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With the notion of independent identically distributed (i.i.d.) random variables under sublinear expectations initiated by Peng,
a strong law of large numbers for weighted sums of i.i.d. random variables under capacities induced by sublinear expectations is
obtained.

1. Introduction

The strong law of large numbers plays important role in
the development of probability theory and mathematical
statistics; many studies about the extension of it have been
completed by many authors. For example, Chow and Lai
[1], Stout [2], Choi and Sung [3], Cuzick [4], Rosalsky and
Sreehari [5], Wu [6], Bai and Cheng [7], Bai et al. [8], and
so forth investigated the almost sure limiting behavior of
weighted sums of i.i.d. random variables. In fact, the additiv-
ity of probability and expectations is not reasonable in many
areas of applications because many uncertain phenomena
cannot be well modeled using additive probabilities or linear
expectations (see, e.g., Chen and Epstein [9], Huber and
Strassen [10], and Wakker [11]). In the case of nonadditive
probabilities, Marinacci [12] proved several limit laws for
nonadditive probabilities andMaccheroni andMarinacci [13]
obtained a strong law of large numbers for totally monotone
capacities.

Recently, motivated by the risk measures, superhedge
pricing, and modelling uncertainty in finance, Peng [14]
introduced the notion of sublinear expectation space, which
is a generalization of probability space. Together with the
notion of sublinear expectation, Peng also introduced the
notions about i.i.d., 𝐺-normal distribution, and 𝐺-Brownian
motion. Under this framework, the weak law of large num-
bers and the central limit theorems under sublinear expecta-
tions were obtained in the studies by Peng in [15, 16]. Soon
thereafter, Denis et al. [17] introduced the function spaces

and capacity related to a sublinear expectation. Chen et al.
[18] proved a strong law of large numbers for nonadditive
probabilities.

A natural question is the following: can we investigate
strong laws of large numbers for weighted sums of random
variables under capacities? Indeed, the goal of this paper is
to discuss the strong laws of large numbers for weighted
sums of i.i.d. random variables under capacities. Under some
assumptions, we obtain a strong law of large numbers for
weighted sums of i.i.d. random variables under capacities.

The paper is organized as follows: in Section 2, we give
some definitions and lemmas that are useful in this paper. In
Section 3, we give our main results including the proofs.

2. Preliminaries

In this section, we present some preliminaries in the theory
of sublinear expectations and capacities. More details of this
section can be found in the studies by Chen et al. [18] and
Peng [19].

Let (Ω,F) be a measurable space, and letH be the set of
random variables on (Ω,F).

Definition 1. A sublinear expectation Ê is a functional Ê :

H → 𝑅 satisfying the following:

(i) monotonicity: Ê[𝑋] ≥ Ê[𝑌] if 𝑋 ≥ 𝑌;

(ii) constant preserving: Ê[𝐶] = 𝐶 for 𝐶 ∈ 𝑅;
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(iii) subadditivity: Ê[𝑋 + 𝑌] ≤ Ê[𝑋] + Ê[𝑌];

(iv) positive homogeneity: Ê[𝜆𝑋] = 𝜆Ê[𝑋] for 𝜆 ≥ 0.

Artzner et al. [20] showed that a sublinear expectation can
be expressed as a supremum of linear expectations. That is, if
Ê is a sublinear expectation onH, then there exists a set (say
P) of probability measures such that

Ê [𝑋] = sup
𝑃∈P

𝐸
𝑃 [𝑋] , −Ê [−𝑋] = inf

𝑃∈P
𝐸
𝑃 [𝑋] , ∀𝑋 ∈ H.

(1)

For this P, following Huber and Strassen [10], we define a
pair (𝐶, 𝐶) of capacities denoted by

𝐶 (𝐴) := sup
𝑃∈P

𝑃(𝐴) , 𝐶 (𝐴) := inf
𝑃∈P

𝑃(𝐴) , ∀𝐴 ∈ F. (2)

Obviously,

𝐶 (𝐴) + 𝐶 (𝐴
𝑐
) = 1, (3)

where 𝐴
𝑐 is the complement set of 𝐴.

