABS) if and only if 𝑋 has the weak Banach-Saks
property and does not contain ℓ1. The notion of (wABS) was
introduced in [32] and it was shown that (wABS) is equivalent
to (wBS).

Corollary 18. Let 𝐼 = (0, 𝑎) for some 0 < 𝑎 ≤ ∞. Then the
following are equivalent:

(1) Orlicz-Lorentz space Λ 𝜑,𝑤(𝐼) has the Banach-Saks
property (BS);

(2) Orlicz-Lorentz space Λ 𝜑,𝑤(𝐼) is reflexive;
(3) Orlicz-Lorentz space Λ 𝜑,𝑤(𝐼) does not contain isomor-

phic copies of 𝑐0 or ℓ1;
(4) Orlicz-Lorentz space Λ 𝜑,𝑤(𝐼) is separable and does not

contain an isomorphic copy of ℓ1;
(5) Orlicz-Lorentz space Λ 𝜑,𝑤(𝐼) has the weak Banach-

Saks property (wBS) and does not contain an isomor-
phic copy of ℓ1;

(6) Orlicz-Lorentz space Λ 𝜑,𝑤(𝐼) has the alternative signs
Banach-Saks property (ABS).

Proof. Recall that a Banach lattice is reflexive if and only
if it does not contain isomorphic copies of 𝑐0 or ℓ1
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[26,Theorem 1.c.5]. Hencewe get (2) ⇔ (3). Recall also that a
Banach lattice𝑋 is aKB space if and only if𝑋does not contain
an isomorphic copy of 𝑐0 [33,Theorem 14.12].That is, if𝑋 is a
Köthe function space, then it is equivalent to the case inwhich
𝑋 is order continuous and satisfies the Fatou property. Since
an Orlicz-Lorentz space satisfies the Fatou property and the
order continuity is equivalent to the separability of theOrlicz-
Lorentz space, (3) ⇔ (4) follows.

Since a nonseparable Orlicz-Lorentz space contains ℓ∞
and it does not have the weak Banach-Saks property, Theo-
rem 17 shows that (4) ⇔ (5). The preceding argument of the
corollary shows that (5) ⇔ (6). Since (6) implies both (5) and
(2), (6) implies (1). The proof is done.
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