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We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one
tradable risky asset (stock/commodity), one nontradable underlying (temperature), and also a contingent claim (weather derivative)
written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in
equilibrium by optimal strategies of representative agent andmarket clearing condition.The risk preferences are of exponential type
with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding
equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in
model parameters and highlight the importance of our equilibrium pricing principle.

1. Introduction

Hitherto, there has been an increasing literature on pricing
contingent claims written on nontradable underlyings in a
dynamic multiperiod equilibrium framework. One example
of such contingent claim is a weather derivative, in which
case the underlying is the temperature process. One approach
in pricing this financial instrument is to use a multiperiod
stochastic equilibrium model. In financial economics there
is a huge amount of literature on this issue. Rubinstein [1]
considers a multiperiod state-preference equilibrium model
without explicit modeling of production/investment. Bren-
nan [2] looks at a multiperiod equilibrium problem in which
the representative agent exhibits constant risk aversion.
Bhattacharya [3] extends the model of Rubinstein [1] to
show that risk/return tradeoffs are linear relations linking
instantaneous expected returns of assets to the instantaneous
covariance of returns with aggregate consumption. Bizid and
Jouini [4] derive restrictions on the equilibrium state-price
deflator independent of the choices of utility function in
an incomplete market. Câmara [5] obtains preference-free
option prices in a discrete equilibrium model where repre-
sentative agent has exponential utility and aggregate wealth
together with the underlying asset price has transformed
normal distributions.

Our paper presents a partial equilibrium model with two
exogenous assets, one tradable and one nontradable.The goal
is to find the price of a derivative security written on tradable
and nontradable underlyings in equilibrium.We assume that
the tradable asset is priced in a different market so its price
is exogenously given. Moreover the interest rate risk is not
considered because we take the money market account as
numeraire. The derivative security, written on the tradable
asset and nontradable underlying, is priced in equilibrium
by a representative agent who receives (unspanned) ran-
dom income within an incomplete multiperiod market. The
optimal strategies are obtained by backward induction. First
order conditions together with the market clearing give the
equilibrium prices.

Cao and Wei [6], Lee and Oren [7, 8], and Cheridito et
al. [9] are related to our work. Cao and Wei [6] generalize
the model of Lucas [10] to provide an equilibrium framework
for valuing weather derivatives in a multiperiod setting. Lee
and Oren [7] explore a single-period equilibrium pricing
model in a multicommodity setting and mean-variance
preferences. Lee and Oren [8] made a followup in a mul-
tiperiod framework. Cheridito et al. [9] establish results on
the existence and uniqueness of equilibrium in dynamically
incomplete financial markets with preferences of monetary

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 408685, 14 pages
http://dx.doi.org/10.1155/2014/408685

http://dx.doi.org/10.1155/2014/408685


2 Journal of Applied Mathematics

type and heterogeneous agents. Utility indifference pricing
is also a way for pricing derivatives written on nontradable
underlying. The utility indifference price was introduced by
Hodges and Neuberger [11]. By now, there are several papers
on this topic; we recall only a few (on discrete time Musiela
et al. [12]; on continuous time Henderson [13]; Musiela and
Zariphopoulou [14]; for an overview see Henderson and
Hobson [15]). Pirvu and Zhang [16] derive utility indifference
prices in a model with time changing risk aversion.

In ourmodel the representative agent has risk preferences
of exponential type with time and state-dependent coefficient
of risk aversion. Inspired by Gordon and St-Amour [17], we
assume that the representative agent’s risk aversion coefficient
is a stochastic process. Gordon and St-Amour [17] motivate
this change by the fact that stochastic risk aversion can
explain asset-price movements which cannot be explained by
constant risk aversion. Lately, the issue of time changing risk
aversion received some attention in the financial literature.
For instance, Barberis and Huang [18] consider a model in
which the loss aversion depends on prior gains and losses,
so it may change through time. Danthine et al. [19] allow
the representative agent’s coefficient of relative risk aversion
to vary with the underlying economy’s growth rate. Gordon
and St-Amour [20] explain equity premium puzzle by state-
dependent risk preferences. Yuan and Chen [21] show that
dynamic risk aversion plays a critical role in the dynamics of
asset price fluctuations. Recently, Berrada et al. [22] consider
growth regime-dependent risk aversion of representative
agent and examine the effect of regime-dependent preference
on the structure of equilibrium.

A time changing risk preference leads to time inconsistent
investment strategies. It means that an investor may have
an incentive to deviate from the classical optimal strategy
which he/she computed at some past time. Let us define
the naive strategies as the classical optimal strategies given
that the agent does not update his/her risk preferences. The
naive strategies cannot be implemented in the absence of a
precommitment. In order to overcome the time inconsistency
issue, Pirvu and Zhang [16] and Björk and Murgoci [23]
develop a theory for stochastic control problems which are
time inconsistent in the sense that they do not admit the
Bellman optimality principle; they consider the subgame
perfect equilibrium as a substitute for the Bellman optimality
principle. In Wu [24], subgame perfect equilibrium strate-
gies are studied for a multiperiod mean-variance portfolio
selection problem with wealth-dependent risk aversion. In
our paper, we follow Pirvu and Zhang [16] in introducing
subgame perfect strategies. Subgame perfect strategies denote
the strategies obtained from the subgameperfect equilibrium.
The corresponding equilibrium price obtained by imposing
themarket clearing conditionwith subgame perfect strategies
of representative agent is called as subgame perfect equilib-
rium price. On the other hand, market clearing condition
with naive strategies gives naive equilibrium price. The naive
equilibrium price is considered as a benchmark price. By
comparing the subgame perfect equilibrium price and the
naive equilibrium price, the difference and the importance of
subgame perfect equilibrium price are highlighted.

The exogenous assets in our model may have stochastic
drifts and volatilities and the assets may be correlated.
A derivative security is priced in equilibrium within this
model. Our main result is an iterative algorithm which yields
the subgame perfect equilibrium prices. At each stage the
equilibrium prices depend on the current risk aversion level
and all previouswealth and risk aversion levels.The algorithm
constructs recursively one period pricing kernels. Moreover,
the naive equilibrium pricing kernel equals the marginal
utility. We prove that the equilibrium pricing measures are
martingale measures so the equilibrium prices are arbitrage
free.

Numerical experiments shed light into the importance of
the pricing principle to find subgame perfect equilibriums
price. For the numerical result, we consider a two-state
regime switching model (bull and bear markets) and assume
that the representative agent becomes more risk averse in
the bear market. The result shows that the equilibrium
prices (both subgame perfect equilibrium price and naive
equilibrium price) are decreasing in risk aversion. It’s because
the derivative can be regarded as a risky asset so agent’s
demand for the derivative is reduced if he/she is more risk
averse. Since the risk aversions of the agent in two states are
different, we may try to approximate the subgame perfect
equilibrium price with a new risk aversion, say average risk
aversionwhich is a weighted average of two risk aversion (risk
aversions in bull market and bear market) with the steady
state probabilities of two states as the weights. However, we
find that there is significant gap between the exact subgame
perfect equilibrium price and the naive equilibrium price
with average risk aversion if the risk aversion in the bear
market is much higher than the risk aversion in the bull
market. This means that the naive equilibrium price with
average risk aversion cannot be a useful estimate of subgame
perfect equilibrium price especially when the agent’s prefer-
ence changes a lot depending on the market environment.

We also examine the effect of the number of units of
derivatives in the market on the equilibrium prices and we
find out that the equilibrium prices are decreasing in number
of units of derivatives. This result is consistent with Gârleanu
et al. [25] which examine the effects of demand pressure on
option prices. Moreover, it is observed that the gap between
the naive equilibrium price with average risk aversion and the
subgame perfect equilibrium price gets larger if the number
of units of derivatives is large enough. Hence the naive
equilibrium price is not a good estimate of the subgame
perfect equilibrium price in this case.

The remainder of this paper is organized as follows.
Section 2 presents the model. Section 3 provides the equilib-
riumpricing valuation.Numerical results are presented in the
Section 4. Proofs of the results are delegated to anAppendices
A, B, and C.

2. The Model

We consider a multi-period stochastic model of investment.
The trading horizon is [0, 𝑇], with𝑇 an exogenous finite hori-
zon.There are𝑁+1 trading dates: 𝑡

𝑛
= 𝑛ℎ, for 𝑛 = 0, 1, . . . , 𝑁,
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and ℎ = 𝑇/𝑁. Let (𝑏1, 𝑏2, . . . , 𝑏𝑑) := (𝑏1
𝑡
𝑛

, 𝑏

2

𝑡
𝑛

, . . . , 𝑏

𝑑

𝑡
𝑛

)

𝑛=0,1,...,∞
,

be a 𝑑-dimensional binomial random walk on a complete
probability space (Ω,F, {F

𝑡
𝑛

},P). The random walk is
assumed to be symmetric under P in the sense that

P (Δ𝑏
𝑖

𝑡
𝑛

= ±1) =

1

2

, 𝑖 = 1, 2, . . . , 𝑑. (1)

There are three securities available for trading in our model;
a money market account, a primary asset (e.g., stock or
commodity) and a derivative security. We take the money
market account as numeraire, thus it can be assumed to
offer zero interest rate. The primary asset price process 𝐶 :=
{𝐶

𝑡
𝑛

; 𝑛 = 0, 1, . . . , 𝑁}, follows the difference equation:

Δ𝐶

𝑡
𝑛

= 𝐶

𝑡
𝑛

(𝜇

𝑐

𝑡
𝑛

ℎ + 𝜎

𝑐

𝑡
𝑛

√

ℎΔ𝑏

1

𝑡
𝑛

) , 𝑛 = 0, 1, . . . , 𝑁 − 1,

𝐶

0
= 𝑐 > 0,

(2)

for some adapted drift process 𝜇𝑐 := {𝜇𝑐
𝑡
; 𝑡 = 0, ℎ, . . . , (𝑁 −

1)ℎ,𝑁ℎ} and volatility process 𝜎𝑐 := {𝜎𝑐
𝑡
; 𝑡 = 0, ℎ, . . . , (𝑁 −

1)ℎ,𝑁ℎ} which are chosen so that the commodity price
remains positive. The derivative security 𝐷 := {𝐷

𝑡
𝑛

; 𝑛 =

0, 1, . . . , 𝑁} is written on the primary asset 𝐶 and a nontrad-
able underlying 𝑆 := {𝑆

𝑡
𝑛

; 𝑛 = 0, 1, . . . , 𝑁} which follows the
difference equation:

Δ𝑆

𝑡
𝑛

= 𝑆

𝑡
𝑛

(𝜇

𝑠

𝑡
𝑛

ℎ + 𝜎

𝑠

𝑡
𝑛

√

ℎ(𝜌Δ𝑏

1

𝑡
𝑛

+
√
1 − 𝜌

2
Δ𝑏

2

𝑡
𝑛

)) ,

𝑛 = 0, 1, . . . , 𝑁 − 1,

𝑆

0
= 𝑠 > 0,

(3)

for some adapted drift process 𝜇𝑠 := {𝜇𝑠
𝑡
; 𝑡 = 0, ℎ, . . . , (𝑁 −

1)ℎ,𝑁ℎ}, volatility process 𝜎𝑠 := {𝜎

𝑠

𝑡
; 𝑡 = 0, ℎ, . . . , (𝑁 −

1)ℎ,𝑁ℎ}, and a correlation coefficient 𝜌, with |𝜌| < 1. The
two-dimensional process 𝑃 = (𝐶, 𝑆), exogenously given, is
referred to as the forward process.

Since the derivative security 𝐷 is to be priced in equilib-
rium, we have a partial equilibrium model. It is motivated
by a situation in which the primary asset and derivative are
priced in different markets. As an example, consider energy
market and weather derivatives. Although the energy price
and weather derivatives are correlated (in California, a high
correlation between energy prices and temperature process
was observed), energy prices and weather derivative prices
are determined in different markets.

2.1. Trading Strategies. Let 𝛼
𝑡
𝑛

be the amount invested in the
primary asset at time 𝑡

𝑛
, and let 𝛽

𝑡
𝑛

be the number of shares of
derivative held at time 𝑡

𝑛
; denote 𝜋

𝑡
𝑛

:= {𝛼

𝑡
𝑛

, 𝛽

𝑡
𝑛

} ∈ F
𝑡
𝑛

, 𝑛 =
0, 1, . . . , 𝑁 − 1. The value of a self-financed portfolio satisfies
the following stochastic difference equation:

Δ𝑋

𝜋

𝑡
𝑛

:= 𝛼

𝑡
𝑛

(𝜇

𝑐

𝑡
𝑛

ℎ + 𝜎

𝑐

𝑡
𝑛

√

ℎΔ𝑏

1

𝑡
𝑛

) + 𝛽

𝑡
𝑛

Δ𝐷

𝑡
𝑛

. (4)

At maturity, 𝑡
𝑁
:= 𝑇 = 𝑁ℎ, the representative agent in this

economy receives random income 𝐼
𝑡
𝑁

, which isF
𝑇
adapted.

Thus, his/her final wealth is

𝑊

𝜋

𝑡
𝑁

= 𝑋

𝜋

𝑡
𝑁

+ 𝐼

𝑡
𝑁

. (5)

The random income may depend on all the random walks
{𝑏

1

, 𝑏

2

, . . . , 𝑏

𝑑

}, so itmay not be spanned by the existing assets.

2.2. Risk Preferences. The representative agent utility is
assumed to be of exponential type, time, and state dependent.
The coefficient of absolute risk aversion is a stochastic process
𝛾

𝑡
𝑛

,F
𝑡
𝑛

adapted, 𝑛 = 0, 1, . . . , 𝑁 − 1. More precisely,

𝑈 (𝑥, 𝑡

𝑛
, 𝜔) = − exp (−𝛾

𝑡
𝑛

(𝜔) 𝑥) , 𝜔 ∈ Ω. (6)

As we pointed out in Section 1, this modeling approach
is not new and consistent with a number of papers that
consider time changing, state-dependent risk aversion. The
performance of an investment strategy 𝜋 is measured by the
expected utility criterion applied to the final wealth; that is,
the optimization criterion at time 𝑡

𝑛
is given by

sup
𝜋∈Π
𝑡𝑛

E [−𝑒
−𝛾
𝑡𝑛
𝑊
𝜋

𝑡
𝑁
| F

𝑡
𝑛

] . (7)

Here 𝑛 = 0, 1, . . . , 𝑁 − 1,𝑊𝜋

𝑡
𝑁

is given by (5), andΠ
𝑡
𝑛

denotes
the set of admissible trading strategies:

Π

𝑡
𝑛

:= {𝜋

𝑡
𝑛

, 𝜋

𝑡
𝑛+1

, . . . , 𝜋

𝑡
𝑁−1

: 𝜋

𝑡
𝑘

∈ F
𝑡
𝑘

,

such that E 󵄨󵄨󵄨
󵄨

󵄨

𝑋

𝜋

𝑡
𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

< ∞, 𝑘 = 𝑛, 𝑛 + 1, . . . , 𝑁 − 1} .

(8)

2.3. Naive Strategies. The naive strategies are the classical
optimal strategies given that the risk preferences are not
updated. More precisely 𝜋̂ ∈ Π

𝑡
0

is a naive strategy if it
satisfies

𝜋̂ = arg sup
𝜋∈Π
𝑡
0

E [− exp (−𝛾
𝑡
0

𝑊

𝜋

𝑡
𝑁

) | F
𝑡
0

] . (9)

They fail to remain optimal at later times 𝑡
𝑛
, in the sense that

𝜋̂ ̸= arg sup
𝜋∈Π
𝑡𝑛

E [− exp (−𝛾
𝑡
𝑛

𝑊

𝜋

𝑡
𝑁

) | F
𝑡
𝑛

] . (10)

2.4. Subgame Perfect Strategies. In this section, we introduce
the subgame perfect strategies by following Pirvu and Zhang
[16]. First, let us consider the time period [(𝑁 − 1)ℎ,𝑁ℎ]

(recall that 𝑡
𝑁
= 𝑇 = 𝑁ℎ). At time (𝑁 − 1)ℎ consider the

optimization problem:

sup
𝜋∈Π
𝑡
𝑁−1

E [− exp (−𝛾
𝑡
𝑁−1

𝑊

𝜋

𝑡
𝑁

) | F
𝑡
𝑁−1

] .

(P
1
)

In our model sup in (P
1
) is attained and we denote

𝜋

∗

𝑡
𝑁−1

= arg max
𝜋∈Π
𝑡
𝑁−1

E [− exp (−𝛾
𝑡
𝑁−1

𝑊

𝜋

𝑡
𝑁

) | F
𝑡
𝑁−1

] . (11)

On the time period [(𝑁−2)ℎ,𝑁ℎ], consider trading strategies
𝜋 be of the form:

𝜋 = {

𝜋

∗

𝑡
𝑁−1

, on [(𝑁 − 1) ℎ,𝑁ℎ) ,
𝜋

𝑡
𝑁−2

, on [(𝑁 − 2) ℎ, (𝑁 − 1) ℎ) ,
(12)
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for an arbitrary F
𝑡
𝑁−2

adapted control 𝜋
𝑡
𝑁−2

such that
(𝜋

𝑡
𝑁−2

, 𝜋

∗

𝑡
𝑁−1

) ∈ Π

𝑡
𝑁−2

; consider the optimization problem

sup
𝜋∈Π
𝑡
𝑁−2

E [− exp (−𝛾
𝑡
𝑁−2

𝑊

𝜋

𝑡
𝑁

) | F
𝑡
𝑁−2

] .

(P
2
)

In our model sup in (P
2
) is attained and we denote

(𝜋

∗

𝑡
𝑁−2

, 𝜋

∗

𝑡
𝑁−1

) = arg max
𝜋∈Π
𝑡
𝑁−2

E [− exp (−𝛾
𝑡
𝑁−2

𝑊

𝜋

𝑡
𝑁

) | F
𝑡
𝑁−2

] .

(13)

Further we proceed iteratively. On the time period [(𝑁 −

𝑛)ℎ,𝑁ℎ) one restricts to trading strategies 𝜋 of the form:

𝜋 = {

𝜋

∗

𝑡
𝑘

, for 𝑘 = 𝑁 − (𝑛 − 1) ,𝑁 − (𝑛 − 2) , . . . , 𝑁 − 1,
𝜋

𝑡
𝑘

, for 𝑘 = 𝑁 − 𝑛,
(14)

for an arbitrary F
𝑡
𝑁−𝑛

adapted control 𝜋
𝑡
𝑁−𝑛

such that (𝜋
𝑡
𝑁−𝑛

,

𝜋

∗

𝑡
𝑘

)

{𝑘=𝑁−𝑛+1,...,𝑁−1}
∈ Π

𝑡
𝑁−𝑛

. Consider the optimization
problem

max
𝜋∈Π
𝑡
𝑁−𝑛

E [− exp (−𝛾
𝑡
𝑁−𝑛

𝑊

𝜋

𝑡
𝑁

) | F
𝑡
𝑁−𝑛

] .

(P
𝑛
)

The sup in (P
𝑛
) is attained and we denote

(𝜋

∗

𝑡
𝑁−𝑛

, 𝜋

∗

𝑡
𝑁−𝑛+1

, . . . , 𝜋

∗

𝑡
𝑁−1

)

= arg max
𝜋∈Π
𝑡
𝑁−𝑛

E [− exp (−𝛾
𝑡
𝑁−𝑛

𝑊

𝜋

𝑡
𝑁

) | F
𝑡
𝑁−𝑛

] .