It is easy to check that 𝐶 and 𝐶 are two continuous
capacities in the sense of the following definition.

Definition 2. A set function𝐶:F → [0, 1] is called a contin-
uous capacity if it satisfies

(1) 𝐶(𝜙) = 0, 𝐶(Ω) = 1;

(2) 𝐶(𝐴) ≤ 𝐶(𝐵), whenever 𝐴 ⊂ 𝐵 and 𝐴, 𝐵 ∈ F;

(3) 𝐶(𝐴
𝑛
) ↑ 𝐶(𝐴), if 𝐴

𝑛
↑ 𝐴;

(4) 𝐶(𝐴
𝑛
) ↓ 𝐶(𝐴), if 𝐴

𝑛
↓ 𝐴, where 𝐴

𝑛
, 𝐴 ∈ F.

Definition 3 (see Peng [19]).
Identical Distribution. Let 𝑋

1
and 𝑋

2
be two 𝑛-dimensional

random vectors inH. They are called identically distributed,
denoted by 𝑋

1

𝑑

= 𝑋
2
, if, for each measurable function 𝜑 on

𝑅
𝑛 such that 𝜑(𝑋

1
), 𝜑(𝑋

2
) ∈ H, one has

Ê [𝜑 (𝑋
1
)] = Ê [𝜑 (𝑋

2
)] . (4)

Independence. A random vector 𝑌 := (𝑌
1
, . . . , 𝑌

𝑛
), 𝑌
𝑖

∈ H,
is said to be independent of another random vector 𝑋 :=

(𝑋
1
, . . . , 𝑋

𝑚
), 𝑋
𝑖

∈ H, under Ê if, for each measurable
function 𝜑 on 𝑅

𝑚
× 𝑅
𝑛 with 𝜑(𝑋, 𝑌) ∈ H and 𝜑(𝑥, 𝑌) ∈ H

for each 𝑥 ∈ 𝑅
𝑚, one has

Ê [𝜑 (𝑋, 𝑌)] = Ê [Ê[𝜑 (𝑥, 𝑌)]
𝑥=𝑋

] . (5)

Remark 4. A sequence of random variables {𝑋
𝑖
, 𝑖 ≥ 1} is

said to be i.i.d., if 𝑋
𝑖

𝑑

= 𝑋
1
and 𝑋

𝑖+1
is independent of 𝑌 :=

(𝑋
1
, . . . , 𝑋

𝑖
) for each 𝑖 ≥ 1.

The following lemma shows the relation between Peng’s
independence and pairwise independence in the study by
Marinacci in [12].

Lemma 5 (see Chen et al. [18]). Suppose that 𝑋, 𝑌 ∈ H are
two random variables. Ê is a sublinear expectation and (𝐶, 𝐶)

is the pair of capacities induced by Ê. If random variable 𝑋 is
independent of 𝑌 under Ê, then 𝑋 is also pairwise independent
of 𝑌 under capacities 𝐶 and 𝐶; that is, for all subsets 𝐷 and
𝐺 ⊂ 𝑅,

𝐶 (𝑋 ∈ 𝐷, 𝑌 ∈ 𝐺) = 𝐶 (𝑋 ∈ 𝐷) 𝐶 (𝑌 ∈ 𝐺) (6)

holds for both capacities 𝐶 and 𝐶.
Borel-Cantelli lemma is still true for capacities 𝐶 and 𝐶

under some assumptions.

Lemma 6 (see Chen et al. [18]). Let {𝐴
𝑛
, 𝑛 ≥ 1} be a sequence

of events inF.

(1) If ∑
∞

𝑛=1
𝐶(𝐴
𝑛
) < ∞, then 𝐶(⋂

∞

𝑛=1
⋃
∞

𝑖=𝑛
𝐴
𝑖
) = 0.

