
Research Article
Isomorphic Operators and Functional Equations for
the Skew-Circulant Algebra

Zhaolin Jiang,1 Tingting Xu,1,2 and Fuliang Lu1

1 Department of Mathematics, Linyi University, Linyi, Shandong 276000, China
2Department of Mathematics, Shandong Normal University, Ji’nan, Shandong 250014, China

Correspondence should be addressed to Tingting Xu; xutingting655@163.com

Received 28 March 2014; Accepted 27 April 2014; Published 8 May 2014

Academic Editor: Tongxing Li

Copyright © 2014 Zhaolin Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The skew-circulant matrix has been used in solving ordinary differential equations. We prove that the set of skew-circulants with
complex entries has an idempotent basis. On that basis, a skew-cyclic group of automorphisms and functional equations on the
skew-circulant algebra is introduced. And different operators on linear vector space that are isomorphic to the algebra of 𝑛 × 𝑛

complex skew-circulant matrices are displayed in this paper.

1. Introduction

Skew circulant and circulantmatrices have became important
tools in solving various differential equations. Bertaccini and
Ng [1] proposed a nonsingular skew-circulant preconditioner
for systems of LMF-based ODE codes. Delgado et al. [2]
developed some techniques to obtain global hyperbolicity for
a certain class of endomorphisms of (𝑅𝑝)𝑛 with 𝑝, 𝑛 ≥ 2;
this kind of endomorphisms is obtained from vectorial differ-
ence equations where the mapping defining these equations
satisfies a circulant matrix condition. Wilde [3] developed
a theory for the solution of ordinary and partial differential
equations whose structure involves the algebra of circulants.
He showed how the algebra of 2 × 2 circulants relates to
the study of the harmonic oscillator, the Cauchy-Riemann
equations, Laplace’s equation, the Lorentz transformation,
and the wave equation. And he used 𝑛 × 𝑛 circulants to
suggest natural generalizations of these equations to higher
dimensions. Using circulant matrix, Karasözen and Şimşek
[4] considered periodic boundary conditions such that no
additional boundary terms will appear after semidiscretiza-
tion. In [5], the resulting dense linear system exhibits somuch
structure that it can be solved very efficiently by a circulant
preconditioned conjugate gradient method. Brockett and
Willems [6] showed how the important problems of linear
system theory can be solved concisely for a particular class of

linear systems, namely, block circulant systems, by exploiting
the algebraic structure. Circulant matrices were also used to
solve linear systems from differential-algebraic equations and
delay differential equations; see [7, 8].

Skew circulant matrices have important applications in
various disciplines including image processing, communica-
tions, signal processing, encoding, solving Toeplitz matrix
problems, preconditioner, and solving least squares problems.
They have been put on firm basis with the work of Davis
[9] and Jiang and Zhou [10]. Hermitian and skew-Hermitian
Toeplitz systems are considered in [11–13]. Lyness and Sørevik
[14] employed a skew circulant matrix to construct 𝑠-
dimensional lattice rules. Spectral decompositions of skew
circulant and skew left circulant matrices were discussed in
[15]. Compared with cyclic convolution algorithm, the skew
cyclic convolution algorithm [16] is able to perform filtering
procedure in approximately half of computational cost for
real signals. In [17] two new normal-form realizations are
presented by utilizing circulant and skew circulant matrices
as their state transition matrices. The well-known second-
order coupled form is a special case of the skew circulant
form. Li et al. [18] gave the style spectral decomposition
of skew circulant matrix firstly and then dealt with the
optimal backward perturbation analysis for the linear system
with skew circulant coefficient matrix. In [19], a new fast
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algorithm for optimal design of block digital filters (BDFs)
is proposed based on skew circulant matrix. Gao et al. [20]
gave explicit determinants and inverses of skew circulant
and skew left circulant matrices with Fibonacci and Lucas
numbers.

Besides, there are several papers on the circulant
operator and circulant algebra. Wilde [21] discussed
aspects of functional equations obtaining generalizations of
odd and even functions in terms of 𝑛th roots of unity in
complex number field. Wilde [22, 23] generalized properties
of 2 × 2 circulant matrices and 2-dimensional complex
analysis to 𝑛 × 𝑛 circulant matrices. Wilde [24] displayed
algebras of operators which are isomorphic to the algebra
of 𝑛 × 𝑛 complex circulant matrices. Chan et al. [25] gave
different formulations of the operator, discussed its algebraic
and geometric properties, and computed its operator
norms in different Banach algebras of matrices. Using these
results, they also gave an efficient algorithm for finding the
superoptimal circulant preconditioner. Chillag [26] proved
that eigenvalues of some generalized circulant matrices
and the Matteson-Solomon coefficients of a codeword of
a cyclic code are all examples of eigenvalues of elements
of semisimple finite-dimensional, commutative algebras.
The purpose of Chillag’s paper is to exhibit elementary
properties of such algebras and to apply these properties in
various situations. Brink and Pretorius [27] embed some
results on Boolean circulants into the context of relation
algebras and then generalised them. Interestingly enough,
the route lies in group theory. Chan et al. [28] studied the
solutions of finite-section Wiener-Hopf equations, by the
preconditioned conjugate gradient method, and gave an
easy and general scheme of constructing good circulant
integral operators as preconditioners for such equations.
Benedetto and Capizzano [29] investigated algebraic and
geometric properties of the optimal approximation operator,
generalizing those proved in [25] for the basic circulant case.
Benedetto and Capizzano [30] considered the superoptimal
Frobenius operators in several matrix vector spaces and in
particular in the circulant algebra, by emphasizing both the
algebraic and geometric properties. Hwang et al. [31] are
concerned with the hyponormality of Toeplitz operators
with matrix-valued circulant symbols. They established a
necessary and sufficient condition for Toeplitz operators with
matrix-valued partially circulant symbols to be hyponormal
and provided a rank formula for the self-commutator. Several
norm equalities and inequalities for operator matrices are
proved in [32]. These results, which depend on the structure
of circulant and skew circulant operator matrices, include
pinching type inequalities for weakly unitarily invariant
norms.

