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Stability and bifurcation behaviors for a model of simply supported functionally graded materials rectangular plate subjected to
the transversal and in-plane excitations are studied by means of combination of analytical and numerical methods. The resonant
case considered here is 1 : 1 internal resonances and primary parametric resonance. Two types of degenerated equilibrium points
are studied in detail, which are characterized by a double zero and two negative eigenvalues, and a double zero and a pair of pure
imaginary eigenvalues. For each case, the stability regions of the initial equilibrium solution and the critical bifurcation curves are
obtained in terms of the system parameters which may lead to Hopf bifurcation and 2D torus. With both analytical and numerical
methods, bifurcation behaviors on damping parameters and detuning parameters are studied, respectively. A time integration
scheme is used to find the numerical solutions for these bifurcation cases, and numerical results agree with the analytic predictions.

1. Introduction

Functionally graded materials (FGMs) are extremely excel-
lent engineering composite materials. Because of their
specially tailored thermomechanical properties, FGMs are
widely applied to large space station, shuttle, aircraft, auto-
motive, and many others [1–3]. With the increasing use of
FGM plates in engineering fields, research on the nonlinear
dynamics of the FGM plates plays a significant role in
applications. Holmes [4] studied flow-induced vibrations,
bifurcations, and the chaos of thin plates. Yang and Sethna [5]
used the averagingmethod to study the local and global bifur-
cations for parametrically excited vibrations of nearly square
plates. Yu et al. [6] investigated the nonlinear vibrations
and bifurcations of a thin plate with the aid of computation
of normal form. Ye et al. [7] investigated the nonlinear
vibrations and chaotic dynamics of an ant symmetric cross-
ply laminated composite rectangular thin plate under para-
metric excitation. Zhang et al. [8] studied the bifurcation
and chaotic motions of a composite laminated piezoelecttric
rectangular plate with 1 : 2 internal resonance. Chang et al.

[9] investigated the bifurcations and chaos of a rectangular
thin plate with 1 : 1 internal resonance. Zhang et al. [10]
studied the nonlinear dynamics of a parametrically excited
simply supported laminated composite plate and found that
there exist themultiple steady bifurcation solutions under the
certain conditions.

Using asymptotic perturbation method based on the
Fourier expansion and the temporal rescaling [11, 12],
Zhang et al. [13] investigated the nonlinear oscillations
and chaotic dynamics of a simply supported FGM plate.
Yu and Huseyin [14, 15] studied the stability and bifurcation
behaviors of the systems which were characterized by double
zero eigenvalues, a simple pair of pure imaginary eigenvalues,
and two pairs of pure imaginary eigenvalues. Yu [16] used
a perturbation technique and computer algebra to compute
the normal form of the nonlinear dynamical systems with
two pairs of pure imaginary eigenvalues and analyzed double
Hopf bifurcation. Hao et al. [17] analyzed the nonlinear
dynamics of a simply supported FGM plate subjected to the
transverse and in-plane excitations in a thermal environ-
ment. Zhang et al. [18] studied the stability and bifurcation
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Figure 1: The model of a rectangular FGM plate and the coordinate system.

behaviors of FGMwhich were characterized by a simple zero
and a pair of purely imaginary eigenvalues and two pairs of
pure imaginary eigenvalues. By the analytical approach, the
presentwork investigates theoretically the stability conditions
of the equilibrium solutions and their stability boundaries.

The objective of this paper is to investigate the local
dynamic behaviors of a simply supported rectangular plate
subjected to the transversal and in-plane excitations in a
thermal environment. The resonant case considered here is
1 : 1 internal resonance and primary parametric resonance.
Both analytical and numerical approaches are employed to
consider the bifurcation and stability of this system. Two
types of degenerated equilibrium points are studied in detail,
which are characterized by a double zero and two negative
eigenvalues and a double zero and a pair of pure imaginary
eigenvalues, respectively. The stability regions of the initial
equilibrium solution and the critical bifurcation curves are
obtained in terms of the system parameters. Bifurcations
leading to Hopf bifurcation and 2D torus and their stability
conditions are also investigated. All numerical results agree
with the analytic predictions.

This paper is organized as follows. In Section 2, the
averaged equations of transverse motion of the FGM plate
are given and the stability conditions of initial equilibrium
solution are obtained explicitly. Section 3 is devoted to the
studies on the dynamical behaviors of the system in the
vicinity of the critical points: a double zero and two negative
eigenvalues and a double zero and a pair of pure eigenvalues.
Finally some conclusions are drawn in Section 4.

2. Formulation of the Problem

Thepaper focuses on the stability andbifurcation behaviors of
a functionally graded material rectangular plate subjected to
the in-plane and transversal excitations. The model is shown
in Figure 1.

The paper focuses on the stability and bifurcations behav-
iors of a simply supported FGM rectangular under combined
parametric and external excitations. The model is shown in
Figure 1.The plate is of length 𝑎, width 𝑏, and thickness ℎ. Let
(𝑢, V, 𝑤) and (𝑢

0
, V
0
, 𝑤
0
) be the displacements of an arbitrary

point and a point in the middle plane of the plate in the 𝑥, 𝑦,
and 𝑧 directions; 𝜑

𝑥
and 𝜑

𝑦
represent themid-plane rotations

of a transverse normal about the 𝑦 and 𝑥 axes. The plate
is subjected to an in-plane excitation 𝑝 = 𝑝

0
− 𝑝
1
cosΩ
2
𝑡

uniformly distributed along the plate edges 𝑥 = 0, 𝑥 = 𝑎,
and a transverse excitation 𝐹(𝑥, 𝑦) cosΩ

1
𝑡. Here Ω

1
and Ω

2

are the excitation frequencies of the transverse and in-plane
excitations, respectively.

