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In this paper we consider a problem that consists of finding a zero to the sum of two monotone operators. One method for solving
such a problem is the forward-backward splittingmethod.We present some new conditions that guarantee the weak convergence of
the forward-backward method. Applications of these results, including variational inequalities and gradient projection algorithms,
are also considered.

1. Introduction

It is well known that monotone inclusions problems play
an important role in the theory of nonlinear analysis. This
problem consists of finding a zero of maximal monotone
operators. However, in some examples such as convex pro-
gramming and variational inequality problems, the operator
is needed to be decomposed of the sum of two monotone
operators (see, e.g., [1–6]). In this way, one needs to find
𝑥 ∈ H so that

0 ∈ 𝐴𝑥 + 𝐵𝑥, (1)

where 𝐴 and 𝐵 are two monotone operators on a Hilbert
space H. To solve such problem, the splitting method, such
as Peaceman-Rachford algorithm [7] and Douglas-Rachford
algorithm [8], is usually considered. We consider a special
case whenever 𝐵 : H → 2

H is multivalued and 𝐴 : H →

H is single-valued. A classical way to solve problem (1) under
our assumption is the forward-backward splitting (FBS) (see
[2, 9]). Starting with an arbitrary initial 𝑥

0
∈ H, the FBS

generates a sequence (𝑥
𝑛
) satisfying

𝑥
𝑛+1

= (𝐼 + 𝑟𝐵)
−1
(𝐼 − 𝑟𝐴) 𝑥

𝑛
, (2)

where 𝑟 is some properly chosen real number. Then the FBS
converges weakly to a solution of problem (1) whenever such
point exists.

On the other hand, we observe that problem (1) is
equivalent to the fixed point equation:

(𝐼 + 𝑟𝐵)
−1
(𝐼 − 𝑟𝐴) 𝑥 = 𝑥, (3)

for the single-valued operator (𝐼 + 𝑟𝐵)
−1
(𝐼 − 𝑟𝐴). Moreover,

if 𝑟 is properly chosen, the operator (𝐼 + 𝑟𝐵)−1(𝐼 − 𝑟𝐴) should
be nonexpansive. Motivated by this assumption, by using
the techniques of the fixed point theory for nonexpansive
operators, we try to investigate and study various monotone
inclusion problems.

The rest of this paper is organized as follows. In Section 2,
some useful lemmas are introduced. In Section 3, we con-
sider the modified forward-backward splitting method and
prove its weak convergence under some new conditions.
In Section 4, some applications of our results in finding a
solution of the variational inequality problem are included.

2. Preliminary and Notation

Throughout the paper, 𝐼 denotes the identity operator, Fix(𝑆)
the set of the fixed points of an operator 𝑆, and∇𝑓 the gradient
of the functional 𝑓 : H → R. The notation “→ ” denotes
strong convergence and “⇀” weak convergence. Denote by
𝜔
𝑤
(𝑥
𝑛
) the set of the cluster points of (𝑥

𝑛
) in the weak

topology (i.e., the set {𝑥 : ∃𝑥
𝑛𝑗

⇀ 𝑥}, where (𝑥
𝑛𝑗
) means a

subsequence of (𝑥
𝑛
)).
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Let 𝐶 be a nonempty closed convex subset ofH. Denote
by 𝑃
𝐶
the projection fromH onto 𝐶; namely, for 𝑥 ∈ H, 𝑃

𝐶
𝑥

is the unique point in 𝐶 with the property

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑃
𝐶
𝑥
󵄩
󵄩
󵄩
󵄩
= min
𝑦∈𝐶

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
. (4)

It is well-known that 𝑃
𝐶
𝑥 is characterized by the inequality

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑧 − 𝑃

𝐶
𝑥⟩ ≤ 0, 𝑧 ∈ 𝐶. (5)

A single-valued operator 𝑆 : H → H is called nonexpansive
if

󵄩
󵄩
󵄩
󵄩
𝑆𝑥 − 𝑆𝑦

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

(∀𝑥, 𝑦 ∈ H) ; (6)

firmly nonexpansive if

⟨𝑆𝑥 − 𝑆𝑦, 𝑥 − 𝑦⟩ ≥
󵄩
󵄩
󵄩
󵄩
𝑆𝑥 − 𝑆𝑦

󵄩
󵄩
󵄩
󵄩

2
(∀𝑥, 𝑦 ∈ H) ; (7)

and 𝜅-averaged if there exists a constant 𝜅 ∈ (0, 1) and a
nonexpansive operator 𝑅 such that 𝑆 = (1 − 𝜅)𝐼 + 𝜅𝑅. Firmly
nonexpansive operators are (1/2)-averaged.