In passing, skew-circulant operator and algebra were only
used in [32]. And solving differential equations by skew
circulant matrices has not been fully exploited (as far as we
known, only in [1]). It is hoped that this paper will help in
changing this. More work continuing the present paper is
forthcoming.

In Section 2, we will prove that a complex 𝑛 × 𝑛 skew-
circulant matrix is a matrix representation of the group ring
(over C) of the skew cyclic group. We also prove that the set

of skew-circulants with complex entries has an idempotent
basis.

In Section 3, functional equations, whose solutions are
functions C𝑛 → C, are solved using skew-cyclic and
idempotent linear operators on the space (labeled 𝑈) of
functions C𝑛 → C. Further, we will show that this algebra
of linear operators is isomorphic to 𝑛 × 𝑛 skew-circulants.

In Section 4, we display skew cyclic and idempotent linear
operators on the space𝑉 of functions on 𝑛×𝑛 complex skew-
circulants. Furthermore, we get a relationship between the
operators on 𝑉 and those on 𝑈.

In Section 5, we show a linear involution on 𝑉 whose
group ring is isomorphic to 2 × 2 complex skew-circulant
matrices.

2. Properties of Skew-Circulant

An 𝑛 × 𝑛 skew-circulant matrix is a square matrix like the
following:

𝑆 =
(

(

𝑥0 𝑥1 . . . 𝑥𝑛−1

−𝑥𝑛−1 𝑥0 . . . 𝑥𝑛−2

−𝑥𝑛−2 −𝑥𝑛−1 ⋅ ⋅ ⋅ 𝑥𝑛−3

...
...

...
...

−𝑥1 −𝑥2 ⋅ ⋅ ⋅ 𝑥0

)

)𝑛×𝑛

. (1)

Let 𝑆𝑛 denote the set of skew-circulant matrices with
complex entries. Let 𝜋 denote the skew-circulant matrix with
𝑥1 = 1 and 𝑥𝑗 = 0 for 𝑗 ̸= 1. Then 𝜋

𝑙 (the 𝑙th power of 𝜋,
1 ≤ 𝑙 < 𝑛) is the skew-circulant matrix with 𝑥𝑙 = 1 and 𝑥𝑗 = 0

for all 𝑗 ̸= 𝑙, 𝜋0 = 𝐼 (𝐼 is the identity matrix), 𝜋1 = 𝜋, and
𝜋
𝑛
= −𝐼. So 𝑆 can be written as

𝑆 =

𝑛−1

∑

𝑙=0

𝑥𝑙𝜋
𝑙
, (2)

for 𝑥0, 𝑥1, . . . , 𝑥𝑛−1 ∈ C. In other words, 𝜋0, 𝜋1, 𝜋2, . . . , 𝜋𝑛−1
form a basis for the set of skew-circulant matrices. Let 𝜔

denote any of the 𝑛th roots of unit, or 𝜔 = 𝑒
2𝜋𝑖/𝑛, 𝜂 = 𝑒

𝜋𝑖/𝑛,
and

𝑦𝑙 =

𝑛−1

∑

𝑗=0

𝜂
𝑗
𝜔
𝑙𝑗
𝑥𝑗, for 𝑙 = 0, 1, . . . , 𝑛 − 1. (3)

Then, through the eigenvalues of the matrix 𝜋𝑖, 𝑖 =

0, 1, . . . , 𝑛 − 1, we know that the numbers 𝑦0, 𝑦1, . . . , 𝑦𝑛−1 are
the eigenvalues of the skew-circulant matrix 𝑆.

Proposition 1. If 𝑆𝑛, the set of skew-circulant matrices, has
a basis 𝜋0, 𝜋1, 𝜋2, . . . , 𝜋𝑛−1, then the 𝑆𝑛 also has another basis
𝐺0, 𝐺1, . . . , 𝐺𝑛−1, where

𝐺𝑙 =
1

𝑛

𝑛−1

∑

𝑗=0

(𝜂
−𝑗
𝜔
−𝑙𝑗

𝜋
𝑗
) , (4)

for 𝜔 = 𝑒
2𝜋𝑖/𝑛, 𝜂 = 𝑒

𝜋𝑖/𝑛, and 𝑙 = 0, 1, . . . , 𝑛 − 1.
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Proof. By calculation, these matrices𝐺𝑙 (𝑙 = 0, 1, 2, . . . , 𝑛 − 1)

have the following properties:

𝐺
2

𝑙
= 𝐺𝑙, for 𝑙 = 0, 1, 2, . . . , 𝑛 − 1;

𝐺𝑙𝐺𝑖 = 0, for 𝑙 ̸= 𝑖;