Applying the Galerkin procedure, the nonlinear dimen-
sionless governing differential equations of transversemotion
of the FGM rectangular plate are obtained as follows [17]:

𝑤̈
1
+ 𝜔
2

1
𝑤
1
+ 𝑎
1
𝑤̇
1
+ 𝑎
2
𝑤
1
cosΩ
2
𝑡 + 𝑎
3
𝑤
2

1

+ 𝑎
4
𝑤
2

2
+ 𝑎
5
𝑤
1
𝑤
2

2
+ 𝑎
6
𝑤
3

1
+ 𝑎
7
𝑤
1
𝑤
2

= 𝑓
1
cosΩ
1
𝑡, (1a)

𝑤̈
2
+ 𝜔
2

2
𝑤
2
+ 𝑏
1
𝑤̇
2
+ 𝑏
2
𝑤
2
cosΩ
2
𝑡 + 𝑏
4
𝑤
2

1

+ 𝑏
5
𝑤
2

2
+ 𝑏
6
𝑤
2
𝑤
2

1
+ 𝑏
7
𝑤
3

2
+ 𝑏
3
𝑤
1
𝑤
2

= 𝑓
2
cosΩ
1
𝑡.

(1b)

It is assumed that the width-to-length ratio of the FGM
rectangular plate is 𝑎/𝑏 = 1.Therefore only the primary para-
metric resonance and 1 : 1 internal resonance are considered
in this paper. In this resonant case, there are the following
relations:

𝜔
1
=

Ω

2

+ 𝜖
2
𝜎
1
, 𝜔
2
=

Ω

2

+ 𝜖
2
𝜎
2
, Ω
1
= Ω
2
= Ω, (2)

where 𝜖 is a small perturbation parameter, 𝜔
1
and 𝜔

2
are

the first-order and second-order linear frequencies, and 𝜎
1

and 𝜎
2
are two detuning parameters. Using the asymptotic

perturbation method, the averaged equation in the Cartesian
form is obtained as follows [17]:

𝑥̇
1
= 𝜇
1
𝑥
1
+ (𝜎
1
+ 𝛼) 𝑥

2
+ 𝑘
1
𝑥
4
+ 𝑁𝑓
1
, (3a)

𝑥̇
2
= (−𝜎

1
+ 𝛼) 𝑥

1
+ 𝜇
1
𝑥
2
+ 𝑘
1
𝑥
3
+ 𝑁𝑓
2
, (3b)

𝑥̇
3
= 𝑘
2
𝑥
2
+ 𝜇
2
𝑥
3
+ (𝜎
2
+ 𝛽) 𝑥

4
+ 𝑁𝑓
3
, (3c)

𝑥̇
4
= 𝑘
2
𝑥
1
+ (−𝜎

2
+ 𝛽) 𝑥

3
+ 𝜇
2
𝑥
4
+ 𝑁𝑓
4
, (3d)

where 𝛼 = 𝑎
1
+ 𝑎
2
𝑓
1
+ 𝑎
11
𝑓
2
, 𝛽 = 𝑏

1
+ 𝑏
2
𝑓
1
+ 𝑏
3
𝑓
2
, 𝑘
1
=

𝑎
3
𝑓
2
+ 𝑎
11
𝑓
1
, and 𝑘

2
= 𝑏
4
𝑓
2
+ 𝑏
5
𝑓
1
, where all coefficients can

be found in [17]. The nonlinear functions 𝑁𝑓
𝑖
(𝑖 = 1, 2, 3, 4)

are presented in the appendix.
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The Jacobian matrix of (3a)–(3d) evaluated at the initial
equilibrium solution (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (0, 0, 0, 0) is as follows:

J = (

𝜇
1

𝜎
1
+ 𝛼 0 𝑘

1

−𝜎
1
+ 𝛼 𝜇

1
𝑘
1

0

0 𝑘
2

𝜇
2

𝜎
2
+ 𝛽

𝑘
2

0 −𝜎
2
+ 𝛽 𝜇

2

). (4)

From which one may obtain the characteristic polynomial

𝑓 (𝜆) = 𝜆
4
+ 𝑏
1
𝜆
3
+ 𝑏
2
𝜆
2
+ 𝑏
3
𝜆 + 𝑏
4
, (5)

where

𝑏
1
= − 2𝜇

1
− 2𝜇
2
,

𝑏
2
= 𝜇
2

2
+ 4𝜇
1
𝜇
2
+ 𝜎
2

1
− 𝛼
2
+ 𝜇
2

1
+ 𝜎
2

2
− 𝛽
2
− 2𝑘
1
𝑘
2
,

𝑏
3
= − 2𝜎

2

2
𝜇
1
− 2𝜇
2

2
𝜇
1
− 2𝜎
2

1
𝜇
2
− 2𝛼
2
𝜇
2

− 2𝜇
2

1
𝜇
2
+ 2𝑘
1
𝑘
2
𝜇
1
+ 2𝑘
1
𝑘
2
𝜇
2

+ 2𝜇
1
𝛽
2
+ 2𝜇
2
𝛼
2
,

𝑏
4
= 𝜎
2

1
𝜎
2

2
− 𝜎
2

2
𝛼
2
+ 𝜎
2

2
𝜇
2

1
+ 𝜇
2

2
𝜎
2

1

− 2𝑘
1
𝑘
2
𝜎
1
𝜎
2
− 2𝑘
1
𝑘
2
𝛼𝛽

− 2𝑘
1
𝑘
2
𝜇
1
𝜇
2
+ 𝛼
2
𝛽
2
− 𝜇
2

2
𝛼
2
+ 𝜇
2

1
𝜇
2

2

− 𝜎
2

1
𝛽
2
+ 𝑘
2

1
𝑘
2

2
− 𝜇
2

1
𝛽
2
.