Lemma 1 (see [10]). The following assertions hold.

(i) 𝑆 is 𝜅-averaged for 𝜅 ∈ (0, 1) if and only if

󵄩
󵄩
󵄩
󵄩
𝑆𝑥 − 𝑆𝑦

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2
−

1 − 𝜅

𝜅

󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑆) 𝑥 − (𝐼 − 𝑆) 𝑦

󵄩
󵄩
󵄩
󵄩

2 (8)

for all 𝑥, 𝑦 ∈ dom 𝑆.
(ii) Assume that 𝑆

𝑖
is 𝜅
𝑖
-averaged for 𝜅

𝑖
∈ (0, 1), 𝑖 = 1, 2.

Then 𝑆
1
𝑆
2
is 𝜅-averaged with 𝜅 = 𝜅

1
+ 𝜅
2
− 𝜅
1
𝜅
2
.

The following lemma is known as the demiclosedness
principle for nonexpansive mappings.

Lemma 2. Let𝐶 be a nonempty closed convex subset ofH and
𝑆 a nonexpansive operator with Fix(𝑆) ̸= 0. If (𝑥

𝑛
) is a sequence

in 𝐶 such that 𝑥
𝑛
⇀ 𝑥 and (𝐼 − 𝑆)𝑥

𝑛
→ 𝑦, then (𝐼 − 𝑆)𝑥 = 𝑦.

In particular, if 𝑦 = 0, then 𝑥 ∈ Fix(𝑆).

Amultivalued operator 𝐵 : H → 2
H is called monotone

if

⟨𝑢 − V, 𝑥 − 𝑦⟩ ≥ 0, (∀𝑢 ∈ 𝐵𝑥, V ∈ 𝐵𝑦) ; (9)

𝜅-inverse strongly monotone (𝜅-ism), if there exists a con-
stant 𝜅 > 0 so that

⟨𝑢 − V, 𝑥 − 𝑦⟩ ≥ 𝜅‖𝑢 − V‖2, (∀𝑢 ∈ 𝐵𝑥, V ∈ 𝐵𝑦) ; (10)

and maximal monotone if it is monotone and its graph
𝐺(𝐵) = {(𝑥, 𝑦) : 𝑦 ∈ 𝐵𝑥} is not properly contained in the
graph of any other monotone operator.

In what follows, we shall assume that

(i) 𝐴 : H → H is single-valued and 𝜅-ism;

(ii) 𝐵 : H → 2
H is multivalued andmaximalmonotone.

Hereafter, if no confusion occurs, we denote by

𝐽
𝑟
:= (𝐼 + 𝑟𝐵)

−1 (11)

the resolvent of 𝐵 for any given 𝑟 > 0. It is known that 𝐽
𝑟

is single-valued and firmly nonexpansive; moreover dom(𝐼 +

𝑟𝐵) = H (see [11]).

Lemma 3 (see [12]). For 𝑟 > 0, let 𝑇
𝑟
= 𝐽
𝑟
(𝐼 − 𝑟𝐴). Then

(i) Fix(𝑇
𝑟
) = (𝐴 + 𝐵)

−1
(0);

(ii) 𝑇
𝑟
is (2𝜅 + 𝑟)/4𝜅-averaged;

(iii) For 0 < 𝑟 ≤ 𝑠 ≤ 2𝜅, 𝑥 ∈ H, it follows that
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑇
𝑟
𝑥
󵄩
󵄩
󵄩
󵄩
≤ 2

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑇
𝑠
𝑥
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝑇
𝑠
𝑥 − 𝑇
𝑟
𝑥
󵄩
󵄩
󵄩
󵄩
≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝑟

𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑇
𝑠
𝑥
󵄩
󵄩
󵄩
󵄩
.