𝐺0 + 𝐺1 + 𝐺2 + ⋅ ⋅ ⋅ + 𝐺𝑛−1 = 𝐼;

𝜋
𝑙
=

𝑛−1

∑

𝑗=0

𝜂
𝑗
𝜔
𝑙𝑗
𝐺𝑗,

(5)

for 𝑙 = 0, 1, . . . , 𝑛 − 1. Thus, the idempotents 𝐺0, 𝐺1, . . . , 𝐺𝑛−1
form a basis for 𝑆𝑛, and in (2) we also have

𝑆 =

𝑛−1

∑

𝑙=0

𝑦𝑙𝐺𝑙 = 𝑦0𝐺0 + ⋅ ⋅ ⋅ + 𝑦𝑛−1𝐺𝑛−1. (6)

We have seen that every skew-circulant matrix, 𝑆 ∈ 𝑆𝑛,
can be written in one and only one way in the form (2); that
is

𝑆 = 𝑥0𝐼 + 𝑥1𝜋 + 𝑥2𝜋
2
+ ⋅ ⋅ ⋅ + 𝑥𝑛−1𝜋

𝑛−1
. (7)

Proposition 2. If the function 𝜙 : 𝑆𝑛 → 𝑆𝑛 is defined by

𝜙 (𝑆) = 𝜂𝑥0𝐼 + 𝜂𝜔𝑥1𝜋 + ⋅ ⋅ ⋅ + 𝜂𝜔
𝑛−1

𝑥𝑛−1𝜋
𝑛−1

, (8)

then 𝜙
𝑛
(𝑆) = −𝑆.

Proof. By composition, we gain that

𝜙
𝑘
(𝑆) = 𝜂

𝑘
𝑥0𝐼 + 𝜂

𝑘
𝜔
𝑘
𝑥1𝜋 + 𝜂

𝑘
𝜔
2𝑘
𝑥2𝜋
2

+ ⋅ ⋅ ⋅ + 𝜂
𝑘
𝜔
(𝑛−1)𝑘

𝑥𝑛−1𝜋
𝑛−1

;

(9)

that is, 𝜙𝑘 replaces 𝑥𝑙 by 𝜂
𝑘
𝜔
𝑙𝑘
𝑥𝑙 for 𝑙 = 0, 1, 2, . . . , 𝑛 − 1. Also,

𝜙
𝑛
(𝑆) = −𝑆.

The function𝜙 is an automorphism in 𝑆𝑛 that preservesC,
with C being embedded in 𝑆𝑛 by the correspondence 𝑐 → 𝑐𝐼

for 𝑐 ∈ C.

Proposition 3. Let 𝑝𝑙 be the function 𝑆𝑛 → 𝑆𝑛 defined by

𝑝𝑙 =
1

𝑛

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜔
−𝑙𝑗

𝜙
𝑗
, 𝑓𝑜𝑟 𝑙 = 0, 1, . . . , 𝑛 − 1. (10)

Then,

𝑝
2

𝑙
= 𝑝𝑙, 𝑓𝑜𝑟 𝑙 = 0, 1, 2, . . . , 𝑛 − 1;

𝑝𝑙𝑝𝑗 = 0, 𝑓𝑜𝑟 𝑙 ̸= 𝑗;

𝑝0 + 𝑝1 + 𝑝2 + ⋅ ⋅ ⋅ + 𝑝𝑛−1 = 𝜙
0
;

𝜂
𝑙
𝑝0 + 𝜂

𝑙
𝜔
𝑙
𝑝1 + ⋅ ⋅ ⋅ + 𝜂

𝑙
𝜔
(𝑛−1)𝑙

𝑝𝑛−1 = 𝜙
𝑙
;

𝑝𝑙 (𝑥0𝐼 + 𝑥1𝜋 + ⋅ ⋅ ⋅ + 𝑥𝑛−1𝜋
𝑛−1

) = 𝑥𝑙𝜋
𝑙
,

(11)

for 𝑙 = 0, 1, . . . , 𝑛 − 1.

Proof. Since 𝑝𝑙 = (1/𝑛)∑
𝑛−1

𝑗=0
𝜂
−𝑗
𝜔
−𝑙𝑗

𝜙
𝑗, we gain that

𝑝
2

𝑙
=

1

𝑛
2
[𝜙
0
+ 𝜂
−1
𝜔
−𝑙
𝜙 + ⋅ ⋅ ⋅ + 𝜂

−(𝑛−1)
𝜔
−(𝑛−1)𝑙

𝜙
𝑛−1

]

2

=

1

𝑛
2
[𝜙
0
+ 𝜂
−1
𝜔
−𝑙
𝜙 + ⋅ ⋅ ⋅ + 𝜂

−(𝑛−1)
𝜔
−(𝑛−1)𝑙

𝜙
𝑛−1

+ 𝜂
−1
𝜔
−𝑙
𝜙 + ⋅ ⋅ ⋅ + 𝜂

−𝑛
𝜔
−𝑛𝑙

𝜙
𝑛

+ ⋅ ⋅ ⋅ + 𝜂
−(𝑛−1)

𝜔
−(𝑛−1)𝑙

𝜙
𝑛−1

+ ⋅ ⋅ ⋅ + 𝜂
−2(𝑛−1)

𝜔
−2(𝑛−1)𝑙

𝜙
2(𝑛−1)

]

= 𝑝𝑙.