(6)

By the Routh-Hurwitz criterion, the equilibrium solution
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (0, 0, 0, 0) is stable, if the following condi-

tions are satisfied:

𝑏
1
> 0, 𝑏

1
𝑏
2
− 𝑏
3
> 0, 𝑏

4
> 0,

𝑏
3
(𝑏
1
𝑏
2
− 𝑏
3
) − 𝑏
2

1
𝑏
4
> 0.

(7)

Conditions in (7) imply that all the eigenvalues of the Jacobian
matrix (4) have negative real parts. When conditions in (7)
are not satisfied, the initial equilibrium solution is unstable,
and bifurcation may occur. In the next section, the detailed
analysis will be given when conditions in (7) are violated.

3. Stability and Bifurcation Behaviors

3.1. Stability and Bifurcation Behaviors on the Damping
Parameters. In this Section, the stability and bifurcation
analysis on the parameters 𝜇

1
and 𝜇

2
are investigated, which

can be divided into two cases due to degenerated equilibrium
points.

3.1.1. The Case of Double Zero and Two Negative Eigenvalues.
In this part, the characteristic polynomial (5) is supposed
to have a double zero and two negative eigenvalues, 𝜆

1,2
=

0, 𝜆
3,4

= −2, which implies that 𝑏
1
= 𝑏
2
= 4, 𝑏

3
= 𝑏
4
= 0.

One choice of the parameters that satisfy these conditions is
𝜇
1
= −1, 𝜇

2
= −1, 𝜎

1
= 1, 𝜎

2
= 1, 𝛼 = 0, 𝛽 = 0, 𝑘

1
= 1,

𝑘
2

= 2, 𝑎
4

= 𝑎
5

= 𝑎
6

= 𝑎
7

= 𝑎
8

= 𝑎
9

= 𝑎
10

= 1,

𝑏
6

= 𝑏
7

= 𝑏
8

= 𝑏
9

= 𝑏
10

= 𝑏
11

= 1. Choosing 𝜇
1

and 𝜇
2
as perturbation parameters and using the parameter

transformation 𝜇
1
= −1 + 𝛿

1
, 𝜇
2
= −1 + 𝛿

2
and the state

variable transformation

[

[

[

[

𝑥
1

𝑥
2

𝑥
3

𝑥
4

]

]

]

]

=

[

[

[

[

[

[

[

[

[

1

2

1

2

−

1

2

1

2

−

1

2

1

2

−

1

2

−

1

2

0 1 0 1

1 0 1 0

]

]

]

]

]

]

]

]

]

[

[

[

[

𝑧
1

𝑧
2

𝑧
3

𝑧
4

]

]

]

]

, (8)

one may transform (3a)–(3d) into a new system as follows:

𝑧̇
1
=

1

2

(𝛿
1
+ 𝛿
2
) 𝑧
1
+

1

2

(𝛿
1
− 𝛿
2
) 𝑧
2
−

1

2

(𝛿
1
− 𝛿
2
) 𝑧
3

+

1

2

(𝛿
1
− 𝛿
2
) 𝑧
4
+ 𝑁𝑔
1
,

(9a)

𝑧̇
2
= −

1

2

(𝛿
1
− 𝛿
2
) 𝑧
1
+

1

2

(𝛿
1
+ 𝛿
2
) 𝑧
2
−

1

2

(𝛿
1
− 𝛿
2
) 𝑧
3

−

1

2

(𝛿
1
− 𝛿
2
) 𝑧
4
+ 𝑁𝑔
2
,

(9b)

𝑧̇
3
= −2𝑧

3
−

1

2

(𝛿
1
− 𝛿
2
) 𝑧
1
−

1

2

(𝛿
1
− 𝛿
2
) 𝑧
2

+

1

2

(𝛿
1
+ 𝛿
2
) 𝑧
3
−

1

2

(𝛿
1
− 𝛿
2
) 𝑧
4
+ 𝑁𝑔
3
,

(9c)

𝑧̇
4
= −2𝑧

4
+

1

2

(𝛿
1
− 𝛿
2
) 𝑧
1
−

1

2

(𝛿
1
− 𝛿
2
) 𝑧
2

+

1

2

(𝛿
1
− 𝛿
2
) 𝑧
3
+

1

2

(𝛿
1
+ 𝛿
2
) 𝑧
4
+ 𝑁𝑔
4
,

(9d)

where the nonlinear functions 𝑁𝑔
𝑖
(𝑖 = 1, . . . , 4) are exhib-

ited in the appendix.
The Jacobian matrix of (9a)–(9d) evaluated at the initial

equilibrium solution (𝑧
1
, 𝑧
2
, 𝑧
3
, 𝑧
4
) = (0, 0, 0, 0) at critical

point 𝛿
1𝑐
= 𝛿
2𝑐
= 0 is the following canonical form:

J
(𝑧𝑖=0)

=

[

[

[

[

0 0 0 0

0 0 0 0

0 0 −2 0

0 0 0 −2

]

]

]

]

. (10)

The local dynamic behaviors of system (9a)–(9d) are charac-
terized by the critical variables 𝑧

1
and 𝑧

2
. Furthermore, the

bifurcation solutions for the noncritical variables 𝑧
3
and 𝑧

4

maybe determined from (9a)–(9d) up to leading orders terms
as

𝑧
3
= −

1

4

(𝛿
1
− 𝛿
2
) 𝑧
1
−

1

4

(𝛿
1
− 𝛿
2
) 𝑧
2

−

1

4

𝑧
3

1
−

9

8

𝑧
3

2
−

7

4

𝑧
2

2
𝑧
1
−

5

8

𝑧
2

1
𝑧
2
,

(11a)

𝑧
4
=

1

4

(𝛿
1
− 𝛿
2
) 𝑧
1
−

1

4

(𝛿
1
− 𝛿
2
) 𝑧
2
−

3

8

𝑧
3

1

+

5

2

𝑧
3

2
+ 𝑧
2

2
𝑧
1
+

25

8

𝑧
2

1
𝑧
2
.

(11b)
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Figure 2: Bifurcation diagram on parameters 𝜇
1
and 𝜇

2
for the case of double zero and two negative eigenvalues.

In order to study the bifurcation and stable properties of
system (9a)–(9d) in the vicinity of the critical point, one only
needs to analyze the following two-dimensional system:

𝑧̇
1
= [

1

2

(𝛿
1
+ 𝛿
2
) +

1

4

(𝛿
1
− 𝛿
2
)
2
] 𝑧
1
+

1

2

(𝛿
1
− 𝛿
2
) 𝑧
2

+

3

4

𝑧
3

1
−

1

2

𝑧
3

2
+

1

2

𝑧
2

1
𝑧
2
−

1

4

𝑧
2

2
𝑧
1
,

𝑧̇
2
= −

1

2

(𝛿
1
− 𝛿
2
) 𝑧
1
+ [

1

2

(𝛿
1
+ 𝛿
2
) +

1

4

(𝛿
1
− 𝛿
2
)
2
] 𝑧
2

+ 𝑧
3

1
−

17

4

𝑧
3

2
−

5

4

𝑧
2

1
𝑧
2
− 4𝑧
2

2
𝑧
1
.

(12)

To find the stability conditions of the initial equilibrium
solution (𝑧

1
, 𝑧
2
) = (0, 0), one may evaluate the Jacobian

matrix of (11a) and (11b) at (𝑧
1
, 𝑧
2
) = (0, 0) and obtain

J
(𝑧𝑖=0)

= [

𝑎
11

𝑎
12

𝑎
21

𝑎
21

] , (13)

where

𝑎
11
=

1

2

(𝛿
1
+ 𝛿
2
) +

1

4

(𝛿
1
− 𝛿
2
)
2
,

𝑎
12
=

1

2

(𝛿
1
− 𝛿
2
) ,

𝑎
21
= −

1

2

(𝛿
1
− 𝛿
2
) ,

𝑎
22
=

1

2

(𝛿
1
+ 𝛿
2
) +

1

4

(𝛿
1
− 𝛿
2
)
2
.

(14)

The characteristic polynomial is

𝑓 (𝜆) = 𝜆
2
+ [− (𝛿

1
+ 𝛿
2
) −

1

2

(𝛿
1
− 𝛿
2
)
2
] 𝜆

+ [[

1

2

(𝛿
1
+ 𝛿
2
) +

1

4

(𝛿
1
− 𝛿
2
)
2
]

2

+

1

4

(𝛿
1
− 𝛿
2
)
2
] .

(15)

The stability conditions for the initial equilibrium solu-
tion (𝑧

1
, 𝑧
2
) = (0, 0) are

− (𝛿
1
+ 𝛿
2
) −

1

2

(𝛿
1
− 𝛿
2
)
2
> 0,

[

1

2

(𝛿
1
+ 𝛿
2
) +

1

4

(𝛿
1
− 𝛿
2
)
2
]

2

+

1

4

(𝛿
1
− 𝛿
2
)
2
> 0.

(16)

It is easy to see that [(1/2)(𝛿
1
+ 𝛿
2
) + (1/4)(𝛿

1
− 𝛿
2
)
2
]

2

+

(1/4)(𝛿
1
− 𝛿
2
)
2
> 0 unless (𝛿

1
, 𝛿
2
) = (0, 0), so if −(𝛿

1
+ 𝛿
2
) −

(1/2)(𝛿
1
− 𝛿
2
)
2
> 0, the initial equilibrium solution is stable.

Then a critical bifurcation curve is obtained:

𝐿
1
: (𝛿
1
+ 𝛿
2
) +

1

2

(𝛿
1
− 𝛿
2
)
2
= 0. (17)

When (𝛿
1
, 𝛿
2
) ∈ 𝐿

1
, Hopf bifurcation may occur. In

fact, the eigenvalues of the Jacobian matrix at the initial
equilibrium solution (𝑧

1
, 𝑧
2
, 𝑧
3
, 𝑧
4
) = (0, 0, 0, 0) are

𝜆
1,2

= (𝛿
1
+ 𝛿
2
) +

1

2

(𝛿
1
− 𝛿
2
)
2
±

√2

4

(𝛿
1
− 𝛿
2
) 𝑖. (18)

Let

𝑎 = Re (𝜆
1,2
) = (𝛿

1
+ 𝛿
2
) +

1

2

(𝛿
1
− 𝛿
2
)
2
,

𝑏 = Im (𝜆
1,2
) =

√2

4

(𝛿
1
− 𝛿
2
) 𝑖.