(2) Suppose that {𝐴
𝑛
, 𝑛 ≥ 1} are pairwise independent

with respect to 𝐶; that is,

𝐶 (

∞

⋂

𝑖=1

𝐴
𝑐

𝑖
) =

∞

∏

𝑖=1

𝐶 (𝐴
𝑐

𝑖
) . (7)

If ∑
∞

𝑛=1
𝐶(𝐴
𝑛
) = ∞, then 𝐶(⋂

∞

𝑛=1
⋃
∞

𝑖=𝑛
𝐴
𝑖
) = 1.

3. Main Results

In this section, we give our main results including the proofs.

Theorem 7. Let {𝑋
𝑖
, 𝑖 ≥ 1} be a sequence of i.i.d. random

variables in H satisfying 𝜇 = Ê[𝑋
1
], 𝜇 = −Ê[−𝑋

1
] and for

any ℎ, 𝑟 > 0

Ê [𝑒
(ℎ|𝑋𝑖|

𝑟
)
] < ∞. (8)

Let {𝑎
𝑛𝑖

, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an array of constants satisfying

𝐴
𝛼

= lim sup
𝑛→∞

𝐴
𝛼,𝑛

< ∞, 𝐴
𝛼

𝛼,𝑛
=

∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨

𝛼

𝑛
,

(1 < 𝛼 ≤ 2) .

(9)

Then, for 0 < 𝑟 ≤ 1, if

𝜇 (1 − lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑏
𝑛

) ≥ 0, (10)

we have

𝐶 (𝜇 ≤ lim inf
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ 𝜇) = 1,

(11)

where 𝑏
𝑛

= 𝑛
1/𝛼log1/𝑟𝑛.
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Moreover, for 𝑟 > 1, if 𝜇(1−lim sup
𝑛→∞

(∑
𝑛

𝑖=1
𝑎
𝑛𝑖

/𝑏
𝑛
)) ≥ 0,

we have

𝐶 (𝜇 ≤ lim inf
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ 𝜇) = 1,

(12)

where 𝑏
𝑛

= 𝑛
1/𝛼

(log 𝑛)
(1+(𝛼−1)(𝑟−1))/(1+𝛼(𝑟−1)).

In order to proveTheorem 7, we need the following lemma.

Lemma 8. Let {𝑋
𝑖
, 𝑖 ≥ 1} be a sequence of i.i.d. random

variables satisfying (8), and let {𝑎
𝑛𝑖

, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an
array of constants. Truncate |𝑋

𝑖
− 𝜇| at Δ

𝑛
and denote 𝑋

𝑛𝑖
:=

(𝑋
𝑖
−𝜇)𝐼
{|𝑋𝑖−𝜇|≤Δ 𝑛}

. Suppose that the following conditions hold:

(1) |𝑎
𝑛𝑖

𝑋
𝑛𝑖

| ≤ 𝐶|𝑋
𝑖
|
𝛽
/ log 𝑛 𝑎.𝑠. 𝐶, for some 0 < 𝛽 ≤ 𝑟

and some constant 𝐶 > 0;
(2) 𝑋
2

𝑛𝑖
∑
𝑛

𝑖=1
𝑎
2

𝑛𝑖
≤ 𝑢
𝑛
|𝑋
𝑖
|
𝛿
/ log 𝑛 𝑎.𝑠. 𝐶, for some 𝛿 > 0

and some sequence {𝑢
𝑛
} of constants such that 𝑢

𝑛
→ 0.