(12)

Definition 4. Assume that (𝑥
𝑛
) is a sequence in H and that

(𝜖
𝑛
) is a real sequence with ∑

𝑛
𝜖
𝑛
< ∞. Then (𝑥

𝑛
) is called

quasi Fejér monotone w.r.t. 𝐶, if
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑧
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩
+ 𝜖
𝑛 (∀𝑧 ∈ 𝐶) . (13)

Lemma 5 (see [13]). Let𝐶 be a nonempty closed convex subset
ofH. If the sequence (𝑥

𝑛
) is quasi-Fejér-monotonew.r.t.𝐶, then

the following hold:

(i) 𝑥
𝑛
⇀ 𝑥
∗
∈ 𝐶 if and only if 𝜔

𝑤
(𝑥
𝑛
) ⊆ 𝐶;

(ii) the sequence (𝑃
𝐶
𝑥
𝑛
) converges strongly;

(iii) if 𝑥
𝑛
⇀ 𝑥
∗
∈ 𝐶, then 𝑥∗ = lim

𝑛→∞
𝑃
𝐶
𝑥
𝑛
.

3. Weak Convergence Theorem

In [10] Combettes considered a modified FBS: for any initial
guess 𝑥

0
∈ H, set

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝐽
𝑟𝑛
(𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
) + 𝑒
𝑛
, (14)

where (𝛼
𝑛
) ⊆ [0, 1], (𝑟

𝑛
) ⊆ [0, 2𝜅] and (𝑒

𝑛
) ⊆ H

is computation error. He proved the weak convergence of
algorithm (14) provided that

(1) lim
𝑛
𝛼
𝑛
> 0,

(2) 0 < lim
𝑛
𝑟
𝑛
≤ lim
𝑛
𝑟
𝑛
< 2𝜅,

(3) ∑
𝑛
‖𝑒
𝑛
‖ < ∞.

We observe that (14) is in fact a Mann-type iteration. In the
following we shall prove the convergence of (14) under some
sightly weak conditions.

Theorem 6. Suppose the following conditions are satisfied:

(C1) lim
𝑛
𝛼
𝑛
> 0;

(C2) 0 ≤ 𝑟
𝑛
≤ 2𝜅;

(C3) 0 ≤ 𝛼
𝑛
≤ 4𝜅/(2𝜅 + 𝑟

𝑛
);

(C4) lim
𝑛
(4𝜅/(2𝜅 + 𝑟

𝑛
) − 𝛼
𝑛
) > 0;

(C5) ∑
𝑛
‖𝑒
𝑛
‖ < ∞.
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If in addition Ω := (𝐴 + 𝐵)
−1
(0) ̸= 0, then the sequence (𝑥

𝑛
)

generated by (14) converges weakly to 𝑥∗ := 𝑃
Ω
𝑥
𝑛
.

Proof. We first show that (𝑥
𝑛
) is quasi-Fejér-monotone. Let

𝑇
𝑛
= 𝐽
𝑟𝑛
(𝐼 − 𝑟

𝑛
𝐴). Then It follows from Lemma 3 that 𝑇

𝑛
is

𝛽
𝑛
-averaged with 𝛽

𝑛
= (2𝜅 + 𝑟

𝑛
)/4𝜅 andΩ = Fix(𝑇

𝑛
). Letting

𝑧 ∈ Ω, we have that
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑧
󵄩
󵄩
󵄩
󵄩
=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
) (𝑥
𝑛
− 𝑧) + 𝛼

𝑛
(𝑇
𝑛
𝑥
𝑛
− 𝑧) + 𝑒

𝑛

󵄩
󵄩
󵄩
󵄩

≤ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩
+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩
.

(15)

By condition (C5), we conclude that (𝑥
𝑛
) is quasi-Fejér-

monotone w.r.t Ω.
Next let us show 𝜔

𝑤
(𝑥
𝑛
) ⊆ Ω. To see this, choose𝑀 > 0

so that

2 sup
𝑛≥0

(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑀. (16)

Let 𝑅
𝑛
= (1 − 𝛼

𝑛
)𝐼 + 𝛼

𝑛
𝑇
𝑛
. Obviously 𝑅

𝑛
is 𝛼
𝑛
𝛽
𝑛
-averaged.