(12)

Similarly, we can obtain 𝑝𝑙𝑝𝑗 = 0 for 𝑙 ̸= 𝑗.
And, by calculation, we have

𝑝0 + 𝑝1 + ⋅ ⋅ ⋅ + 𝑝𝑛−1

=

1

𝑛

[

[

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜙
𝑗
+ ⋅ ⋅ ⋅ +

𝑛−1

∑

𝑗=0

𝜔
−(𝑛−1)𝑗

𝜂
−𝑗
𝜙
𝑗
]

]

=

1

𝑛

[

[

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜙
𝑗
(𝜔
0
+ 𝜔
−𝑗

+ ⋅ ⋅ ⋅ + 𝜔
−(𝑛−1)𝑗

)
]

]

=

1

𝑛

[

[

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜙
𝑗
(

1 − 𝜔
−𝑛𝑗

1 − 𝜔
−𝑗

)
]

]

= 𝜙
0
,

𝜂
𝑙
𝑝0 + 𝜂

𝑙
𝜔
𝑙
𝑝1 + 𝜂

𝑙
𝜔
2𝑙
𝑝2 + ⋅ ⋅ ⋅ + 𝜂

𝑙
𝜔
(𝑛−1)𝑙

𝑝𝑛−1

=

1

𝑛

[

[

𝑛−1

∑

𝑗=0

𝜂
𝑙
𝜙
𝑗
+

𝑛−1

∑

𝑗=0

𝜂
𝑙
𝜙
𝑗
+ ⋅ ⋅ ⋅ +

𝑛−1

∑

𝑗=0

𝜂
𝑙
𝜙
𝑗
]

]

= 𝜙
𝑙
.

(13)

Finally, we gain

𝑝𝑙 (𝑥0𝐼 + 𝑥1𝜋 + 𝑥2𝜋
2
+ ⋅ ⋅ ⋅ + 𝑥𝑛−1𝜋

𝑛−1
)

=

1

𝑛

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜔
−𝑙𝑗

𝜙
𝑗
(𝑆)
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=

1

𝑛

[𝑥0𝐼 + 𝑥1𝜋 + 𝑥2𝜋
2
+ ⋅ ⋅ ⋅ + 𝑥𝑛−1𝜋

𝑛−1

+ 𝜂
−1
𝜔
−𝑙
(𝜂𝑥0𝐼 + 𝜂𝜔𝑥1𝜋 + ⋅ ⋅ ⋅ + 𝜂𝜔

𝑛−1
𝑥𝑛−1𝜋

𝑛−1
)

+⋅ ⋅ ⋅+ 𝜂
−(𝑛−1)

𝜔
−(𝑛−1)𝑙

(𝜂
𝑛−1

𝑥0𝐼 + 𝜂
𝑛−1

𝜔
𝑛−1

𝑥1𝜋

+⋅ ⋅ ⋅+ 𝜂
𝑛−1

𝜔
(𝑛−1)

2

𝑥𝑛−1𝜋
𝑛−1

)]

= 𝑥𝑙𝜋
𝑙
.

(14)

Synthesizing Propositions 1, 2, and 3, we get the following
theorem.

Theorem 4. The algebras generated by 𝐼, 𝜋, 𝜋
2
, . . . , 𝜋

𝑛−1 and
𝜙
0
, 𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛−1 over C are isomorphic and can be called
skew-circulant algebras.

3. Functional Equations for
the Skew-Circulant Algebra

Proposition 5. If 𝑓 is a linear entire function, 𝑓 : C → C,
then

𝑓 (𝑐0𝐼 + 𝑐1𝜋 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝜋
𝑛−1

)

=

𝑛−1

∑

𝑙=0

[

[

1

𝑛

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜔
−𝑙𝑗

𝑓(

𝑛−1

∑

𝑘=0

𝜂
𝑘
𝜔
𝑗𝑘
𝑐𝑘)

]

]

𝜋
𝑙
.

(15)

Proof. According to [3], we know that

𝜆𝑙 =

𝑛−1

∑

𝑗=0

𝜂
𝑗
𝜔
𝑙𝑗
𝑐𝑗,

𝑐𝑙 =
1

𝑛

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜔
−𝑙𝑗

𝜆𝑗,

(16)

for 𝑙 = 0, 1, . . . , 𝑛 − 1.
We thus have

𝑛−1

∑

𝑙=0

𝑓 (𝑐𝑙) 𝜋
𝑙
=

𝑛−1

∑

𝑙=0

𝑓(

1

𝑛

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜔
−𝑙𝑗

𝜆𝑗)𝜋
𝑙

=

𝑛−1

∑

𝑙=0

1

𝑛

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜔
−𝑙𝑗

𝑓 (𝜆𝑗) 𝜋
𝑙

=

𝑛−1

∑

𝑙=0

[

[

1

𝑛

𝑛−1

∑

𝑗=0

𝜂
−𝑗
𝜔
−𝑙𝑗

𝑓(

𝑛−1

∑

𝑘=0

𝜂
𝑘
𝜔
𝑗𝑘
𝑐𝑘)

]

]

𝜋
𝑙
.

(17)

Then, we complete the proof of this conclusion.