(15)

The subgame perfect strategy is 𝜋∗ = (𝜋∗
𝑡
0

, 𝜋

∗

𝑡
1

, . . . , 𝜋

∗

𝑡
𝑁

).

2.5. Subgame Perfect Strategies versus Naive Strategies. Let us
recall that time inconsistency in this model is due to time
changing, state-dependent risk aversion. Indeed in the case
of constant risk aversion, the subgame perfect strategies and
the naive strategies coincide; that is, 𝜋∗ = 𝜋̂. In general, it is
hard to show that the subgame perfect strategy outperforms
the naive strategy. We show that this is the case if the risk
preferences are updated in the following two period models.
Let us assume that 𝐼

𝑡
2

= 0, and only one asset is available for
trading (the primary asset with constant drift and volatility).
It is claimed that

E [− exp (−𝛾
𝑡
1

𝑊

𝜋
∗

𝑡
2

) | F
𝑡
1

] ≥ E [− exp (−𝛾
𝑡
1

𝑊

𝜋̂

𝑡
2

) | F
𝑡
1

] .

(16)

Indeed in this model it can be shown that 𝜋∗
𝑡
1

= 𝜋̂

𝑡
1

, and
hence𝑊𝜋

∗

𝑡
1

= 𝑊

𝜋̂

𝑡
1

. By the definition of the subgame perfect
strategies, we have (16).

3. Equilibrium Valuation

We assume that there exists a representative agent with risk
preferences given by (6). The representative agent trades 𝐶
and 𝐷 in order to maximize the expected utility of his/her

final wealth. This can be achieved by the naive strategy 𝜋̂ =
(𝛼̂,

̂

𝛽) if the representative agent does not update his/her risk
preferences. Otherwise, the subgame perfect strategy 𝜋∗ =
(𝛼

∗

, 𝛽

∗

) will be used. Thus, depending on whether or not
the representative agent updates his/her risk preferences, we
introduce two notions of equilibrium prices: subgame perfect
equilibrium price and naive equilibrium price. They are given
by the market clearing condition in the formal definition
below.

Definition 1. Given the terminal payoff𝐷
𝑡
𝑁

and𝑚
𝐷
> 0 units

of derivative, 𝐷
𝑡
𝑛

is the subgame perfect equilibrium price if
and only if

𝛽

∗

𝑡
𝑛

= 𝑚

𝐷
, (17)

for every 𝑛 = 0, 1, . . . , 𝑁 − 1. Likewise, 𝐷
𝑡
𝑛

is the naive equi-
librium price if and only if

̂

𝛽

𝑡
𝑛

= 𝑚

𝐷
, (18)

for every 𝑛 = 0, 1, . . . , 𝑁 − 1.

This simply says that there is 𝑚
𝐷
units of derivative in

the market and it is priced such that “it is optimal” for
the representative agent to acquire it. The interest of the
representative agent in holding the derivative comes from the
fact that the primary asset is correlated with the nontradable
asset which is an underlying of the derivative. Moreover,
agent’s income is assumed to be related to the nontradable
asset 𝑆; thus, the risk of income fluctuations due to 𝑆 can be
hedged by trading𝐷. Let 𝑟𝑐

𝑡
𝑛

, given by

𝑟

𝑐

𝑡
𝑛

:=

𝜇

𝑐

𝑡
𝑛

𝜎

𝑐

𝑡
𝑛

, (19)

be themarket price of risk (MPR) for the primary asset which
is assumed positive. We choose time length ℎ small enough
such that 1 ≥ 𝑟𝑐

𝑡
𝑛

√

ℎ.

Remark 2. For the naive equilibriumprice to be implemented
the representative agent has to exhibit the same risk aversion
throughout time. This may not be realistic since different
factors (e.g., economic and financial) may change the risk
preference of the representative agent. In the light of this, the
naive equilibrium price can be seen as a benchmark price. A
more realistic price is the subgame perfect equilibrium price;
this, unlike the naive equilibriumprice, takes into account the
changes of the representative agent’s risk aversion.

3.1. Single Period. Define 𝐴
𝑡
𝑁−1

:= {𝜔 ∈ Ω : Δ𝑏

1

𝑡
𝑁−1

= 1} and
𝐴

𝑐

𝑡
𝑁−1

:= {𝜔 ∈ Ω : Δ𝑏

1

𝑡
𝑁−1

= −1}.

Theorem 3. The subgame perfect equilibrium price at time
𝑡

𝑁−1
is given by

𝐷

𝑡
𝑁−1

= E
Q∗
[𝐷

𝑡
𝑁

| F
𝑡
𝑁−1

] , (20)

where the probability measureQ∗ is defined by
𝑑Q∗

𝑑P
= Λ

∗

𝑡
𝑁

E [
𝑑Q∗

𝑑P
| F

𝑡
𝑁−1

] . (21)
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The pricing kernel Λ∗

𝑡
𝑁

is

Λ

∗

𝑡
𝑁

:=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜆

𝑡
𝑁−1

𝑒

−𝛾
𝑡
𝑁−1

(𝑚
𝐷
𝐷
𝑡
𝑁

+𝐼
𝑡
𝑁

)

E [𝑒−𝛾𝑡𝑁−1 (𝑚𝐷𝐷𝑡𝑁+𝐼𝑡𝑁 ) | 𝐴
𝑡
𝑁−1

∨F
𝑡
𝑁−1

]

,

if 𝜔 ∈ 𝐴
𝑡
𝑁−1

𝜆

𝑡
𝑁−1

𝑒

−𝛾
𝑡
𝑁−1

(𝑚
𝐷
𝐷
𝑡
𝑁

+𝐼
𝑡
𝑁

)

E [𝑒−𝛾𝑡𝑁−1 (𝑚𝐷𝐷𝑡𝑁+𝐼𝑡𝑁 ) | 𝐴𝑐

𝑡
𝑁−1

∨F
𝑡
𝑁−1

]

,

if 𝜔 ∈ 𝐴𝑐

𝑡
𝑁−1

,

(22)

with

𝜆

𝑡
𝑁−1

= {

1 − 𝑟

𝑐

𝑡
𝑁−1

√

ℎ, if 𝜔 ∈ 𝐴
𝑡
𝑁−1

1 + 𝑟

𝑐

𝑡
𝑁−1

√

ℎ, if 𝜔 ∈ 𝐴𝑐

𝑡
𝑁−1

.

(23)

The optimal trading strategy is given by

𝛼

∗

𝑡
𝑁−1

=

1

2𝛾

𝑡
𝑁−1

𝜎

𝑐

𝑡
𝑁−1

√

ℎ

log(
1 + 𝑟

𝑐

𝑡
𝑁−1

√

ℎ

1 − 𝑟

𝑐

𝑡
𝑁−1

√

ℎ

)

+

1

2𝛾

𝑡
𝑁−1

𝜎

𝑐

𝑡
𝑁−1

√

ℎ

× log(
E [𝑒−𝛾𝑡𝑁−1 (𝑚𝐷𝐷𝑡𝑁+𝐼𝑡𝑁 ) | 𝐴

𝑡
𝑁−1

∨F
𝑡
𝑁−1

]

E [𝑒−𝛾𝑡𝑁−1 (𝑚𝐷𝐷𝑡𝑁+𝐼𝑡𝑁 ) | 𝐴𝑐

𝑡
𝑁−1

∨F
𝑡
𝑁−1

]

) .

(24)

Proof. Proof of this theorem is done in Appendix A.

Remark 4. For the naive equilibrium price just replace 𝛾
𝑡
𝑁−1

with 𝛾
𝑡
0

in the above formulas.

Next we prove that the probability measure Q∗ is a mar-
tingale measure so the subgame perfect equilibrium price
is arbitrage-free (similarly it can be shown that the naive
equilibrium price is arbitrage free).

Lemma 5. The tradable assets {𝐶
𝑡
𝑛

}

𝑛=𝑁−1,𝑁
and {𝐷

𝑡
𝑛

}

𝑛=𝑁−1,𝑁

are martingales underQ∗.

Proof. {𝐷
𝑡
𝑛

}

𝑛=𝑁−1,𝑁
is martingale under Q∗ by definition.

Next we show that {𝐶
𝑡
𝑛

}

𝑛=𝑁−1,𝑁
is martingale under Q∗. It

suffices to prove that with 𝑛 = 𝑁 − 1

E
Q∗
[

𝐶

𝑡
𝑛+1

𝐶

𝑡
𝑛

| F
𝑡
𝑛

]

= E
Q∗
[1 + 𝜎

𝑐

𝑡
𝑛

√

ℎ (𝑟

𝑐

𝑡
𝑛

√

ℎ + Δ𝑏

1

𝑡
𝑛

) | F
𝑡
𝑛

]

= 1 + 𝜎

𝑐

𝑡
𝑛

√

ℎE
Q∗
[(𝑟

𝑐

𝑡
𝑛

√

ℎ + Δ𝑏

1

𝑡
𝑛

) | F
𝑡
𝑛

]

= 1.