According to Lemma 1, we deduce that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑧
󵄩
󵄩
󵄩
󵄩

2
=
󵄩
󵄩
󵄩
󵄩
((1 − 𝛼

𝑛
) 𝐼 + 𝛼

𝑛
𝑇
𝑛
) 𝑥
𝑛
− 𝑧 + 𝑒

𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑅
𝑛
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 2 ⟨𝑥

𝑛+1
− 𝑧, 𝑒
𝑛
⟩

≤
󵄩
󵄩
󵄩
󵄩
𝑅
𝑛
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+𝑀

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
−

1 − 𝛼
𝑛
𝛽
𝑛

𝛼
𝑛
𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑅
𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
+𝑀

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
− 𝛼
𝑛
(

1

𝛽
𝑛

− 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+𝑀
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩
,

(17)

which in turn implies that
𝑛

∑

𝑖=0

𝛼
𝑖
(

1

𝛽
𝑖

− 𝛼
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖
𝑥
𝑖
− 𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+𝑀

∞

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
𝑒
𝑖

󵄩
󵄩
󵄩
󵄩

(18)

for all 𝑛 ∈ N. Letting 𝑛 → ∞ yields
∞

∑

𝑛=0

𝛼
𝑛
(

1

𝛽
𝑛

− 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
< ∞. (19)

By conditions (C1) and (C4), we check that

lim inf
𝑛→∞

𝛼
𝑛
(

1

𝛽
𝑛

− 𝛼
𝑛
) > 0, (20)

which yields that ‖𝑇
𝑛
𝑥
𝑛
− 𝑥
𝑛
‖ → 0. By condition (C2), we

find 𝑛
0
∈ N and 𝑟 ∈ (0, 2𝜅] so that 𝑟

𝑛
≥ 𝑟 for all 𝑛 ≥ 𝑛

0
. Let

𝑇
𝑟
= 𝐽
𝑟
(𝐼 − 𝑟𝐵). It then follows from Lemma 3 that

󵄩
󵄩
󵄩
󵄩
𝑇
𝑟
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
≤ 2

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

(21)

for all 𝑛 ≥ 𝑛
0
. Letting 𝑛 → ∞, we have ‖𝑇

𝑟
𝑥
𝑛
− 𝑥
𝑛
‖ → 0

as 𝑛 → ∞. Take 𝑥󸀠 ∈ 𝜔
𝑤
(𝑥
𝑛
) and a subsequence (𝑥

𝑛𝑘
) of

(𝑥
𝑛
) such that 𝑥

𝑛𝑘
⇀ 𝑥
󸀠. Since 𝑇

𝑟
is nonexpansive, applying

Lemmas 2 and 3 yields 𝑥󸀠 ∈ Fix(𝑇
𝑟
) = Ω and thus 𝜔

𝑤
(𝑥
𝑛
) ⊆

Ω. By Lemma 5 the proof is complete.

We can also present another condition for the weak
convergence of (14).

Theorem 7. Suppose that the following conditions are satis-
fied:

(C1) ∑
𝑛
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞;

(C2) 0 < lim
𝑛
𝑟
𝑛
≤ 2𝜅;

(C3) 0 ≤ 𝛼
𝑛
≤ 4𝜅/(2𝜅 + 𝑟

𝑛
);

(C4) ∑
𝑛
𝛼
𝑛
(4𝜅/(2𝜅 + 𝑟

𝑛
) − 𝛼
𝑛
) = ∞;

(C5) ∑
𝑛
‖𝑒
𝑛
‖ < ∞.

If in addition Ω := (𝐴 + 𝐵)
−1
(0) ̸= 0, then the sequence (𝑥

𝑛
)

generated by (14) converges weakly to 𝑥∗ := 𝑃
Ω
𝑥
𝑛
.

Proof. Compared with the proof of Theorem 6, it suffices to
show that ‖𝑇

𝑛
𝑥
𝑛
− 𝑥
𝑛
‖ → 0 as 𝑛 → ∞. Observe that the

estimate
∞

∑

𝑛=0

𝛼
𝑛
(

4𝜅

2𝜅 + 𝑟
𝑛

− 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
< ∞ (22)

still holds. Let 𝑎
𝑛
:= ‖𝑥

𝑛
− 𝑇
𝑛
𝑥
𝑛
‖. Then by condition (C4)

lim
𝑛
𝑎
𝑛
= 0. According to Lemma 3, we have

𝑎
𝑛+1

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
) (𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
) + (𝑇