Then,

𝐶 (lim sup
𝑛→∞

𝑛

∑

𝑖=1

𝑎
𝑛𝑖

𝑋
𝑛𝑖

> 𝜀) = 0 ∀𝜀 > 0. (13)

Proof. From the inequality 𝑒
𝑥

≤ 1 + 𝑥 + (1/2)𝑥
2
𝑒
|𝑥| for all

𝑥 ∈ 𝑅, we have

Ê [𝑒
𝑡𝑎𝑛𝑖𝑋𝑛𝑖] ≤ 1 +

1

2
𝑡
2
𝑎
2

𝑛𝑖
Ê [𝑋
2

𝑛𝑖
𝑒
𝑡|𝑎𝑛𝑖𝑋𝑛𝑖|] (14)

for any 𝑡 > 0. Let 𝜀 > 0 be given. We set 𝑡 = 2 log 𝑛/𝜀 and
obtain by (1) and (2) in Lemma 8 and (8) that

Ê [𝑒
𝑡𝑎𝑛𝑖𝑋𝑛𝑖] ≤ 1 +

2log2𝑛
𝜀2

𝑎
2

𝑛𝑖
Ê [𝑋
2

𝑛𝑖
𝑒
𝑡|𝑎𝑛𝑖𝑋𝑛𝑖|]

≤ 1 +
2𝑢
𝑛
log 𝑛

𝜀2

𝑎
2

𝑛𝑖

∑
𝑛

𝑖=1
𝑎
2

𝑛𝑖

Ê [
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨

𝛿
𝑒
(2/𝜀)𝐶|𝑋𝑖|

𝛽

]

≤ 1 +
2𝐶
1
𝑢
𝑛
log 𝑛

𝜀2

𝑎
2

𝑛𝑖

∑
𝑛

𝑖=1
𝑎
2

𝑛𝑖

Ê [𝑒
𝐶(𝜀)|𝑋𝑖|

𝛽

]

≤ 1 +
log 𝑛

2

𝑎
2

𝑛𝑖

∑
𝑛

𝑖=1
𝑎
2

𝑛𝑖

≤ exp{
log 𝑛

2

𝑎
2

𝑛𝑖

∑
𝑛

𝑖=1
𝑎
2

𝑛𝑖

}

(15)

for all large 𝑛. For the large 𝑛, it follows by the Markov
inequality and (15) that

𝐶 (

𝑛

∑

𝑖=1

𝑎
𝑛𝑖

𝑋
𝑛𝑖

> 𝜀) ≤ 𝑒
−𝑡𝜀

Ê [𝑒
𝑡 ∑
𝑛

𝑖=1
𝑎𝑛𝑖𝑋𝑛𝑖]

≤
1

𝑛2

𝑛

∏

𝑖=1

exp{
log 𝑛

2

𝑎
2

𝑛𝑖

∑
𝑛

𝑖=1
𝑎
2

𝑛𝑖

}

= 𝑛
−3/2

.

(16)

Using Lemma 6, we have

𝐶 (lim sup
𝑛→∞

𝑛

∑

𝑖=1

𝑎
𝑛𝑖

𝑋
𝑛𝑖

> 𝜀) = 0 ∀𝜀 > 0. (17)

The proof is complete.

Proof of Theorem 7. The proof of (11) is similar to that of
(12); we only prove (12). We denote 𝑋

󸀠

𝑛𝑖
:= (𝑋

𝑖
−

𝜇)𝐼
{|𝑋𝑖−𝜇|≤(log 𝑛)𝛿1}

, 𝑋
󸀠󸀠

𝑛𝑖
:= (𝑋

𝑖
− 𝜇)𝐼
{|𝑋𝑖−𝜇|≤(log 𝑛)1/𝑟}

, and 𝑋
󸀠󸀠󸀠

𝑛𝑖
:=

(𝑋
𝑖

− 𝜇)𝐼
{(log 𝑛)𝛿1≤|𝑋𝑖−𝜇|≤(log 𝑛)1/𝑟}

for 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 ≥ 1,
where 𝛿

1
= 1/(1 + 𝛼(𝑟 − 1)). Denote 𝑎

󸀠

𝑛𝑖
:= 𝑎
𝑛𝑖

𝐼
{|𝑎𝑛𝑖|≤𝑛

1/𝛼
(log 𝑛)𝛿2 }

and 𝑎
󸀠󸀠

𝑛𝑖
:= 𝑎
𝑛𝑖

− 𝑎
󸀠

𝑛𝑖
for 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 ≥ 1, where

𝛿
2

= (𝑟 − 1)/(1 + 𝛼(𝑟 − 1)). Then,

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

(𝑋
𝑖
− 𝜇)