For any linear entire function 𝑓 : C → C, (15) can be
written as follows:

𝑓 (𝑐0𝐼 + 𝑐1𝜋 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝜋
𝑛−1

)

=

𝑛−1

∑

𝑙=0

𝐹𝑙 (𝑐0, 𝑐1, . . . , 𝑐𝑛−1) 𝜋
𝑙
,

(18)

where

𝐹𝑙 (𝑐0, 𝑐1, . . . , 𝑐𝑛−1)

=

1

𝑛

𝑛−1

∑

𝑘=0

𝜂
−𝑘
𝜔
−𝑙𝑘

𝑓(

𝑛−1

∑

𝑗=0

𝜂
𝑗
𝜔
𝑗𝑘
𝑐𝑗) ,

(19)

𝑙 = 0, 1, 2, . . . , 𝑛 − 1.
For each 𝑙, 𝐹0, 𝐹1, . . . , 𝐹𝑛−1 satisfy the functional equation

𝐹𝑙 (𝜂𝑐0, 𝜂𝜔𝑐1, 𝜂𝜔
2
𝑐2, . . . , 𝜂𝜔

𝑛−1
𝑐𝑛−1)

= 𝜂𝜔
𝑙
𝐹𝑙 (𝑐0, 𝑐1, . . . , 𝑐𝑛−1) ,

(20)

for 𝜂 = 𝑒
𝜋𝑖/𝑛, 𝜔 = 𝑒

2𝜋𝑖/𝑛, all 𝑙 = 0, 1, 2, . . . , 𝑛 − 1, and all
𝑐0, 𝑐1, . . . , 𝑐𝑛−1 ∈ C.

Equation (20) is related to the skew-circulant algebra also
in another way.

If the function 𝐹 is defined by

𝐹 (𝑐0, 𝑐1, . . . , 𝑐𝑛−1) =
1

𝑛

𝑛−1

∑

𝑘=0

𝜂
−𝑘
𝜔
−𝑙𝑘

𝑓(

𝑛−1

∑

𝑗=0

𝜂
𝑗
𝜔
𝑗𝑘
𝑐𝑗) , (21)

let𝑈 = {𝐹 | 𝐹 : C𝑛 → C} and let𝑂 be the operator𝑂 : 𝑈 →

𝑈, linear in 𝐹, defined by

𝑂 (𝐹) (𝑐0, 𝑐1, . . . , 𝑐𝑛−1)

= 𝐹 (𝜂𝑐0, 𝜂𝜔𝑐1, 𝜂𝜔
2
𝑐2, . . . , 𝜂𝜔

𝑛−1
𝑐𝑛−1) ;

(22)

that is,

𝑂 (𝐹) = 𝜂𝜔
𝑙
𝐹. (23)

If we denote𝑂𝑘 the operation𝑂 composed with itself 𝑘 times,
then

𝑂
𝑘
(𝐹) (𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑛−1)

= 𝐹 (𝜂
𝑘
𝑐0, 𝜂
𝑘
𝜔
𝑘
𝑐1, . . . , 𝜂

𝑘
𝜔
(𝑛−1)𝑘

𝑐𝑛−1) ,

(24)

where 𝑂
𝑗
= −𝑂

0 if and only if 𝑛 divides 𝑗 and 𝑗/𝑛 is an odd
number; 𝑂𝑗 = 𝑂

0 if and only if 𝑛 divides 𝑗 and 𝑗/𝑛 is an even
number.
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All these equations (15)–(24) lead up to the following
theorem.

Theorem 6. Linear combinations of the operators
𝑂
0
, 𝑂
1
, . . . , 𝑂

𝑛−1 over C form a skew-circulant algebra.

Proposition 7. If the operators 𝑅0, 𝑅1, . . . , 𝑅𝑛−1 : 𝑈 → 𝑈 are
defined by

𝑅𝑙 =
1

𝑛

(𝑂
0
+ 𝜂
−1
𝜔
−𝑙
𝑂
1
+ 𝜂
−2
𝜔
−2𝑙

𝑂
2

+ ⋅ ⋅ ⋅ + 𝜂
−(𝑛−1)

𝜔
−(𝑛−1)𝑙

𝑂
𝑛−1

) ,

(25)

for 𝑙 = 0, 1, 2, . . . , 𝑛 − 1, then these operators 𝑅𝑙 (𝑙 =

0, 1, 2, . . . , 𝑛 − 1) have the following properties:

𝑅
2

𝑙
= 𝑅𝑙, for 𝑙 = 0, 1, 2, . . . , 𝑛 − 1; (26)

𝑅𝑙𝑅𝑗 = 0 𝑖𝑓 𝑙 ̸= 𝑗; (27)

𝑅0 + 𝑅1 + ⋅ ⋅ ⋅ + 𝑅𝑛−1 = 𝑂
0
; (28)

𝑅0 + 𝜂𝜔
𝑙
𝑅1 + ⋅ ⋅ ⋅ + 𝜂

𝑛−1
𝜔
(𝑛−1)𝑙

𝑅𝑛−1 = 𝑂
𝑙
, (29)

for 𝑙 = 0, 1, 2, . . . , 𝑛 − 1.

Through simple calculation, we can get properties (26)–
(28). Properties (26)–(29) are similar to those of the functions
𝐺0, 𝐺1, . . . , 𝐺𝑛−1 and 𝑝0, 𝑝1, . . . , 𝑝𝑛−1.