(25)

This is the case if

E
Q∗
[(𝑟

𝑐

𝑡
𝑛

√

ℎ + Δ𝑏

1

𝑡
𝑛

) | F
𝑡
𝑛

] = 0. (26)

When 𝑛 = 𝑁 − 1, (26) is equivalent to

𝑟

𝑐

𝑡
𝑁−1

√

ℎ + 1

2

E [Λ
∗

𝑡
𝑁

E [
𝑑Q∗

𝑑P
| F

𝑡
𝑁−1

] | 𝐴

𝑡
𝑁−1

∨F
𝑡
𝑁−1

]

+

𝑟

𝑐

𝑡
𝑁−1

√

ℎ − 1

2

E [Λ
∗

𝑡
𝑁

E [
𝑑Q∗

𝑑P
| F

𝑡
𝑁−1

] | 𝐴

𝑐

𝑡
𝑁−1

∨F
𝑡
𝑁−1

]

=

1 − (𝑟

𝑐

𝑡
𝑁−1

)

2

ℎ

2

E [
𝑑Q∗

𝑑P
| F

𝑡
𝑁−1

]

+

(𝑟

𝑐

𝑡
𝑁−1

)

2

ℎ − 1

2

E [
𝑑Q∗

𝑑P
| F

𝑡
𝑁−1

] = 0,

(27)

and this completes the proof.

3.2. Multiple Periods. Let us define the sets 𝐴
𝑡
𝑁−𝑛

:= {𝜔 ∈

Ω : Δ𝑏

1

𝑡
𝑁−𝑛

= 1} and 𝐴𝑐

𝑡
𝑁−𝑛

:= {𝜔 ∈ Ω : Δ𝑏

1

𝑡
𝑁−𝑛

= −1}; to ease
notations, let us denote

E
𝑡
𝑛

[⋅] := E [⋅ | F
𝑡
𝑛

] , E
𝑡
𝑛

[⋅ | G] := E [⋅ | G ∨F
𝑡
𝑛

] ,

(28)

for every G ⊂ F. The equilibrium prices are computed by a
recursive algorithm. Imagine that the equilibrium prices after
𝑡

𝑁−𝑛
were found and now we want to find the equilibrium

price at 𝑡
𝑁−𝑛

. At time 𝑡
𝑁−𝑛

, define the random variables𝑌∗
𝑡
𝑁−𝑛+1

and ̂𝑌
𝑡
𝑁−𝑛+1

by

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

:= E
𝑡
𝑁−𝑛+1

× [exp(−𝛾
𝑡
𝑁−𝑛

(

𝑁−1

∑

𝑘=𝑁−𝑛+1

Δ𝑋

∗

𝑡
𝑘

+ 𝐼

𝑡
𝑁

))] ,

(29)

𝑒

−𝛾
𝑡
0

𝑌̂
𝑡
𝑁−𝑛+1

:= E
𝑡
𝑁−𝑛+1

× [exp(−𝛾
𝑡
0

(

𝑁−1

∑

𝑘=𝑁−𝑛+1

Δ

̂

𝑋

𝑡
𝑘

+ 𝐼

𝑡
𝑁

))] .

(30)

Here

Δ𝑋

∗

𝑡
𝑘

= 𝛼

∗

𝑡
𝑘

(𝜇

𝑐

𝑡
𝑘

ℎ + 𝜎

𝑐

𝑡
𝑘

√

ℎΔ𝑏

1

𝑡
𝑘

) + 𝑚

𝐷
Δ𝐷

𝑡
𝑘

, (31)

for any 𝑘 = 𝑁 − 𝑛 + 1, . . . , 𝑁 − 2,𝑁 − 1; the subgame perfect
strategy 𝛼∗

𝑡
𝑘

is given by

𝛼

∗

𝑡
𝑘

=

1

2𝛾

𝑡
𝑘

𝜎

𝑐

𝑡
𝑘

√

ℎ

log(
1 + 𝑟

𝑐

𝑡
𝑘

√

ℎ

1 − 𝑟

𝑐

𝑡
𝑘

√

ℎ

)

+

1

2𝛾

𝑡
𝑘

𝜎

𝑐

𝑡
𝑘

√

ℎ

log(
E
𝑡
𝑘

[𝑒

−𝛾
𝑡
𝑘

(𝑚
𝐷
𝐷
𝑡
𝑘+1

+𝑌
∗

𝑡
𝑘+1

)

| 𝐴

𝑡
𝑘

]

E
𝑡
𝑘

[𝑒

−𝛾
𝑡
𝑘

(𝑚
𝐷
𝐷
𝑡
𝑘+1

+𝑌
∗

𝑡
𝑘+1

)

| 𝐴

𝑐

𝑡
𝑘

]

) .

(32)
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Moreover

Δ

̂

𝑋

𝑡
𝑘

= 𝛼̂

𝑡
𝑘

(𝜇

𝑐

𝑡
𝑘

ℎ + 𝜎

𝑐

𝑡
𝑘

√

ℎΔ𝑏

1

𝑡
𝑘

) + 𝑚

𝐷
Δ𝐷

𝑡
𝑘

, (33)

for any 𝑘 = 𝑁− 𝑛 + 1, . . . , 𝑁 − 2,𝑁 − 1; the naive strategy 𝛼̂
𝑡
𝑘

is given by

𝛼̂

𝑡
𝑘

=

1

2𝛾

𝑡
0

𝜎

𝑐

𝑡
𝑘

√

ℎ

log(
1 + 𝑟

𝑐

𝑡
𝑘

√

ℎ

1 − 𝑟

𝑐

𝑡
𝑘

√

ℎ

)

+

1

2𝛾

𝑡
0

𝜎

𝑐

𝑡
𝑘

√

ℎ

log(
E
𝑡
𝑘

[𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑘+1

+𝑌̂
𝑡
𝑘+1

)

| 𝐴

𝑡
𝑘

]

E
𝑡
𝑘

[𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑘+1

+𝑌̂
𝑡
𝑘+1

)

| 𝐴

𝑐

𝑡
𝑘

]

) .

(34)

Next, define the one-step period pricing kernels Λ∗

𝑡
𝑁−𝑛+1

and
̂

Λ

𝑡
𝑁−𝑛+1

by

Λ

∗

𝑡
𝑁−𝑛+1

:=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜆

𝑡
𝑁−𝑛

𝑒

−𝛾
𝑡
𝑁−𝑛

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌
∗

𝑡
𝑁−𝑛+1

)

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌
∗

𝑡
𝑁−𝑛+1

)

| 𝐴

𝑡
𝑁−𝑛

]

,

if 𝜔 ∈ 𝐴
𝑡
𝑁−𝑛

,

𝜆

𝑡
𝑁−𝑛

𝑒

−𝛾
𝑡
𝑁−𝑛

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌
∗

𝑡
𝑁−𝑛+1

)

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌
∗

𝑡
𝑁−𝑛+1

)

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

,

if 𝜔 ∈ 𝐴𝑐

𝑡
𝑁−𝑛

,

(35)

̂

Λ

𝑡
𝑁−𝑛+1

:=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜆

𝑡
𝑁−𝑛

𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑡
𝑁−𝑛

]

,

if 𝜔 ∈ 𝐴
𝑡
𝑁−𝑛

,

𝜆

𝑡
𝑁−𝑛

𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

,

if 𝜔 ∈ 𝐴𝑐

𝑡
𝑁−𝑛

.

(36)

Here

𝜆

𝑡
𝑁−𝑛

= {

1 − 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ, if 𝜔 ∈ 𝐴
𝑡
𝑁−𝑛

,

1 + 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ, if 𝜔 ∈ 𝐴𝑐

𝑡
𝑁−𝑛

.

(37)

Remark 6. Notice that ̂𝑌
𝑡
𝑁−𝑛+1

, defined by (30), is the certainty
equivalent at time 𝑡

𝑁−𝑛+1
of the naive strategy which does

not update the risk aversion and assumes constant risk
aversion 𝛾

𝑡
0

. Similarly, 𝑌∗
𝑡
𝑁−𝑛+1

can be seen as the certainty
equivalent of the subgame perfect strategy with updating
risk preference over time. In the special case of constant
coefficient of absolute risk aversion, ̂𝑌

𝑡
𝑁−𝑛+1

and 𝑌∗
𝑡
𝑁−𝑛+1

are
equal. Furthermore, it can be easily seen that

𝑒

−𝛾
𝑡
0

𝑌̂
𝑡
𝑁−𝑛+1

= E
𝑡
𝑁−𝑛+1

× [exp (−𝛾
𝑡
0

(Δ

̂

𝑋

𝑡
𝑁
−𝑛+1

+

̂

𝑌

𝑁−𝑛+2
))] ,

(38)

where ̂𝑋
𝑡
𝑁
−𝑛+1

is the change of self-financed portfolio value
during the time period [(𝑁 − 𝑛 + 1)ℎ,(𝑁 − 𝑛 + 2)ℎ] so that

̂

𝑌

𝑡
𝑁−𝑛+2

can be used to find out the values of ̂𝑌
𝑡
𝑁−𝑛+1

. However,
we can observe that

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

̸=E
𝑡
𝑁−𝑛+1

× [exp (−𝛾
𝑡
𝑁−𝑛

(Δ𝑋

∗

𝑡
𝑁
−𝑛+1

+ 𝑌

∗

𝑁−𝑛+2
))]

(39)

because the risk aversion changes over time in the definition
of 𝑌∗ in (29). More precisely, 𝑌∗

𝑡
𝑁−𝑛+1

is defined with 𝛾
𝑡
𝑁−𝑛

,
while𝑌∗

𝑡
𝑁−𝑛+2

is definedwith 𝛾
𝑡
𝑁−𝑛+1

which can be different from
𝛾

𝑡
𝑁−𝑛

. Therefore, all possible future changes of risk aversion
until the time horizon 𝑇 should be considered to compute
the value of 𝑌∗

𝑁−𝑛+1
. Moreover, the pricing kernel Λ∗

𝑡
𝑁−𝑛+1

in
(35) for subgame perfect equilibrium price contains 𝑌∗

𝑡
𝑁−𝑛+1

as
well as 𝛾

𝑡
𝑁−𝑛

. As a consequence, all possible future changes of
risk aversion should be examined to find the pricing kernel
Λ

∗

𝑡
𝑁−𝑛+1

.