(19)

It is easy to see that 𝑎 = 0, 𝑏 > 0, and 𝑑𝑎/𝑑𝛿
1

̸= 0,
when (𝛿

1
, 𝛿
2
) ∈ 𝐿

1
and (𝛿

1
, 𝛿
2
) ̸= 0 or (−3/4, 1/4). By Hopf

bifurcation theorem, along 𝐿
1
, Hopf bifurcation may occur.

The bifurcation diagram is shown in Figure 2. The initial
equilibrium solution (𝑧

1
, 𝑧
2
, 𝑧
3
, 𝑧
4
) = (0, 0, 0, 0) is stable

while (𝛿
1
, 𝛿
2
) belongs to area I. Along 𝐿

1
, Hopf bifurcation

may occur.When (𝛿
1
, 𝛿
2
) crosses 𝐿

1
and goes into area II, the

initial equilibrium solution becomes unstable.
Numercial results have been obtained by using a time

integration scheme-fourth-order Runge-Kutta method. The
numerical computation is performed on the base of the
original differential equations (3a)–(3d). For the parameter
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1
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2
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Figure 4: Trajectory projection starting from (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (−0.002, 0, −0.001, 0) converges to the E.S. when (𝜉

1
, 𝜉
2
) = (−0.1, 0.08321).

(𝛿
1
, 𝛿
2
) = (0.2, −0.3), which is located in the area II (the

unstable region of the initial equilibrium solution), numerical
results show that any solution starting from an arbitrary
initial point (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) ̸= (0, 0, 0, 0) diverges to infinity,

initiating that the initial equilibrium solution is unstable, as
predicted by the analytic study. When the parameter value
is chosen from the stable region of the E.S., say, (𝛿

1
, 𝛿
2
) =

(−0.3, −0.3), a numerical solution starting from an initial
point (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (−0.002, 0, −0.001, 0) is obtained,

which converges to the origin, implying that the E.S. is stable.
This is shown in Figure 3, where the phase trajectories are
projected onto the 𝑥

1
− 𝑥
2
and 𝑥

3
− 𝑥
4
plane. It should be

noted that since the study is focused on the local dynamic
behaviors of the FGM in the vicinity of a critical point, so
the parameter (𝛿

1
, 𝛿
2
) should be chosen near the critical point

(𝛿
1
, 𝛿
2
) = (0, 0).

If one chooses (𝛿
1
, 𝛿
2
) = (−0.1, 0.08321), which is located

in the curve 𝐿
1
, Hopf bifurcation may occur. The phase tra-

jectories starting from (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (−0.002, 0, −0.001, 0)

are shown in Figure 4.

3.1.2. Double Zero and a Pair of Pure Imaginary Eigenvalues.
Choosing the following parameter values: 𝜇

1
= 1, 𝜇

2
= −1,

𝜎
1
= 1, 𝜎

2
= −1, 𝛼 = 0, 𝛽 = 0, 𝑘

1
= 1, 𝑘

2
= −2, 𝑎

4
= 𝑎
5
= 𝑎
6
=

𝑎
7
= 𝑎
8
= 𝑎
9
= 𝑎
10

= 1, 𝑏
6
= 𝑏
7
= 𝑏
8
= 𝑏
9
= 𝑏
10

= 𝑏
11

= 1,
which imply that 𝑏

2
= 4, 𝑏

1
= 𝑏
3
= 𝑏
4
= 0, then the Jacobian

matrix (4) has the eigenvalues 𝜆
1,2

= 0, 𝜆
3,4

= ±2𝑖.
Choosing 𝜇

1
and 𝜇

2
as perturbation parameters, and

using the parameter transformation 𝜇
1
= 1+𝛿

1
, 𝜇
2
= −1+𝛿

2
,

the characteristic polynomial (5) of the Jacobian matrix (4)
becomes

̃
𝑓 (𝜆) = 𝜆

4
+
̃
𝑏
1
𝜆
3
+
̃
𝑏
2
𝜆
2
+
̃
𝑏
3
𝜆 +

̃
𝑏
4
, (20)
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where,

̃
𝑏
1
= − 2𝛿

1
− 2𝛿
2
,

̃
𝑏
2
= 𝛿
2

1
+ 𝛿
2

2
+ 4𝛿
1
𝛿
2
− 2𝛿
1
+ 2𝛿
2
+ 1,

̃
𝑏
3
= − 2𝛿

1
𝛿
2

2
− 2𝛿
2
𝛿
2

1
+ 2𝛿
2

1
− 2𝛿
2

2
− 4𝛿
1
− 4𝛿
2
,

̃
𝑏
4
= 2𝛿
2

1
+ 2𝛿
2

2
+ 𝛿
2

2
𝛿
2

1
− 2𝛿
2
𝛿
2

1
+ 2𝛿
1
𝛿
2

2
.