𝑏
𝑛

=
∑
𝑛

𝑖=1
𝑎
󸀠

𝑛𝑖
𝑋
󸀠

𝑛𝑖

𝑏
𝑛

+
∑
𝑛

𝑖=1
𝑎
󸀠󸀠

𝑛𝑖
𝑋
󸀠

𝑛𝑖

𝑏
𝑛

+
∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
󸀠󸀠󸀠

𝑛𝑖

𝑏
𝑛

+
∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
󸀠󸀠

𝑛𝑖

𝑏
𝑛

:= 𝐴
𝑛

+ 𝐵
𝑛

+ 𝐶
𝑛

+ 𝐷
𝑛
.

(18)

For 𝐴
𝑛
, we will apply Lemma 8 to the random variable

𝑋
󸀠

𝑛𝑖
and weight 𝑏

−1

𝑛
𝑎
󸀠

𝑛𝑖
. Note that

󵄨󵄨󵄨󵄨󵄨
𝑏
−1

𝑛
𝑎
󸀠

𝑛𝑖
𝑋
󸀠

𝑛𝑖

󵄨󵄨󵄨󵄨󵄨
≤

𝑛
1/𝛼

𝑏
𝑛
(log 𝑛)

𝛿2

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨

log 𝑛
a.s. 𝐶,

𝑋
󸀠2

𝑛𝑖

𝑛

∑

𝑖=1

𝑏
−2

𝑛
𝑎
󸀠2

𝑛𝑖
≤

𝑛
(2−𝛼)/𝛼

∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨

𝛼

𝑏2
𝑛
(log 𝑛)

(2−𝛼)𝛿2

𝑋
󸀠2

𝑛𝑖

≤
𝐴
𝛼

𝛼,𝑛

(log 𝑛)
(2+𝛼(𝑟−1))/(1+𝛼(𝑟−1))

𝑋
2

𝑖
a.s. 𝐶.

(19)

Hence, by Lemma 8, we have

𝐶 (lim sup
𝑛→∞

𝐴
𝑛

>
𝜀

2
) = 0 ∀𝜀 > 0. (20)

For 𝐵
𝑛
, we observe that

𝐵
𝑛

≤
(log)
𝛿1

𝑏
𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑎
󸀠󸀠

𝑛𝑖

󵄨󵄨󵄨󵄨󵄨
≤

(log 𝑛)
(1+(𝛼−1)(𝑟−1))/(1+𝛼(𝑟−1))

𝑏
𝑛
𝑛(𝛼−1)/𝛼

×

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨

𝛼
= 𝐴
𝛼

𝛼,𝑛
a.s. 𝐶.

(21)

Namely,

𝐶 (lim sup
𝑛→∞

𝐵
𝑛

≤ 𝐴
𝛼

𝛼,𝑛
) = 1. (22)

By replacing 𝑋
𝑖
by 𝜃𝑋

𝑖
(𝜃 > 0), we have

lim sup
𝑛→∞

𝐵
𝑛

≤
𝐴
𝛼

𝛼,𝑛

𝜃
a.s. 𝐶. (23)
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Letting 𝜃 → ∞, we have

𝐶 (lim sup
𝑛→∞

𝐵
𝑛

≤ 0) = 1. (24)

For 𝐶
𝑛
, note that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑛𝑖

𝑋
󸀠󸀠󸀠

𝑛𝑖

𝑏
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐴
𝛼,𝑛

log 𝑛

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨

𝑟 a.s. 𝐶,

𝑋
󸀠󸀠󸀠2

𝑛𝑖
∑
𝑛

𝑖=1
𝑎
2

𝑛𝑖

𝑏2
𝑛

≤
𝐴
2

𝛼,𝑛

log2𝑛
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨

2𝑟 a.s. 𝐶.