Remark 7. The myopic term in 𝛼∗
𝑡
𝑘

in (32) is (1/2𝛾
𝑡
𝑘

𝜎

𝑐

𝑡
𝑘

√

ℎ)

log((1+𝑟𝑐
𝑡
𝑘

√

ℎ)/(1−𝑟

𝑐

𝑡
𝑘

√

ℎ)) and in 𝛼̂
𝑡
𝑘

is (1/2𝛾
𝑡
0

𝜎

𝑐

𝑡
𝑘

√

ℎ) log((1+
𝑟

𝑐

𝑡
𝑘

√

ℎ)/(1 − 𝑟

𝑐

𝑡
𝑘

√

ℎ)). Moreover, it can be verified that they
satisfy

lim
ℎ↓0

1

2𝛾

𝑡
𝑘

𝜎

𝑐

𝑡
𝑘

√

ℎ

log(
1 + 𝑟

𝑐

𝑡
𝑘

√

ℎ

1 − 𝑟

𝑐

𝑡
𝑘

√

ℎ

) =

𝑟

𝑐

𝑡
𝑘

𝛾

𝑡
𝑘

𝜎

𝑐

𝑡
𝑘

, (40)

lim
ℎ↓0

1

2𝛾

𝑡
0

𝜎

𝑐

𝑡
𝑘

√

ℎ

log(
1 + 𝑟

𝑐

𝑡
𝑘

√

ℎ

1 − 𝑟

𝑐

𝑡
𝑘

√

ℎ

) =

𝑟

𝑐

𝑡
𝑘

𝛾

𝑡
0

𝜎

𝑐

𝑡
𝑘

, (41)

respectively. Notice that the right-hand sides of (41) are the
well-known myopic term of the optimal investment strategy
with constant absolute risk aversion 𝛾

𝑡
0

in continuous time
model. The only difference in (40) with subgame perfect
strategy is that the risk aversion is updated; that is, 𝛾

𝑡
𝑘

is used,
while it is not in the naive strategy (41). The second terms
of (32) and (34) are hedging terms which take into account
the other factors, such as investment in derivative, stochastic
parameters of underlying processes, income, and stochastic
risk aversion (in case of subgame perfect strategy).

The following theorem is the main result of the paper.

Theorem 8. The subgame perfect equilibrium price at time
𝑡

𝑁−𝑛
is given by

𝐷

𝑡
𝑁−𝑛

= E
Q∗

𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

] , (42)

where the probability measureQ∗ is defined by

𝑑Q∗

𝑑P
= Λ

∗

𝑡
𝑁

Λ

∗

𝑡
𝑁−1

⋅ ⋅ ⋅ Λ

∗

𝑡
1

.
(43)

The subgame perfect strategy (in the primary asset) is 𝛼∗ =
(𝛼

∗

𝑡
0

, 𝛼

∗

𝑡
1

, . . . , 𝛼

∗

𝑡
𝑁

), with 𝛼∗
𝑡
𝑘

defined by (32). The naive equilib-
rium price at time 𝑡

𝑁−𝑛
is given by

𝐷

𝑡
𝑁−𝑛

= E
̂Q
𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

] ,
(44)
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where the probability measure ̂Q is defined by

𝑑

̂Q

𝑑P
=

̂

Λ

𝑡
𝑁

̂

Λ

𝑡
𝑁−1

⋅ ⋅ ⋅

̂

Λ

𝑡
1

.

(45)

The naive strategy (in the primary asset) is 𝛼̂ = (𝛼̂
𝑡
0

, 𝛼̂

𝑡
1

, . . . ,

𝛼̂

𝑡
𝑁

), with 𝛼̂
𝑡
𝑘

defined by (34).

Proof. Proof of this theorem is done in Appendix B.

For the naive equilibrium price, we recover the following
classical result.

Corollary 9. The pricing kernel for naive equilibrium price
equals the marginal utility; that is,

̂

Λ

𝑡
𝑁−𝑛+1

=

E
𝑡
𝑁−𝑛+1

[𝑈

󸀠

(

̂

𝑊

𝑡
𝑁

)]

E
𝑡
𝑁−𝑛

[𝑈

󸀠
(

̂

𝑊

𝑡
𝑁

)]

, (46)

where 𝑈(𝑥) = −𝑒−𝛾𝑥, and ̂𝑊
𝑡
𝑁

(see (5)) is the wealth obtained
by naive strategies.

Proof. Proof of this corollary is done in Appendix C.

Lemma 10. The tradable assets {𝐶

𝑡
𝑛

}

𝑛=0,1,...,𝑁
and

{𝐷

𝑡
𝑛

}

𝑛=0,1,...,𝑁
are martingales under 𝑄∗.

Proof. It can be proved by following similar argument to the
proof of Lemma 5.

4. Numerical Results

Throughout this section, we specialize to a regime switching
model. A discrete time finite state homogeneous Markov
chain (MC) 𝐽 := (𝐽

𝑡
𝑛

)

𝑛=0,1,...,∞
is defined on (Ω,F, {F

𝑡
𝑛

},P)

and it takes values in the state space S = {0, 1} (which
represents two states of the market: bull and bear).The 𝑛-step
transition matrix 𝑃(𝑛) = (𝑃𝑛

𝑖𝑗
), is defined by

𝑃

(𝑛)

𝑖𝑗
:= P (𝐽

𝑡
𝑛

= 𝑗 | 𝐽

𝑡
0

= 𝑖) , 𝑖, 𝑗 = 0, 1, 𝑛 = 0, 1, . . . ,∞,
(47)

where 𝑃(0)
𝑖𝑗
= 1 when 𝑖 = 𝑗; otherwise 𝑃(0)

𝑖𝑗
= 0. We assume

that the distribution of 𝐽
0
is known, and

P (𝐽
0
= 𝑖 | F

0
) = P (𝐽

0
= 𝑖) , 𝑖 = 0, 1. (48)

The risk aversion is changed depending on the state and
denoted by 𝛾

𝑡
𝑛

= 𝛾(𝐽

𝑡
𝑛

⋅)

In this section we give a concrete example. Consider
the electricity industry one of the most weather-sensitive
businesses in the economy. Energy price and temperature
are denoted by 𝐶 and 𝑆, respectively. When the temperature
increases, there is a higher demand for electricity due to the
usage of air conditioners. In turn this will lead to higher
energy prices.Therefore,𝐶 and 𝑆 are assumed to be positively
correlated. In our model an energy provider hedges the
weather exposure by selling 𝑚

𝐷
shares of weather derivative

to the representative agent. This derivative is designed to

have a higher payoff when temperature is high (e.g., call
option). It is supposed that the representative agent’s income
depends on the weather, so he/she has an incentive to buy this
product because of his/her income exposure to the weather.
Moreover, weather derivative also allows the representative
agent to construct a more diversified portfolio. The baseline
parameters are

𝐶

0
= 1, 𝜇

𝑐

= 0.1, 𝜎

𝑐

= 0.2, 𝑆

0
= 1,

𝜇

𝑠

= 0.1, 𝜎

𝑠

= 0.2, 𝜌 = 0.5,

𝑇 = 1, 𝑁 = 52, ℎ =

1

52

, 𝛾 (0) = 1,

𝛾 (1) = 2, 𝑚

𝐷
= 1,

𝐼

𝑡
𝑁

= 4 exp (−0.1 (𝑆
𝑡
𝑁

− 𝑆

0
)) ,

𝐷

𝑡
𝑁

= (𝑆

𝑡
𝑁

− 𝐾)

+

, 𝐾 = 1.

(49)

One-step transition matrix is given by

𝑃

(1)

= (

0.6 0.4

0.6 0.4

) . (50)

Notice that 𝑆 is the normalized temperature. The income
of the agent is assumed to be exponential function of 𝑆 to
prevent negative income. However, our result in this section
still can be obtained if we use different models for income
(e.g., linear function of 𝑆). Since the income is decreasing in
𝑆, the agent has an incentive to have long position in 𝑆 which
is impossible because 𝑆 is a nontradable asset. Instead, there
is a demand for𝐷 which is a call option on nontradable asset
𝑆. Letting 𝑁 = 52 with 𝑇 = 1 means weekly rebalancing of
portfolio throughout a year. In fact, equilibriumprice changes
if we consider large 𝑁. However, the change of price is very
small (less than 0.2% even if we consider𝑁 = 200) so wemay
only focus on the results with𝑁 = 52.

Let 𝐷𝛾(0),𝛾(1)

0
be the subgame perfect equilibrium price of

𝐷 at time 0 with 𝐽
0
= 0 and time changing risk aversion.

Likewise, 𝐷𝛾(1),𝛾(0)

0
is the subgame perfect equilibrium price

of 𝐷 at time 0 with 𝐽
0
= 1. It is natural to define 𝐷𝛾,𝛾

0
as the

naive prices of 𝐷 at time 0 with risk aversion 𝛾. Recall that
this naive price ignores the time changing risk aversion of the
agent.

4.1. Effect of Risk Aversion. First of all, let us consider the
effect of risk aversion on the naive equilibrium price. As we
can see in Figure 1, the naive equilibrium price𝐷𝛾,𝛾

0
decreases

as risk aversion 𝛾 increases. This is intuitive because the
derivative𝐷 is also a risky asset and there is a less demand for
risky asset if the agent ismore risk averse. A lower demand for
𝐷 leads to a lower naive equilibriumprice as a result. In sum, a
higher risk aversion results in a lower naive equilibriumprice.

Therefore, if we consider the naive prices 𝐷𝛾(0),𝛾(0)

0
and

𝐷

𝛾(1),𝛾(1)

0
for different risk aversions 𝛾(0) and 𝛾(1) which

satisfy 𝛾(0) < 𝛾(1), we have

𝐷

𝛾(0),𝛾(0)

0
> 𝐷

𝛾(1),𝛾(1)

0
.