𝑛
𝑥
𝑛
− 𝑇
𝑛+1

𝑥
𝑛+1

) + 𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

≤ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
𝑥
𝑛
− 𝑇
𝑛+1

𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

≤ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛+1

𝑥
𝑛
− 𝑇
𝑛+1

𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
𝑥
𝑛
− 𝑇
𝑛+1

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

≤ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
𝑥
𝑛
− 𝑇
𝑛+1

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

= (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝛼
𝑛
(𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
) − 𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝑟
𝑛+1

𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

≤ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝑟
𝑛+1

𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ 2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

≤ 𝑎
𝑛
+𝑀(

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛
− 𝑟
𝑛+1

󵄨
󵄨
󵄨
󵄨
+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩
) ,

(23)

where 𝑀 > 0 is properly chosen real number. Then, for any
given 𝑝 ∈ N, we arrive at

𝑎
𝑛+𝑝

≤ 𝑎
𝑛
+𝑀

∞

∑

𝑖=𝑛

(
󵄨
󵄨
󵄨
󵄨
𝑟
𝑖
− 𝑟
𝑖+1

󵄨
󵄨
󵄨
󵄨
+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖

󵄩
󵄩
󵄩
󵄩
) . (24)
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Conditions (C1) and (C5) imply that lim
𝑛→∞

𝑎
𝑛
exists and

therefore ‖𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
‖ → 0 as 𝑛 → ∞. Hence the proof

is complete.

ApplyingTheorem 7, one can easily get the following.

Corollary 8. Suppose that the following conditions are satis-
fied:

(1) 0 < 𝑟 < 2𝜅,
(2) 0 ≤ 𝛼

𝑛
≤ 4𝜅/(2𝜅 + 𝑟);

(3) ∑
𝑛
𝛼
𝑛
(4𝜅/(2𝜅 + 𝑟) − 𝛼

𝑛
) = ∞,

(4) Ω := (𝐴 + 𝐵)
−1
(0) ̸= 0.

Then the sequence (𝑥
𝑛
) generated by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝐽
𝑟
(𝑥
𝑛
− 𝑟𝐴𝑥

𝑛
) (25)

converges weakly to some point in Ω.

Remark 9. Corollary 8 implies that our condition is slightly
weaker than that of Combettes’ whenever the sequence (𝑟

𝑛
)

approaches to some constant.

4. Application

Let𝐶 be a nonempty closed convex subset ofH. A variational
inequality problem (VIP) is formulated as a problem of
finding a point 𝑥∗ ∈ 𝐶 with the property

⟨𝐴𝑥
∗
, 𝑧 − 𝑥

∗
⟩ ≥ 0, ∀𝑧 ∈ 𝐶, (26)

where 𝐴 : H → H is a nonlinear operator. We shall denote
byΩ the solution set of VIP (26). Onemethod for solvingVIP
is the projection algorithm which generates, starting with an
arbitrary initial 𝑥

0
∈ H, a sequence (𝑥

𝑛
) satisfying

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝑟𝐴𝑥

𝑛
) , (27)

where 𝑟 is properly chosen real number. If, in addition,𝐴 is 𝜅-
ism, then the iteration (27) with 0 < 𝑟 < 2𝜅 converges weakly
to a point in Ω, whenever such point exists.

Let𝐵 be the normal cone for𝐶, that is,𝐵 := {𝑤 ∈ H : ⟨𝑥−

𝑧, 𝑤⟩ ≥ 0, ∀𝑧 ∈ 𝐶}. By [14,Theorem 3], VIP (26) is equivalent
to finding a zero of the maximal monotone operator 𝐴 + 𝐵.
Recalling𝑃

𝐶
= 𝐽
𝑟
for any 𝑟 > 0, we thus can apply the previous

results to get the following.

Corollary 10. Suppose the following conditions are satisfied:

(C1) lim
𝑛
𝛼
𝑛
> 0;

(C2) 0 ≤ 𝑟
𝑛
≤ 2𝜅;

(C3) 0 ≤ 𝛼
𝑛
≤ 4𝜅/(2𝜅 + 𝑟

𝑛
);

(C4) lim
𝑛
(4𝜅/(2𝜅 + 𝑟

𝑛
) − 𝛼
𝑛
) > 0.