(21)

The stability conditions for the initial equilibrium solu-
tion (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (0, 0, 0, 0) are

Δ
1
=
̃
𝑏
1
> 0, that is − 2𝛿

1
− 2𝛿
2
> 0,

Δ
2
=
̃
𝑏
1
̃
𝑏
2
−
̃
𝑏
3
> 0,

that is − 2 (𝛿
1
+ 𝛿
2
) (𝛿
2

1
+ 𝛿
2

2
+ 3𝛿
1
𝛿
2

−𝛿
1
+ 𝛿
2
+ 2) > 0,

Δ
3
=
̃
𝑏
3
(
̃
𝑏
1
̃
𝑏
2
−
̃
𝑏
3
) −

̃
𝑏
2

1
̃
𝑏
4
,

that is 4(𝛿
1
+ 𝛿
2
)
2
(𝛿
2

2
+ 𝛿
2

1
+ 2𝛿
1
𝛿
2
+ 4)

× (𝛿
2
− 𝛿
1
+ 𝛿
1
𝛿
2
+ 1) > 0.

(22)

From the four inequalities above, one may get the follow-
ing three transition curves:

𝐿
2
: 𝛿
1
+ 𝛿
2
= 0,

𝐿
3
: 𝛿
2

1
+ 𝛿
2

2
+ 3𝛿
1
𝛿
2
− 𝛿
1
+ 𝛿
2
+ 2 = 0,

𝐿
4
: (𝛿
2

2
+ 𝛿
2

1
+ 2𝛿
1
𝛿
2
+ 4) (𝛿

2
− 𝛿
1
+ 𝛿
1
𝛿
2
+ 1) = 0.

(23)

Then, the transition curves are shown in Figure 5.
When 𝛿

1
+ 𝛿
2
< 0, 𝛿2

1
+ 𝛿
2

2
+ 3𝛿
1
𝛿
2
− 𝛿
1
+ 𝛿
2
+ 2 > 0 and

(𝛿
2

2
+𝛿
2

1
+2𝛿
1
𝛿
2
+4)(𝛿

2
−𝛿
1
+𝛿
1
𝛿
2
+1) > 0 are all satisfied, the

initial equilibrium solution is stable.When (𝛿
1
, 𝛿
2
) belongs to

region I, the initial equilibrium solution is stable, and when
(𝛿
1
, 𝛿
2
) belongs to region II, the initial equilibrium solution

of the system is unstable.
Similar to the case in Section 3.1, different parameters

are chosen to conform the analytical results obtained in
this Section. When the parameter is chosen as (𝛿

1
, 𝛿
2
) =

(−0.2, −0.2), numerical results show that a trajectory starting
from (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (−0.02, 0.01, 0.01, 0.01) converges

to the origin, implying that the E.S. is stable. The phase
trajectories are projected onto the 𝑥

1
− 𝑥
2
and 𝑥

3
− 𝑥
4

subspaces as shown in Figure 6.

3.2. Stability and Bifurcation Behaviors on the Detuning
Parameters. In this section, the stability and bifurcation
analysis on the parameters 𝜎

1
and 𝜎

2
are investigated, which

can be divided into two cases due to degenerated equilibrium
points.

3.2.1. The Case of Double Zero and Two Negative Eigenvalues.
Corresponding to Section 3.1.1, take parameter values 𝜇

1
=

Unstable region
for zero solution

Stable region
for zero solution

I

II

L2 L3
L4
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0

2
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4
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Figure 5: Bifurcation diagram on parameters 𝜇
1
and 𝜇

2
for the case

of double zero and a pair of purely imaginary eigenvalues.

−1, 𝜇
2
= −1, 𝜎

1
= 1, 𝜎

2
= 1, 𝛼 = 0, 𝛽 = 0, 𝑘

1
= 1, 𝑘

2
= 2,

𝑎
4
= 𝑎
5
= 𝑎
6
= 𝑎
7
= 𝑎
8
= 𝑎
9
= 𝑎
10

= 1, 𝑏
6
= 𝑏
7
= 𝑏
8
= 𝑏
9
=

𝑏
10
= 𝑏
11
= 1.

Choosing 𝜎
1
and 𝜎
2
as perturbation parameters, and then

using the parameter transformation 𝜎
1
= 1 + 𝜉

1
, 𝜎
2
= 1 + 𝜉

2

and the state variable transformation (7), one can get

𝑧̇
1
= −

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
1
+

1

2

(𝜉
1
− 𝜉
2
) 𝑧
2

−

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
3
−

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
4
+ 𝑁𝑔
1
,

(24a)

𝑧̇
2
= −

1

2

(𝜉
1
− 𝜉
2
) 𝑧
1
−

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
2

+

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
3
−

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
4
+ 𝑁𝑔
2
,

(24b)

𝑧̇
3
= −2𝑧

3
+

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
1
−

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
2

+

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
3
+

1

4

(𝜉
1
− 𝜉
2
) 𝑧
4
+ 𝑁𝑔
3
,

(24c)

𝑧̇
4
= −2𝑧

4
+

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
1
+

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
2

−

1

2

(𝜉
1
− 𝜉
2
) 𝑧
3
+

1

2

(𝜉
1
+ 𝜉
2
) 𝑧
4
+ 𝑁𝑔
4
,

(24d)

where the nonlinear functions 𝑁𝑔
𝑖
(𝑖 = 1, . . . , 4) are exhib-

ited in the appendix.
Similar to Section 3.1.1, we can get the equations in the

critical variables 𝑧
1
and 𝑧
2
, up to leading orders, as follows:

𝑧̇
1
= [−

1

2

(𝜉
1
+ 𝜉
2
) −

1

4

(𝜉
1
+ 𝜉
2
)
2
] 𝑧
1
+

1

2

(𝜉
1
− 𝜉
2
) 𝑧
2

+

3

4

𝑧
3

1
−

1

2

𝑧
3

2
+

1

2

𝑧
2

1
𝑧
2
−

1

4

𝑧
2

2
𝑧
1
,

(25a)
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1
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2
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𝑧̇
2
= −

1

2

(𝜉
1
− 𝜉
2
) 𝑧
1
+ [−

1

2

(𝜉
1
+ 𝜉
2
) −

1

4

(𝜉
1
+ 𝜉
2
)
2
] 𝑧
2

+ 𝑧
3

1
−

17

4

𝑧
3

2
−

5

4

𝑧
2

1
𝑧
2
− 4𝑧
2

2
𝑧
1
.

(25b)

To find the stability conditions of the initial equilibrium
solution (𝑧

1
, 𝑧
2
) = (0, 0), one may evaluate the Jacobian

matrix of (24a)–(24d) at (𝑧
1
, 𝑧
2
) = (0, 0) and obtain

J
(𝑧𝑖=0)

= [

𝑐
11

𝑐
12

𝑐
21

𝑐
21

] , (26)

where

𝑐
11
= −

1

2

(𝜉
1
+ 𝜉
2
) −

1

4

(𝜉
1
+ 𝜉
2
)
2
,

𝑐
12
=

1

2

(𝜉
1
− 𝜉
2
) ,

𝑐
21
= −

1

2

(𝜉
1
− 𝜉
2
) ,

𝑐
22
= −

1

2

(𝜉
1
+ 𝜉
2
) −

1

4

(𝜉
1
+ 𝜉
2
)
2
.

(27)

The characteristic polynomial is

𝑓 (𝜆) = 𝜆
2
+ [(𝜉
1
+ 𝜉
2
) +

1

2

(𝜉
1
+ 𝜉
2
)
2
] 𝜆

+ [[

1

2

(𝜉
1
+ 𝜉
2
) +

1

4

(𝜉
1
+ 𝜉
2
)
2
]

2

+

1

4

(𝜉
1
− 𝜉
2
)

2

] .

(28)

The stability conditions for the initial equilibrium solu-
tion (𝑧

1
, 𝑧
2
) = (0, 0) are

(𝜉
1
+ 𝜉
2
) +

1

2

(𝜉
1
+ 𝜉
2
)
2
> 0,

[

1

2

(𝜉
1
+ 𝜉
2
) +

1

4

(𝜉
1
+ 𝜉
2
)
2
]

2

+

1

4

(𝜉
1
− 𝜉
2
)
2
> 0.

(29)

It is easy to see that [(1/2)(𝜉
1
+ 𝜉
2
) + (1/4)(𝜉

1
+ 𝜉
2
)
2
]

2

+

(1/4)(𝜉
1
− 𝜉
2
)
2

> 0 unless (𝜉
1
, 𝜉
2
) = (0, 0), so if

(𝜉
1
+𝜉
2
)+ (1/2)(𝜉

1
+ 𝜉
2
)
2
> 0, the initial equilibrium solution

is stable. From this equality, one can denote

𝐿
5
: 𝜉
1
+ 𝜉
2
= 0,

𝐿
6
: 𝜉
1
+ 𝜉
2
= −2.

(30)
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1
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2
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, 𝑥
4
) = (−0.02, 0.02, 0.01, −0.01) converges to the E.S. when (𝜉

1
, 𝜉
2
) = (0.2, −0.2).

For (𝜉
1
, 𝜉
2
) ∈ 𝐿

5
or (𝜉
1
, 𝜉
2
) ∈ 𝐿

6
, Hopf bifurcation may

occur.The discussion for Hopf bifurcation is similar to that of
Section 3.1.1.The bifurcation diagram for this case is shown in
Figure 7. It is observed from this figure that the critical curves
𝐿
5
, 𝐿
6
separate 𝑥

1
− 𝑥
2
plane into two parts. While (𝜉

1
, 𝜉
2
) is

in area I, the initial equilibrium solution is stable. In area II,
the initial equilibrium solution is unstable. Hopf bifurcation
may occur along 𝐿

5
and 𝐿

6
.

By choosing (𝜉
1
, 𝜉
2
) = (0.1, 0.2), which represents a

point in the parameter space located in the stable region
I of the E.S., one can use the time integration to find a
numerical solution. The trajectory starting from the initial

point (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (−0.02, 0, 0.01, −0.01) converges to

the origin shown in Figure 8, implying that the E.S. is stable.
If one chooses (𝜉

1
, 𝜉
2
) = (0.2, −0.2), which is located in

the line 𝐿
5
, Hopf bifurcation may occur. The phase trajecto-

ries starting from (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (−0.02, 0.02, 0.01, −0.01)

are shown in Figure 9. Similar to the case of (𝜉
1
, 𝜉
2
) ∈ 𝐿
5
, the

trajectories of (𝜉
1
, 𝜉
2
) ∈ 𝐿
6
are omitted here.