(51)
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Figure 1: Effect of risk aversion on the equilibrium prices.

From (51), we can infer that if 𝛾(0) < 𝛾(1), the subgame
perfect equilibrium prices 𝐷𝛾(0),𝛾(1)

0
and 𝐷𝛾(1),𝛾(0)

0
are in bet-

ween𝐷𝛾(0),𝛾(0)

0
and𝐷𝛾(1),𝛾(1)

0
; that is,

𝐷

𝛾(1),𝛾(1)

0
< 𝐷

𝛾(0),𝛾(1)

0
< 𝐷

𝛾(0),𝛾(0)

0
,

𝐷

𝛾(1),𝛾(1)

0
< 𝐷

𝛾(1),𝛾(0)

0
< 𝐷

𝛾(0),𝛾(0)

0
.

(52)

In Figure 1, we can verify the inequalities in (52).
Let 𝛾

𝑝
be the weighted average of 𝛾(0) and 𝛾(1) with

steady-state probabilities 𝑃
0
and 𝑃

1
of states 0 and 1 as

weights; that is,

𝛾

𝑝
:= 𝑃

0
𝛾 (0) + 𝑃

1
𝛾 (1) . (53)

Consider the naive equilibrium price𝐷𝛾
𝑝
,𝛾
𝑝

0
with 𝛾

𝑝
, and then

a question arises. Is the naive equilibrium price𝐷𝛾
𝑝
,𝛾
𝑝

0
a good

estimate of the subgame perfect equilibrium prices 𝐷𝛾(0),𝛾(1)

0

and 𝐷𝛾(1),𝛾(0)

0
? If the gap between 𝐷𝛾

𝑝
,𝛾
𝑝

0
and the subgame

perfect equilibrium prices is small enough, we may use the
naive equilibrium price𝐷𝛾

𝑝
,𝛾
𝑝

0
instead of the subgame perfect

equilibriumprices. However, the answer is no because the gap
is considerable for many cases.

In Figure 2, 𝛾(0) is fixed at 𝛾(0) = 1 and we examine
the changes of equilibrium prices as 𝛾(1) changes. The left
panel shows the equilibrium prices; the solid line is 𝐷𝛾

𝑝
,𝛾
𝑝

0
,

the dashed line is𝐷𝛾(0),𝛾(1)

0
, and the dotted line is𝐷𝛾(1),𝛾(0)

0
. In

the right panel, percentage changes from𝐷𝛾
𝑝
,𝛾
𝑝

0
are illustrated;

that is,

Dashed line:
𝐷

𝛾(0),𝛾(1)

0
− 𝐷

𝛾
𝑝
,𝛾
𝑝

0

𝐷

𝛾
𝑝
,𝛾
𝑝

0

× 100,

Dotted line:
𝐷

𝛾(1),𝛾(0)

0
− 𝐷

𝛾
𝑝
,𝛾
𝑝

0

𝐷

𝛾
𝑝
,𝛾
𝑝

0

× 100.

(54)

We can observe that there are significant gaps between the
naive equilibrium price𝐷𝛾

𝑝
,𝛾
𝑝

0
and the subgame perfect equi-

librium prices 𝐷𝛾(0),𝛾(1)

0
and 𝐷𝛾(1),𝛾(0)

0
for large enough 𝛾(1),

and the gaps become wider as 𝛾(1) increases. This implies
that if the agent becomes much more risk averse in the bear
market than in the bull market, the naive equilibrium price
with 𝛾

𝑝
cannot be a good estimate of the subgame perfect

equilibrium prices and thus the subgame perfect equilibrium
prices should be derived using our pricing principle.

4.2. Effect of 𝑚
𝐷
. Now we examine the effect of 𝑚

𝐷
, the

number of units of derivative 𝐷 in the market, on the
equilibrium prices.

It is observed that the equilibrium prices (both subgame
perfect and naive) are decreasing with respect to 𝑚

𝐷
in the

left panel of Figure 3.This is a consistent result with Gârleanu
et al. [25]. They considered a derivative market with two
participants: representative dealer and end users. End users’
aggregate demand for derivative 𝑑 is assumed to be a random
variable. On the contrary, dealer’s demand for derivative 𝑞
is optimally determined by utility maximization. The market
clearing condition is 𝑞 + 𝑑 = 0. Their result is

𝜕𝑝

𝜕𝑑

≥ 0.
(55)

Notice that as 𝑑 decreases, there are more derivatives which
should be purchased by representative dealer to achieve
market clearing. So the decreasing 𝑑 in Gârleanu et al. [25]
corresponds to increasing 𝑚

𝐷
in our model. Therefore, our

result
𝜕𝐷

0

𝜕𝑚

𝐷

< 0 (56)

is consistent with (55). Moreover, as we can observe in the
right panel of Figure 3, the gaps between the subgame perfect
equilibrium prices 𝐷𝛾(0),𝛾(1)

0
and 𝐷𝛾(1),𝛾(0)

0
and the naive

equilibrium price𝐷𝛾
𝑝
,𝛾
𝑝

0
is considerable for large enough𝑚

𝐷
.

5. Conclusion

We consider a multiperiod incomplete market model with
tradable risky asset, nontradable underlying and contingent
claim (derivative) written on both tradable risky asset, and
nontradable underlying. We develop an equilibrium pricing
principle for the derivative; the price of the derivative is priced
by combining the optimal strategies of representative agent
and market clearing condition for the derivative. Since the
agent’s risk aversion is assumed to be stochastic, classical
approach with precommitment gives the naive strategies
and the naive equilibrium price which do not update the
change of risk preference. Alternatively, we consider the
subgame perfect strategies and derive the corresponding
subgame perfect equilibrium price. We consider two-state
regime switchingmodel for numerical experiments.Then the
numerical result shows that naive equilibrium price cannot
be a good estimate for subgame perfect equilibrium price in
many cases. In particular, if the representative agent’s risk
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aversion changes a lot depending on regime or the number of
units of derivative we consider is large, then the gap between
naive equilibrium price and subgame perfect equilibrium
price is considerable. This shows the importance of our
subgame perfect equilibrium pricing principle.

Appendices

A. Proof of Theorem 3

From (4) and (5), it follows that

E
𝑡
𝑁−1

[− exp (−𝛾
𝑡
𝑁−1

(𝑋

𝜋

𝑡
𝑁

+ 𝐼

𝑡
𝑁

))]

= E
𝑡
𝑁−1

[− exp (−𝛾
𝑡
𝑁−1

(𝑋

𝑡
𝑁−1

+ Δ𝑋

𝜋

𝑡
𝑁−1

+ 𝐼

𝑡
𝑁

))]

= −𝑒

−𝛾
𝑡
𝑁−1

𝑋
𝜋

𝑡
𝑁−1E

𝑡
𝑁−1

[exp (−𝛾
𝑡
𝑁−1

(Δ𝑋

𝜋

𝑡
𝑁−1

+ 𝐼

𝑡
𝑁

))]

= −𝑒

−𝛾
𝑡
𝑁−1

𝑋
𝜋

𝑡
𝑁−1
𝑔

𝑁−1
(𝛼, 𝛽, ⋅) ,

(A.1)

where

𝑔

𝑁−1
(𝛼, 𝛽, ⋅) := E

𝑡
𝑁−1

[exp (−𝛾
𝑡
𝑁−1

(Δ𝑋

𝜋

𝑡
𝑁−1

+ 𝐼

𝑡
𝑁

))]

=

1

2

𝑒

−𝛾
𝑡
𝑁−1

𝛼(𝜇
𝑐

𝑡
𝑁−1

ℎ+𝜎
𝑐

𝑡
𝑁−1

√ℎ)

× E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝛽Δ𝐷
𝑡
𝑁−1
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

+

1

2

𝑒

−𝛾
𝑡
𝑁−1

𝛼(𝜇
𝑐

𝑡
𝑁−1

ℎ−𝜎
𝑐

𝑡
𝑁−1

√ℎ)

× E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝛽Δ𝐷
𝑡
𝑁−1
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

] .

(A.2)

Recall that 𝐴
𝑡
𝑘

:= {𝜔 ∈ Ω : Δ𝑏

1

𝑡
𝑘

= 1} and 𝐴𝑐

𝑡
𝑘

:= {𝜔 ∈

Ω : Δ𝑏

1

𝑡
𝑘

= −1}. The function 𝑔
𝑁−1
(𝛼, 𝛽, ⋅) has the following

properties:

𝑔

𝑁−1
(0, 0, ⋅) = E

𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
] ≤ 1. (A.3)

For a fixed 𝛽, it follows that for small ℎ

𝑔

𝑁−1
(∞, 𝛽, ⋅) = ∞; 𝑔

𝑁−1
(−∞, 𝛽, ⋅) = ∞. (A.4)

By arbitrage argument it follows that 𝐷
𝑡
𝑁−1

belongs to the
interval

𝐷

𝑡
𝑁−1

(𝜔) ∈ [inf
Q

E
Q
[𝐷

𝑡
𝑁

] , sup
Q

E
Q
[𝐷

𝑡
𝑁

]] , 𝜔 ∈ Ω,

(A.5)

where Q ranges over the set of probability measures. Conse-
quently,

Δ𝐷

𝑡
𝑁−1

(𝜔) ∈ [𝐷

𝑡
𝑁

− sup
Q

E
Q
[𝐷

𝑡
𝑁

] , 𝐷

𝑡
𝑁

− inf
Q

E
Q
[𝐷

𝑡
𝑁

]] .