(25)

Then, by Lemma 8, we have

𝐶 (lim sup
𝑛→∞

𝐶
𝑛

>
𝜀

2
) = 0 ∀𝜀 > 0. (26)

For 𝐷
𝑛
, assumption (8) implies ∑

𝑛

𝑖=1
𝐶(|𝑋
𝑛
| > log1/𝑟) <

∞. Hence, by Lemma 6, ∑
𝑛

𝑖=1
|𝑋
󸀠󸀠

𝑛𝑖
| is bounded a.s. 𝐶. It

follows that

𝐷
𝑛

≤

∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨 ∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑋
󸀠󸀠

𝑛𝑖

󵄨󵄨󵄨󵄨󵄨

𝑏
𝑛

≤
𝐴
𝛼,𝑛

(log 𝑛)
(1+(𝛼−1)(𝑟−1))/(1+𝛼(𝑟−1))

×

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑋
󸀠󸀠

𝑛𝑖

󵄨󵄨󵄨󵄨󵄨
󳨀→ 0 a.s. 𝐶

(27)

as 𝑛 → ∞.
Thus,

𝐶 (lim sup
𝑛→∞

𝐷
𝑛

≤ 0) = 1. (28)

On the other hand, ∀𝜀 > 0; and we note that

𝐶 (lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≥ 𝜇 + 𝜀)

≤ 𝐶 (lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

(𝑋
𝑖
− 𝜇)

𝑏
𝑛

≥ 𝜇 (1 − lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑏
𝑛

) + 𝜀)

= 𝐶 (lim sup
𝑛→∞

(𝐴
𝑛

+ 𝐵
𝑛

+ 𝐶
𝑛

+ 𝐷
𝑛
)

≥ 𝜇 (1 − lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑏
𝑛

) + 𝜀) ,

(29)

and the condition 𝜇(1 − lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

/𝑏
𝑛
) ≥ 0: from

(20), (24), (26), and (28), we conclude that

𝐶 (lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≥ 𝜇 + 𝜀) = 0 ∀𝜀 > 0, (30)

which implies

𝐶 (lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

> 𝜇) = 0. (31)

Also,

𝐶 (lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ 𝜇) = 1. (32)

Similarly, considering the sequence {−𝑋
𝑖
, 𝑖 ≥ 1}, from

(29), we have

𝐶 (lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

(−𝑋
𝑖
)

𝑏
𝑛

≤ Ê [−𝑋
1
]) = 1. (33)

Note that 𝜇 = −Ê[−𝑋
1
]. So

𝐶 (lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≥ 𝜇) = 1. (34)

Therefore, the proof of Theorem 7 is complete.

The following theorem shows that if the norming constant
𝑏
𝑛
is stronger than that of Theorem 7, then condition (8) in

Theorem 7 can be replaced by a weaker condition.

Theorem 9. Let {𝑋
𝑖
, 𝑖 ≥ 1} be a sequence of i.i.d. random

variables in H satisfying 𝜇 = Ê[𝑋
1
], 𝜇 = −Ê[−𝑋

1
] and for

some ℎ, 𝑟 > 0

Ê [𝑒
(ℎ|𝑋𝑖|

𝑟
)
] < ∞. (35)

Let {𝑎
𝑛𝑖

, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an array of constants satisfying
(9) in Theorem 7. Then, for 0 < 𝑟 ≤ 1 and 𝛽 > 0, if 𝜇(1 −

lim sup
𝑛→∞

(∑
𝑛

𝑖=1
𝑎
𝑛𝑖

/𝑏
𝑛
)) ≥ 0, we have

𝐶 (𝜇 ≤ lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ 𝜇) = 1,

(36)

where 𝑏
𝑛

= 𝑛
1/𝛼

(log 𝑛)
1/𝑟+𝛽.