3.2.2. Double Zero and a Pair of Pure Imaginary Eigenvalues.
Corresponding to Section 3.1.2, take parameters 𝜇

1
= 1, 𝜇

2
=

−1, 𝜎
1
= 1, 𝜎

2
= −1, 𝛼 = 0, 𝛽 = 0, 𝑘

1
= 1, 𝑘

2
= −2, 𝑎

4
= 𝑎
5
=

𝑎
6
= 𝑎
7
= 𝑎
8
= 𝑎
9
= 𝑎
10
= 1, 𝑏
6
= 𝑏
7
= 𝑏
8
= 𝑏
9
= 𝑏
10
= 𝑏
11
= 1.
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Figure 10: A two-dimensional torus starting from (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (0, 0.01, 0, 0.01) when (𝜉

1
, 𝜉
2
) = (−0.1, 0.1).

It yields that 𝑏
2
= 4, 𝑏

1
= 𝑏
3
= 𝑏
4
= 0 and the Jacobian matrix

(4) has the eigenvalues 𝜆
1,2

= 0, 𝜆
3,4

= ±2𝑖.
Choosing 𝜎

1
and 𝜎
2
as perturbation parameters, and then

using the parameter transformation 𝜎
1
= 1+𝜉

1
, 𝜎
2
= −1+𝜉

2
,

then characteristic polynomial (5) of the Jacobian matrix (4)
becomes

̃
𝑓 (𝜆) = 𝜆

4
+
̃
𝑏
2
𝜆
2
+
̃
𝑏
3
𝜆 +

̃
𝑏
4
, (31)

where
̃
𝑏
2
= 𝜉
2

1
+ 𝜉
2

2
+ 2𝜉
1
− 2𝜉
2
+ 4,

̃
𝑏
3
= 2𝜉
2

1
− 2𝜉
2

2
+ 4𝜉
1
+ 4𝜉
2
,

̃
𝑏
4
= 𝜉
2

2
𝜉
2

1
+ 2𝜉
2

1
+ 2𝜉
2

2
− 2𝜉
2

1
𝜉
2
+ 2𝜉
2

2
𝜉
1
.

(32)

Denote 𝐿
7
: 2𝜉
2

1
− 2𝜉
2

2
+ 4𝜉
1
+ 4𝜉
2
= 0. It is easy to see that

̃
𝑏
4
> 0, unless (𝜉

1
, 𝜉
2
) = (0, 0). One may get the following two

facts:

(i) there exist no zero eigenvalues when (𝜉
1
, 𝜉
2
) = (0, 0)

since ̃𝑏
4

̸= 0;
(ii) when (𝜉

1
, 𝜉
2
) ∈ 𝐿

7
, except for 𝜉

1
= 0 or 𝜉

1
= −2,

there exist two pairs of pure imaginary eigenvalues;
when (𝜉

1
, 𝜉
2
) = (0, 0) or (𝜉

1
, 𝜉
2
) = (−2, 2), there exist a

double zero and a pair of pure imaginary eigenvalues.

In fact, supposing that there exist two pairs of pure
imaginary eigenvalues, we havẽ𝑏

3
= 0, which follows 𝜉

1
+𝜉
2
=

0 or 𝜉
1
− 𝜉
2
+ 2 = 0. For (𝜉

1
, 𝜉
2
) ∈ 𝐿
7
, the characteristic (31)

becomes

𝜆
4
+ (2𝜉
2

1
+ 4) 𝜆

2
+ 𝜉
2

1
(𝜉
1
+ 2)
2
= 0. (33)

The solutions of (33) are 𝜆
1,2

= ±𝜉
1
𝑖, 𝜆
3,4

= ±(𝜉
1
+ 2)𝑖. It

is easy to show that if 𝜉
1
= 0 or 𝜉

1
= −2, there exist a double

zero and a pair of pure imaginary eigenvalues. For the other
case, there always exist eigenvalues with positive real parts, so
the initial equilibrium solution is unstable.

By the analytic study, we know that when (𝜉
1
, 𝜉
2
) ∈ 𝐿

7
,

except for 𝜉
1

= 0 or 𝜉
1

= −2, there exist two pairs of
pure imaginary eigenvalues (including resonance and non-
resonance cases). Choosing (𝜉

1
, 𝜉
2
) = (−0.1, 0.1) ∈ 𝐿

7
, one

can use time integration to find a numerical solution shown
in Figure 10. A 2D torus is obtained when the trajectory
starts from the initial point (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (0, 0.01, 0, 0.01),

which implies that there is a 2D torus for two pairs of pure
imaginary eigenvalues.

4. Conclusions

In this work, the stability of a simply supported functionally
graded material rectangular plate subjected to the transversal
and in-plane excitations has been studied in detail to show
rich dynamical behaviors in the vicinity of critical points.
Hao et al. [17] studied the bifurcation and chaos of FGM rect-
angular plate with numerical methods.Wemainly investigate
the local stability and bifurcation of the FGM plate in the
vicinity of the equilibrium point using analytical methods.
When the stable conditions for the initial equilibrium solu-
tion are not satisfied, bifurcations including Hopf bifurcation
and 2D torusmay occur.The stable conditions, stable regions,
and critical bifurcation curves for the steady state solutions
are presented explicitly in terms of the system parameters.
With both analytical and numerical methods, bifurcation
behaviors on damping parameters and detuning parameters
are studied, respectively. Numerical computations have been
performed and shown for each of the bifurcation cases. All
numerical solutions agree with the analytical predictions.
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The nonlinear functions𝑁𝑓
𝑖
(𝑖 = 1, 2, 3, 4) in (3a)–(3d) are
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