(A.6)

Thus, the sets {𝜔 ∈ Ω : Δ𝐷

𝑡
𝑁−1

(𝜔) > 0} and {𝜔 ∈ Ω :

Δ𝐷

𝑡
𝑁−1

(𝜔) < 0} have positive probability. This implies that

𝑔

𝑁−1
(𝛼,∞, ⋅) = ∞, 𝑔

𝑁−1
(𝛼, −∞, ⋅) = ∞. (A.7)

From the above analysis, it follows that the minimum of the
function of 𝑔 is a critical point. First order conditions lead to

𝜕𝑔

𝑁−1

𝜕𝛼

=

−𝛾

𝑡
𝑁−1

(𝜇

𝑐

𝑡
𝑁−1

ℎ + 𝜎

𝑐

𝑡
𝑁−1

√

ℎ)

2

⋅ 𝑒

−𝛾
𝑡
𝑁−1

𝛼(𝜇
𝑐

𝑡
𝑁−1

ℎ+𝜎
𝑐

𝑡
𝑁−1

√ℎ)

× E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝛽Δ𝐷
𝑡
𝑁−1
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

+

−𝛾

𝑡
𝑁−1

(𝜇

𝑐

𝑡
𝑁−1

ℎ − 𝜎

𝑐

𝑡
𝑁−1

√

ℎ)

2

⋅ 𝑒

−𝛾
𝑡
𝑁−1

𝛼(𝜇
𝑐

𝑡
𝑁−1

ℎ−𝜎
𝑐

𝑡
𝑁−1

√ℎ)

× E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝛽Δ𝐷
𝑡
𝑁−1
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

]

= 0,

𝜕𝑔

𝑁−1

𝜕𝛽

=

1

2

𝑒

−𝛾
𝑡
𝑁−1

𝛼(𝜇
𝑐

𝑡
𝑁−1

ℎ+𝜎
𝑐

𝑡
𝑁−1

√ℎ)

× E
𝑡
𝑁−1

[−𝛾

𝑡
𝑁−1

Δ𝐷

𝑡
𝑁−1

𝑒

−𝛾
𝑡
𝑁−1

𝛽Δ𝐷
𝑡
𝑁−1

× 𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

+

1

2

𝑒

−𝛾
𝑡
𝑁−1

𝛼(𝜇
𝑐

𝑡
𝑁−1

ℎ−𝜎
𝑐

𝑡
𝑁−1

√ℎ)

× E
𝑡
𝑁−1

[−𝛾

𝑡
𝑁−1

Δ𝐷

𝑡
𝑁−1

𝑒

−𝛾
𝑡
𝑁−1

𝛽Δ𝐷
𝑡
𝑁−1

× 𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

]

= 0.

(A.8)

Recall that

Δ𝐷

𝑡
𝑁−1

= 𝐷

𝑡
𝑁

− E
Q∗

𝑡
𝑁−1

[𝐷

𝑡
𝑁

] , (A.9)

for an equilibrium pricing measure Q∗ to be found. Since
EQ∗

𝑡
𝑁−1

[𝐷

𝑡
𝑁

] isF
𝑡
𝑁−1

measurable, it follows that

𝛼

∗

𝑡
𝑁−1

=

1

2𝛾

𝑡
𝑁−1

𝜎

𝑐

𝑡
𝑁−1

√

ℎ

log(
1 + 𝑟

𝑐

𝑡
𝑁−1

√

ℎ

1 − 𝑟

𝑐

𝑡
𝑁−1

√

ℎ

)

+

1

2𝛾

𝑡
𝑁−1

𝜎

𝑐

𝑡
𝑁−1

√

ℎ

× log(
E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝛽
∗

𝑡
𝑁−1

𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝛽
∗

𝑡
𝑁−1

𝐷
𝑁

𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

]

) .

(A.10)
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By the equilibrium condition 𝛽∗
𝑡
𝑁−1

= 𝑚

𝐷
. This together with

𝜕𝑔

𝑁−1
/𝜕𝛽 = 0 leads to

E
𝑡
𝑁−1

[Δ𝐷

𝑡
𝑁−1

𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
Δ𝐷
𝑡
𝑁−1
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

= −𝑒

2𝛾
𝑡
𝑁−1

𝛼
∗

𝑡
𝑁−1

𝜎
𝑐

𝑡
𝑁−1

√ℎ

E
𝑡
𝑁−1

× [Δ𝐷

𝑡
𝑁−1

𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
Δ𝐷
𝑡
𝑁−1
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

] ,

(A.11)

𝑒

2𝛾
𝑡
𝑁−1

𝛼
∗

𝑡
𝑁−1

𝜎
𝑐

𝑡
𝑁−1

√ℎ

=

(1 + 𝑟

𝑐

𝑡
𝑁−1

√

ℎ)E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

(1 − 𝑟

𝑐

𝑡
𝑁−1

√

ℎ)E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

]

.

(A.12)

Combing the above equations leads to

2

1 − 𝑟

𝑐

𝑡
𝑁−1

√

ℎ

E
Q∗

𝑡
𝑁−1

[𝐷

𝑡
𝑁

]

=

E
𝑡
𝑁−1

[𝐷

𝑡
𝑁

𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

+

(1 + 𝑟

𝑐

𝑡
𝑁−1

√

ℎ)

(1 − 𝑟

𝑐

𝑡
𝑁−1

√

ℎ)

×

E
𝑡
𝑁−1

[𝐷

𝑡
𝑁

𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

]

E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

]

.

(A.13)

This together with (A.9) implies that

𝐷

𝑡
𝑁−1

=

1 − 𝑟

𝑐

𝑡
𝑁−1

√

ℎ

2

×

E
𝑡
𝑁−1

[𝐷

𝑡
𝑁

𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑡
𝑁−1

]

+

1 + 𝑟

𝑐

𝑡
𝑁−1

√

ℎ

2

×

E
𝑡
𝑁−1

[𝐷

𝑡
𝑁

𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

]

E
𝑡
𝑁−1

[𝑒

−𝛾
𝑡
𝑁−1

𝑚
𝐷
𝐷
𝑡
𝑁
𝑒

−𝛾
𝑡
𝑁−1

𝐼
𝑡
𝑁
| 𝐴

𝑐

𝑡
𝑁−1

]

.

(A.14)

Thus, the equilibrium price is

𝐷

𝑡
𝑁−1

= E
𝑡
𝑁−1

[𝐷

𝑡
𝑁

Λ

∗

𝑡
𝑁

] , (A.15)

where Λ∗

𝑡
𝑁

was defined in (22).

B. Proof of Theorem 8

We will prove the result for the subgame perfect equilibrium
price; the proof for the naive equilibrium price is similar and

hence omitted. First consider the time period [(𝑁− 𝑛)ℎ,(𝑁−
𝑛+1)ℎ) and choose an arbitrary control 𝜋 = (𝛼, 𝛽) as follows:

𝜋 = {

𝜋

∗

𝑡
𝑛

, for 𝑛 = 𝑁 − (𝑛 − 1) ,𝑁 − (𝑛 − 2) , . . . , 𝑁 − 1,
𝜋

𝑡
𝑛

, for 𝑛 = 𝑁 − 𝑛.
(B.1)

From

𝑋

𝜋

𝑡
𝑁

= 𝑋

𝜋

𝑡
𝑁−(𝑛−1)

+

𝑁−1

∑

𝑘=𝑁−(𝑛−1)

Δ𝑋

∗

𝑡
𝑘

, (B.2)

it follows that

E
𝑡
𝑁−𝑛

[− exp (−𝛾
𝑡
𝑁−𝑛

(𝑋

𝜋

𝑡
𝑁

+ 𝐼

𝑡
𝑁

))]

= −𝑒

−𝛾
𝑡
𝑁−𝑛

𝑋
𝜋

𝑡
𝑁−𝑛E

𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
𝑁−𝑛

Δ𝑋
𝜋

𝑡
𝑁−𝑛E

𝑡
𝑁−𝑛+1

×[exp(−𝛾
𝑡
𝑁−𝑛

(

𝑁−1

∑

𝑘=𝑁−(𝑛−1)

Δ𝑋

∗

𝑡
𝑘

+ 𝐼

𝑡
𝑁

))]]

= −𝑒

−𝛾
𝑡
𝑁−𝑛

𝑋
𝜋

𝑡
𝑁−𝑛E

𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

Δ𝑋
𝜋

𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−(𝑛−1)

]

= −𝑒

−𝛾
𝑡
𝑁−𝑛

𝑋
𝜋

𝑡
𝑁−𝑛
𝑔

𝑁−𝑛
(𝛼, 𝛽, ⋅) .

(B.3)

Here for 𝑘 = 𝑁 − (𝑛 − 1), . . . , 𝑁 − 2,𝑁 − 1,

Δ𝑋

∗

𝑡
𝑘

= 𝛼

∗

𝑡
𝑘

(𝜇

𝑐

𝑡
𝑘

ℎ + 𝜎

𝑐

𝑡
𝑘

√

ℎΔ𝑏

1

𝑡
𝑘

) + 𝑚

𝐷
Δ𝐷

𝑡
𝑘

,

𝑔

𝑁−𝑛
(𝛼, 𝛽, ⋅) := E

𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

Δ𝑋
𝜋

𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−(𝑛−1)

]

=

1

2

𝑒

−𝛾
𝑡
𝑁−𝑛

𝛼(𝜇
𝑐

𝑡
𝑁−𝑛

ℎ+𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ)

E
𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
𝑁−𝑛

𝛽Δ𝐷
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

]

+

1

2

𝑒

−𝛾
𝑡
𝑁−𝑛

𝛼(𝜇
𝑐

𝑡
𝑁−𝑛

ℎ−𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ)

E
𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
𝑁−𝑛

𝛽Δ𝐷
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

(B.4)

with 𝐴
𝑡
𝑁−𝑛

:= {𝜔 ∈ Ω : Δ𝑏

1

𝑡
𝑁−𝑛

= 1} and 𝐴𝑐

𝑡
𝑁−𝑛

:= {𝜔 ∈ Ω :

Δ𝑏

1

𝑡
𝑁−𝑛

= −1}. Arguing as in the one period case we get

𝑔

𝑁−𝑛
(0, 0, ⋅) = E

𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

] ≤ ∞;

𝑔

𝑁−𝑛
(∞, 𝛽, ⋅) = ∞; 𝑔

𝑁−𝑛
(−∞, 𝛽, ⋅) = ∞.