Moreover, for 𝑟 > 1 and 𝛽 > 0, if 𝜇(1 −

lim sup
𝑛→∞

(∑
𝑛

𝑖=1
𝑎
𝑛𝑖

/𝑏
𝑛
)) ≥ 0, we have

𝐶 (𝜇 ≤ lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ lim sup
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

≤ 𝜇) = 1,

(37)

where 𝑏
𝑛

= 𝑛
1/𝛼

(log 𝑛)
(1+(𝛼−1)(𝑟−1))/(1+𝛼(𝑟−1))+𝛽.
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Proof. We can prove that Lemma 8 is also true except that (8)
and (1) of Lemma 8 are replaced by (35) and the following
condition.

|𝑎
𝑛𝑖

𝑋
𝑛𝑖

| ≤ V
𝑛
|𝑋
𝑖
|
𝛽
/ log 𝑛 a.s. 𝐶, for some 0 < 𝛽 ≤ 𝑟 and

some sequence {V
𝑛
} of constants such that V

𝑛
→ 0.

For the case 0 < 𝑟 ≤ 1, we let𝑋
󸀠

𝑛𝑖
= 𝑋
𝑖
𝐼
{|𝑋𝑖|≤(ℎ

−1 log 𝑛)1/𝑟} and
𝑋
󸀠󸀠

𝑛𝑖
= 𝑋
𝑖
− 𝑋
󸀠

𝑛𝑖
for 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 ≥ 1. For the case 𝑟 > 1, we

let 𝑋
󸀠

𝑛𝑖
= 𝑋
𝑖
𝐼
{|𝑋𝑖|≤(log 𝑛)1/(1+𝛼(𝑟−1))}

, 𝑋
󸀠󸀠

𝑛𝑖
= 𝑋
𝑖
𝐼
{|𝑋𝑖|>ℎ

−1log1/𝑟𝑛}, and
𝑋
󸀠󸀠󸀠

𝑛𝑖
= 𝑋
𝑖
𝐼
{(log 𝑛)1/(1+𝛼(𝑟−1))<|𝑋𝑖|≤(ℎ−1 log 𝑛)1/𝑟}

. The rest of the proof
is similar to that of Theorem 7 and is omitted.

Remark 10. If 𝜇 = 𝜇 = 0 in Theorem 9, then, for 0 < 𝑟 ≤ 1

and 𝛽 > 0, we have

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

󳨀→ 0 a.s., (38)

where 𝑏
𝑛

= 𝑛
1/𝛼

(log 𝑛)
1/𝑟+𝛽. Moreover, if 𝑟 > 1, we have

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

󳨀→ 0 a.s., (39)

where 𝑏
𝑛

= 𝑛
1/𝛼

(log 𝑛)
(1+(𝛼−1)(𝑟−1))/(1+𝛼(𝑟−1))+𝛽. Since if 𝛼 > 1

and 𝑟 ≥ 1, then 𝑟(𝛼 − 1)/𝛼(1 + 𝑟) > 0 and (1 + (𝛼 − 1)(𝑟 −

1))/(1 + 𝛼(𝑟 − 1)) < 1/𝑟 + 𝑟(𝛼 − 1)/𝛼(1 + 𝑟), we also have

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

󳨀→ 0 a.s., (40)

where 𝑏
𝑛

= 𝑛
1/𝛼

(log 𝑛)
1/𝑟+𝑟(𝛼−1)/𝛼(1+𝑟). The result is similar to

Theorem 2.2 of Bai and Cheng [7].

Remark 11. If 𝜇 = 𝜇 = 0 in Theorem 7, we can get the
classical strong law of large numbers for weighted sums of
i.i.d. random variables as follows:

𝑃 ( lim
𝑛→∞

∑
𝑛

𝑖=1
𝑎
𝑛𝑖

𝑋
𝑖

𝑏
𝑛

= 0) = 1. (41)
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