By all accounts, a function 𝐹 in 𝑈 satisfies (20) if and
only if 𝐹 ∈ Ran𝑅𝑙 (the range of the operator 𝑅𝑙 was denoted
by Ran𝑅𝑙). Moreover, properties (26)–(28) above imply that
𝑈 = Ran𝑅0 ⊕ Ran𝑅1 ⊕ ⋅ ⋅ ⋅ ⊕ Ran𝑅𝑛−1, each function 𝐹𝑙,
𝑙 = 0, 1, 2, . . . , 𝑛 − 1, defined by (19) is in Ran𝑅𝑙.

In addition,

𝐹0 + 𝐹1 + ⋅ ⋅ ⋅ + 𝐹𝑛−1

= 𝑓 (𝑐0 + 𝜂𝑐1 + ⋅ ⋅ ⋅ + 𝜂
𝑛−1

𝑐𝑛−1) .

(30)

Thus

𝐹𝑙 = 𝑅𝑙 (𝑓 (𝑐0 + 𝜂𝑐1 + ⋅ ⋅ ⋅ + 𝜂
𝑛−1

𝑐𝑛−1)) . (31)

4. Other Skew-Circulant Algebras

By (25) and (24), if a function 𝑔maps C𝑛 into C, then

𝑅𝑙 (𝑔) (𝑐0, 𝑐1, . . . , 𝑐𝑛−1)

=

1

𝑛

𝑛−1

∑

𝑘=0

𝜂
−𝑘
𝜔
−𝑙𝑘

𝑔 (𝜂
𝑘
𝑐0 + 𝜂
𝑘
𝜔𝑐1 + 𝜂

𝑘
𝜔
2𝑘
𝑐2 + ⋅ ⋅ ⋅

+ 𝜂
𝑘
𝜔
(𝑛−1)𝑘

𝑐𝑛−1) ,

(32)

for 𝑙 = 0, 1, 2, . . . , 𝑛 − 1.

For 𝑓 : 𝑆𝑛 → 𝑆𝑛, 𝑆𝑛 is the space of skew-circulant
matrices, there exist functions 𝑓0, 𝑓1, 𝑓2, . . . , 𝑓𝑛−1 : C𝑛 → C
such that

𝑓(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) =

𝑛−1

∑

𝑙=0

𝑓𝑙 (𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑛−1) 𝜋
𝑙
. (33)

Hence, from (28),

𝑓(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) =

𝑛−1

∑

𝑙=0

𝑛−1

∑

𝑖=0

𝑅𝑙+𝑖 (𝑓𝑙) 𝜋
𝑙

=

𝑛−1

∑

𝑖=0

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑓𝑙) 𝜋
𝑙
.

(34)

Proposition 8. Let 𝑉 = {𝑓 | 𝑓 : 𝑆𝑛 → 𝑆𝑛, 𝑆𝑛 is the space of
skew-circulant matrices}, for 𝑓 ∈ 𝑉; let us define 𝑞𝑖(𝑓) and 𝑔𝑖

such that

𝑞𝑖 (𝑓)(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) =

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑓𝑙) 𝜋
𝑙
, (35)

𝑔𝑖 =

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑓𝑙) , (36)

for 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 and 𝑙 + 𝑖 taken modulo 𝑛. Then we can
receive the properties of the 𝑞𝑖:

𝑞
2

𝑖
= 𝑞𝑖 for 𝑖 = 0, 1, 2, . . . , 𝑛 − 1;

𝑞𝑖𝑞𝑗 = 0 𝑖𝑓 𝑖 ̸= 𝑗;

(𝑞0 + 𝑞1 + 𝑞2 + ⋅ ⋅ ⋅ + 𝑞𝑛−1) (𝑓) = 𝑓, 𝑓 ∈ 𝑉.

(37)

From what has been discussed above, we gain the follow-
ing theorem.

Theorem 9. The 𝑞0, 𝑞1, 𝑞2, . . . , 𝑞𝑛−1 are orthogonal projections
on 𝑉, adding to the identity function on 𝑉, and so generating
over C a skew-circulant algebra.

Proposition 10. The projections 𝑞𝑖(𝑓) have another formula
as follows:

𝑞𝑖 (𝑓)(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) =

1

𝑛

𝑛−1

∑

𝑘=0

𝜔
−𝑖𝑘

𝜙
−𝑘
𝑓𝜙
𝑘
(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) ,

𝑖 = 0, 1, . . . , 𝑛 − 1.

(38)
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Proof. We can prove (38) in the following:

𝑞𝑖 (𝑓)(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
)

=

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑓𝑙) 𝜋
𝑙

=

𝑛−1

∑

𝑙=0

[

1

𝑛

𝑛−1

∑

𝑘=0

𝜂
−𝑘
𝜔
−(𝑙+𝑖)𝑘

𝑓𝑙 (𝜂
𝑘
𝑐0, 𝜂
𝑘
𝜔
𝑘
𝑐1, . . . ,

𝜂
𝑘
𝜔
(𝑛−1)𝑘

𝑐𝑛−1) ]𝜋
𝑙

=

1

𝑛

𝑛−1

∑

𝑙=0

[

𝑛−1

∑

𝑘=0

𝜂
−𝑘
𝜔
−𝑙𝑘

𝜔
−𝑖𝑘

𝑓𝑙 (𝜂
𝑘
𝑐0, . . . ,

𝜂
𝑘
𝜔
(𝑛−1)𝑘

𝑐𝑛−1) ]𝜋
𝑙

=

1

𝑛

𝑛−1

∑

𝑘=0

𝜂
−𝑘
𝜔
−𝑖𝑘
𝑛−1

∑

𝑙=0

𝜔
−𝑙𝑘

𝑓𝑙 (𝜂
𝑘
𝑐0, 𝜂
𝑘
𝜔
𝑘
𝑐1, . . . ,

𝜂
𝑘
𝜔
(𝑛−1)𝑘

𝑐𝑛−1) 𝜋
𝑙

=

1

𝑛

𝑛−1

∑

𝑘=0

𝜔
−𝑖𝑘

𝜙
−𝑘
𝑓(

𝑛−1

∑

𝑙=0

𝜂
𝑘
𝜔
𝑙𝑘
𝑐𝑙𝜋
𝑙
)