Then the sequence (𝑥
𝑛
) generated by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑃
𝐶
(𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
) (28)

converges weakly to 𝑥∗ := 𝑃
Ω
𝑥
𝑛
, whenever such point exists.

Corollary 11. Suppose that the following conditions are satis-
fied:

(C1) ∑
𝑛
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞;

(C2) 0 < lim
𝑛
𝑟
𝑛
≤ 2𝜅;

(C3) 0 ≤ 𝛼
𝑛
≤ 4𝜅/(2𝜅 + 𝑟

𝑛
);

(C4) ∑
𝑛
𝛼
𝑛
(4𝜅/(2𝜅 + 𝑟

𝑛
) − 𝛼
𝑛
) = ∞.

Then the sequence (𝑥
𝑛
) generated by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑃
𝐶
(𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
) (29)

converges weakly to 𝑥∗ := 𝑃
Ω
𝑥
𝑛
, whenever such point exists.

Consider the optimization problem of finding a point 𝑥∗
with the property

𝑥
∗
∈ argmin

𝑥∈𝐶

𝑓 (𝑥) , (30)

where 𝑓 : H → R is a convex and differentiable
function.The gradient projection algorithm (GPA) generates
a sequence (𝑥

𝑛
) by the iterative procedure

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝑟∇𝑓 (𝑥

𝑛
)) , (31)

where 𝑥
0
∈ H and 𝑟 is a positive parameter. If, in addition,

∇𝑓 is (1/𝜅)-Lipschitz continuous, that is, for any 𝑥, 𝑦 ∈ H,

󵄩
󵄩
󵄩
󵄩
∇𝑓 (𝑥) − ∇𝑓 (𝑦)

󵄩
󵄩
󵄩
󵄩
≤

1

𝜅

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
, (32)

then the GPA with 0 < 𝑟 < 2𝜅 converges weakly to a
minimizer of 𝑓 onto𝐶, if such minimizers exist (see, e.g., [15,
Corollary 4.1]). Denote byΩ the solution set of the variational
inequality

⟨∇𝑓 (𝑥) , 𝑧 − 𝑥⟩ ≥ 0, 𝑧 ∈ 𝐶. (33)

According to [16, Lemma 5.13], we haveΩ = argmin
𝑥∈𝐶

𝑓(𝑥).
Further, if ∇𝑓 is (1/𝜅)-Lipschitz continuous, then it is also 𝜅-
ism (see [17, Corollary 10]). Thus, we can apply the previous
results by letting 𝐴 = ∇𝑓.

Corollary 12. Assume that 𝑓 : H → R is convex and
differentiable with (1/𝜅)-Lipschitz-continuous gradient∇𝑓 and
that

(C1) lim
𝑛
𝛼
𝑛
> 0;

(C2) 0 ≤ 𝑟
𝑛
≤ 2𝜅;

(C3) 0 ≤ 𝛼
𝑛
≤ 4𝜅/(2𝜅 + 𝑟

𝑛
);

(C4) lim
𝑛
(4𝜅/(2𝜅 + 𝑟

𝑛
) − 𝛼
𝑛
) > 0.

Then the sequence (𝑥
𝑛
) generated by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑃
𝐶
(𝑥
𝑛
− 𝑟
𝑛
∇𝑓 (𝑥
𝑛
)) (34)

converges weakly to 𝑥∗ := 𝑃
Ω
𝑥
𝑛
, whenever such point exists.

Corollary 13. Assume that 𝑓 : H → R is convex and
differentiable with (1/𝜅)-Lipschitz-continuous gradient∇𝑓 and
that
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(C1) ∑
𝑛
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞;

(C2) 0 < lim
𝑛
𝑟
𝑛
≤ 2𝜅;

(C3) 0 ≤ 𝛼
𝑛
≤ 4𝜅/(2𝜅 + 𝑟

𝑛
);

(C4) ∑
𝑛
𝛼
𝑛
(4𝜅/(2𝜅 + 𝑟

𝑛
) − 𝛼
𝑛
) = ∞.

Then the sequence (𝑥
𝑛
) generated by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑃
𝐶
(𝑥
𝑛
− 𝑟
𝑛
∇𝑓 (𝑥
𝑛
)) (35)

converges weakly to 𝑥∗ := 𝑃
Ω
𝑥
𝑛
, whenever such point exists.
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