=

1

𝑛

𝑛−1

∑

𝑘=0

𝜔
−𝑖𝑘

𝜙
−𝑘
𝑓𝜙
𝑘
(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) .

(39)

This result can be rewritten in the form

𝑞𝑖 (𝑓)(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) =

1

𝑛

𝑛−1

∑

𝑘=0

𝜔
−𝑖𝑘

𝜙
−𝑘
𝑓𝜙
𝑘
, (40)

𝑖 = 0, 1, . . . , 𝑛 − 1, for all functions 𝑓 ∈ 𝑉.
Finally, it can be shown that 𝑓𝜙 = 𝜔

𝑖
𝜙𝑓 if and only if 𝑓 ∈

Ran𝑝𝑖.

Theorem 11. For each 𝑓 ∈ 𝑉 and every 𝑖 = 0, 1, 2, . . . , 𝑛 −

1, there exists only one function 𝑔𝑖 such that the following
equation holds:

𝑞𝑖 (𝑓)(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) =

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑔𝑖) 𝜋
𝑙
, (41)

for 𝑔𝑖 = ∑
𝑛−1

𝑙=0
𝑅𝑙+𝑖(𝑓𝑙), 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 and 𝑙 + 𝑖 taken

modulo 𝑛.

Proof. By (26) and (27),

𝑅𝑙+𝑖 (𝑔𝑖) = 𝑅𝑙+𝑖 (𝑓𝑙) (42)

for 𝑙 = 0, 1, 2, . . . , 𝑛 − 1; 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 and 𝑙 + 𝑖 taken
modulo 𝑛.

Suppose there exists another function 𝑔
∗

𝑖
: C𝑛 → C

such that 𝑞𝑖(𝑓) = ∑
𝑛−1

𝑙=0
𝑅𝑙+𝑖(𝑔𝑖)𝜋

𝑙
= ∑
𝑛−1

𝑙=0
𝑅𝑙+𝑖(𝑔

∗

𝑖
)𝜋
𝑙. Since

𝐼, 𝜋, 𝜋
2
, . . . , 𝜋

𝑛−1 is a basis of 𝑆𝑛, 𝑅𝑙+𝑖(𝑔𝑖) = 𝑅𝑙+𝑖(𝑔
∗

𝑖
) for 𝑙 =

0, 1, . . . , 𝑛 − 1. By (28),

𝑔𝑖 =

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑔𝑖) =

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑔
∗

𝑖
) = 𝑔
∗

𝑖
. (43)

So 𝑔𝑖 is unique. Thus, there is an isomorphism between
functions 𝑔𝑖 : C𝑛 → C and functions ∑

𝑛−1

𝑙=0
𝑅𝑙+𝑖(𝑔𝑖)𝜋

𝑙 in
Ran𝑞𝑖.

Now the results of all this are as follows: let Φ = {𝑓 | 𝑓 :

C → C} with 𝑓 an entire function and 𝑈 = {𝑓 | 𝑓 : C𝑛 →

C}. Let 𝐼 be a monomorphism Φ → 𝑈
𝑛 defined by 𝐼(𝑓) =

(𝑓(𝑐0+𝜂𝑐1+⋅ ⋅ ⋅+𝜂
𝑛−1

𝑐𝑛−1), 0, . . . , 0). Let 𝜏 be amonomorphism
Φ → 𝑉 defined by

𝜏 (𝑓)(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
)

=

𝑛−1

∑

𝑙=0

𝑅𝑛 (𝑓 (𝑐0 + 𝜂𝑐1 + ⋅ ⋅ ⋅ + 𝜂
𝑛−1

𝑐𝑛−1)) 𝜋
𝑙

= 𝑓(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
) ,

(44)

which follows from (18), (19), and (31). Then there exists an
isomorphism 𝜃 : 𝑈

𝑛
→ 𝑉 defined by

𝜃 (𝑔0, 𝑔1, 𝑔2, . . . , 𝑔𝑛−1)(

𝑛−1

∑

𝑙=0

𝑐𝑙𝜋
𝑙
)

=

𝑛−1

∑

𝑖=0

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑔𝑖) 𝜋
𝑙
.

(45)

5. A Linear Involution

Suppose that 𝑔 is a function 𝑆𝑛 → 𝑆𝑛 given by

𝑔 =

𝑛−1

∑

𝑖=0

𝑔𝑖𝜋
𝑖
, (46)

where 𝑔𝑖 is given by (36). Written out, we have

𝑔 =

𝑛−1

∑

𝑖=0

[

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑓𝑙)] 𝜋
𝑖
. (47)

Let 𝑉 denote the space of functions 𝑓 : 𝑆𝑛 → 𝑆𝑛. If
𝑓 is an element of 𝑉, then there exist a set of 𝑛 functions
𝑓0, 𝑓1, . . . , 𝑓𝑛−1 mapping C𝑛 into C such that 𝑓 = ∑

𝑛−1

𝑙=0
𝑓𝑙𝜋
𝑙

(like (33)). Let us switch the 𝑙 and the 𝑖 in the right-hand side
of (47). Then let 𝜓 be the function 𝑉 → 𝑉 defined by

𝜓(

𝑛−1

∑

𝑙=0

𝑓𝑙𝜋
𝑙
) =

𝑛−1

∑

𝑙=0

(

𝑛−1

∑

𝑖=0

𝑅𝑙+𝑖 (𝑓𝑖))𝜋
𝑙
. (48)
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Theorem 12. From (26), (27), and (28), we can show that 𝜓 is
a linear involution on 𝑉.

Proof. From (26), (27), and (28), we get

𝜓(𝜓(

𝑛−1

∑

𝑙=0

𝑓𝑙𝜋
𝑙
)) =

𝑛−1

∑

𝑙=0

{

𝑛−1

∑

𝑖=0

𝑅𝑙+𝑖 [

𝑛−1

∑

𝑘=0

𝑅𝑖+𝑘 (𝑓𝑘)]}𝜋
𝑙

=

𝑛−1

∑

𝑙=0

[

𝑛−1

∑

𝑖=0

𝑅𝑙+𝑖 (𝑓𝑙)] 𝜋
𝑙

=

𝑛−1

∑

𝑙=0

𝑓𝑙𝜋
𝑙
.

(49)

That is, 𝜓2 = 𝜓
0 (the identity function on 𝑉). Then, 𝜓 is a

linear involution on 𝑉.

Consider the set𝑊 = {𝛼𝜓
0
+𝛽𝜓 | 𝛼, 𝛽 ∈ C}, that is, linear

combinations over C of 𝜓0 and 𝜓 (since 𝜓2 = 𝜓
0). Then𝑊 is

a 2×2 complex circulant algebra; (𝜓0+𝜓)/2 and (𝜓
0
−𝜓)/2 are

idempotent elements of𝑊; that is, they are projections on 𝑉.
If 𝑓 is in 𝑉, then 𝜓(𝑓) = 𝑓 if and only if 𝑓 ∈ Ran(𝜓0 + 𝜓)/2,
and 𝜓(𝑓) = −𝑓 if and only if 𝑓 ∈ Ran(𝜓0 − 𝜓)/2. Also, 𝑉 =

(Ran(𝜓0 + 𝜓)/2) ⊕ (Ran(𝜓0 − 𝜓)/2) (a direct sum).

Example 13. If 𝑛 = 2, then 𝜋
2

= −𝐼. Let 𝑓 and 𝑔 be two
functions C2 → C. Then

𝜓 (𝐼𝑓 (𝑐0, 𝑐1) + 𝜋𝑔 (𝑐0, 𝑐1))

=

𝐼

2

[𝑓 (𝑐0, 𝑐1) − 𝑖𝑓 (𝑖𝑐0, −𝑖𝑐1) + 𝑔 (𝑐0, 𝑐1) + 𝑖𝑔 (𝑖𝑐0, −𝑖𝑐1)]

+

𝜋

2

[𝑓 (𝑐0, 𝑐1) + 𝑖𝑓 (𝑖𝑐0, −𝑖𝑐1)

+ 𝑔 (𝑐0, 𝑐1) − 𝑔 (−𝑐0, −𝑐1)] .

(50)

Note that, if 𝑓𝑖 is a function C𝑛 → C for each 𝑖, we have
by (48) that

𝜓 (𝑓𝑖𝜋
𝑖
) =

𝑛−1

∑

𝑙=0

𝑅𝑙+𝑖 (𝑓𝑖) 𝜋
𝑙
. (51)

In the same way, (48) implies that

𝜓 [𝑅𝑙+𝑖 (𝑓𝑙) 𝜋
𝑙
] = 𝑅𝑙+𝑖 (𝑓𝑙) 𝜋

𝑖
, (52)

where 𝑙 and 𝑖 vary from 0 to 𝑛 − 1 and 𝑙 + 𝑖 is taken modulo 𝑛.
Since𝜓(𝑓) = 𝑓 if and only if𝑓 ∈ Ran(𝜓0+𝜓)/2, the function

(

1

2

) (𝜓
0
+ 𝜓) [𝑅𝑙+𝑖 (𝑓𝑙) 𝜋

𝑙
]

= (

1

2

)𝑅𝑙+𝑖 (𝑓𝑙) (𝜋
𝑙
+ 𝜋
𝑖
)

(53)

is a fixed point of 𝜓.

6. Conclusion

We prove that the set of skew-circulants with complex entries
has an idempotent basis.This paper displays algebras of oper-
ators which are isomorphic to the algebra of 𝑛 × 𝑛 complex
skew-circulant matrices. In [19], a new fast algorithm for
optimal design of block digital filters (BDFs) is proposed
based on skew circulant matrix. The reason why we focus
our attention on skew-circulant operator is to explore the
application of skew-circulant in the related field. On the basis
of existing application situation [2–8], we will exploit solving
ordinary, partial, and delay differential equations based on
skew circulant operator.
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