(B.5)

From arbitrage considerations it follows that

𝐷

𝑡
𝑁−𝑛

(𝜔) ∈ [inf
Q

E
Q
[𝐷

𝑡
𝑁−𝑛+1

] , sup
Q

E
Q
[𝐷

𝑡
𝑁−𝑛+1

]] , (B.6)
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whereQ is the set of probability measures. Thus

Δ𝐷

𝑡
𝑁−𝑛

(𝜔) ∈ [𝐷

𝑡
𝑁−𝑛+1

− sup
Q

E
Q
[𝐷

𝑡
𝑁−𝑛+1

] ,

𝐷

𝑡
𝑁−𝑛+1

− inf
Q

E
Q
[𝐷

𝑡
𝑁−𝑛+1

]] ,

(B.7)

so the sets {𝜔 : Δ𝐷
𝑡
𝑁−𝑛

(𝜔) > 0} and {𝜔 : Δ𝐷
𝑡
𝑁−𝑛

(𝜔) < 0} have
positive probability. Consequently, it follows that

𝑔

𝑁−𝑛
(𝛼,∞, ⋅) = ∞; 𝑔

𝑁−𝑛
(𝛼, −∞, ⋅) = ∞. (B.8)

Therefore the minimum of 𝑔
𝑁−𝑛
(𝛼, 𝛽, ⋅) is a critical point.

Hence

𝜕𝑔

𝑁−𝑛

𝜕𝛼

=

(𝜇

𝑐

𝑡
𝑁−𝑛

ℎ + 𝜎

𝑐

𝑡
𝑁−𝑛

√

ℎ)

2

𝑒

−𝛾
𝑡
𝑁−𝑛

𝛼(𝜇
𝑐

𝑡
𝑁−𝑛

ℎ+𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ)

× E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝛽
∗

Δ𝐷
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

]

+

(𝜇

𝑐

𝑡
𝑁−𝑛

ℎ − 𝜎

𝑐

𝑡
𝑁−𝑛

√

ℎ)

2

𝑒

−𝛾
𝑡
𝑁−𝑛

𝛼(𝜇
𝑐

𝑡
𝑁−𝑛

ℎ−𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ)

× E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝛽
∗

Δ𝐷
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

= 0.

(B.9)

By direct calculation, we verify that the subgame perfect
strategy is

𝛼

∗

𝑡
𝑁−𝑛

=

1

2𝛾

𝑡
𝑁−𝑛

𝜎

𝑐

𝑡
𝑁−𝑛

√

ℎ

log(
1 + 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ

1 − 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ

)

+

1

2𝛾

𝑡
𝑁−𝑛

𝜎

𝑐

𝑡
𝑁−𝑛

√

ℎ

× log(
E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝛽
∗

𝑡
𝑁−𝑛

𝐷
𝑡
𝑁−𝑛+1

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

]

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝛽
∗

𝑡
𝑁−𝑛

𝐷
𝑡
𝑁−𝑛+1

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

) .

(B.10)

From the equilibrium conditions it follows that 𝛽∗
𝑡
𝑁−𝑛

= 1.
This, combined with 𝜕𝑔

𝑁−𝑛
/𝜕𝛽 = 0, yields the equilibrium

price at 𝑇
𝑁−𝑛

. First, from 𝜕𝑔
𝑁−𝑛
/𝜕𝛽 = 0, one gets

E
𝑡
𝑁−𝑛

[Δ𝐷

𝑡
𝑁−𝑛

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
Δ𝐷
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

]

= −𝑒

2𝛾
𝑡
𝑁−𝑛

𝛼
∗

𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ

E
𝑡
𝑁−𝑛

× [Δ𝐷

𝑡
𝑁−𝑛

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
Δ𝐷
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

] .

(B.11)

From 𝜕𝑔
𝑁−𝑛
/𝜕𝛼 = 0 it follows that

𝑒

2𝛾
𝑡
𝑁−𝑛

𝛼
∗

𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ

= ( (1 + 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ)E
𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

])

× ( (1 − 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ)E
𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

])

−1

.

(B.12)

This, together with

Δ𝐷

𝑡
𝑁−𝑛

= 𝐷

𝑡
𝑁−𝑛+1

− E
Q∗

𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

] , (B.13)

(hereQ∗ is the equilibrium probability measure to be found)
yields

2

1 − 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ

E
Q∗

𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

]

= (E
𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

× 𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

])

× (E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

× 𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

])

−1

+

(1 + 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ)

(1 − 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ)

× (E
𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

× 𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

])

× (E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

× 𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

])

−1

.

(B.14)

Consequently

𝐷

𝑡
𝑁−𝑛

=

1 − 𝑟

𝑐

𝑡
𝑛

√

ℎ

2

× (E
𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

× 𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

])

× (E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

× 𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑡
𝑁−𝑛

])

−1
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+

1 + 𝑟

𝑐

𝑡
𝑛

√

ℎ

2

× (E
𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

× 𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

])

× (E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
𝑁−𝑛

𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

× 𝑒

−𝛾
𝑡
𝑁−𝑛

𝑌
∗

𝑡
𝑁−𝑛+1

| 𝐴

𝑐

𝑡
𝑁−𝑛

])

−1

.

(B.15)

Thus, the equilibrium price is

𝐷

𝑡
𝑁−𝑛

= E
𝑡
𝑁−𝑛

[𝐷

𝑡
𝑁−𝑛+1

Λ

∗

𝑡
𝑁−𝑛+1

] , (B.16)

with Λ∗

𝑡
𝑁−𝑛+1

defined in (35).

C. Proof of Corollary 9

We consider the time period [(𝑁 − 𝑛)ℎ,(𝑁 − 𝑛 + 1)ℎ). Recall
that

̂

𝑋

𝑡
𝑁

=

̂

𝑋

𝑡
𝑁−𝑛

+ Δ

̂

𝑋

𝑡
𝑁−𝑛

+

𝑁−1

∑

𝑘=𝑁−(𝑛−1)

Δ

̂

𝑋

𝑡
𝑘

, (C.1)

where

Δ

̂

𝑋

𝑡
𝑘

= 𝛼̂

𝑡
𝑘

(𝜇

𝑐

𝑡
𝑘

ℎ + 𝜎

𝑐

𝑡
𝑘

√

ℎΔ𝑏

1

𝑡
𝑘

) + 𝑚

𝐷
Δ𝐷

𝑡
𝑘

, (C.2)

for 𝑘 = 𝑁 − (𝑛 − 1), . . . , 𝑁 − 2,𝑁 − 1. By definition of ̂𝑌
𝑡
𝑘

, we
have

E
𝑡
𝑁−𝑛

[𝑈

󸀠

(

̂

𝑊

𝑡
𝑁

)] = 𝛾

𝑡
0

𝑒

−𝛾
𝑡
0

𝑋̂
𝑡
𝑁−𝑛E

𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

Δ𝑋̂
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
0

𝑌̂
𝑡
𝑁−𝑛+1

] ,

E
𝑡
𝑁−𝑛+1

[𝑈

󸀠

(

̂

𝑊

𝑡
𝑁

)] = 𝛾

𝑡
0

𝑒

−𝛾
𝑡
0

𝑋̂
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
0

Δ𝑋̂
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
0

𝑌̂
𝑡
𝑁−𝑛+1

,

E
𝑡
𝑁−𝑛+1

[𝑈

󸀠

(

̂

𝑊

𝑡
𝑁

)]

E
𝑡
𝑁−𝑛

[𝑈

󸀠
(

̂

𝑊

𝑡
𝑁

)]

=

𝑒

−𝛾
𝑡
0

Δ𝑋̂
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
0

𝑌̂
𝑡
𝑁−𝑛+1

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

Δ𝑋̂
𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
0

𝑌̂
𝑡
𝑁−𝑛+1

]

=

𝑒

−𝛾
𝑡
0

𝛼̂
𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎΔ𝑏
1

𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

𝛼̂
𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎΔ𝑏
1

𝑡
𝑁−𝑛
𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

]

.

(C.3)

Recall that

𝑒

2𝛾
𝑡
0

𝛼̂
𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ

=

(1 + 𝑟

𝑐

𝑡
𝑁−𝑛

)E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑡
𝑁−𝑛

]

(1 − 𝑟

𝑐

𝑡
𝑁−𝑛

)E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

.

(C.4)

Using (C.4), we have

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

𝛼̂
𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎΔ𝑏
1

𝑡
𝑁−𝑛

× 𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

]

=

1

2

𝑒

−𝛾
𝑡
0

𝛼̂
𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ

E
𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑡
𝑁−𝑛

]

+

1

2

𝑒

𝛾
𝑡
0

𝛼̂
𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ

E
𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

=

1

1 + 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ

𝑒

𝛾
𝑡
0

𝛼̂
𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ

E
𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

=

1

1 − 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ

𝑒

−𝛾
𝑡
0

𝛼̂
𝑡
𝑁−𝑛

𝜎
𝑐

𝑡
𝑁−𝑛

√ℎ

E
𝑡
𝑁−𝑛

× [𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑡
𝑁−𝑛

] .

(C.5)

Therefore, it follows that on the set of {𝜔 : 𝜔 ∈ 𝐴𝑐

𝑡
𝑁−𝑛

}

E
𝑡
𝑁−𝑛+1

[𝑈

󸀠

(

̂

𝑊

𝑡
𝑁

)]

E
𝑡
𝑁−𝑛

[𝑈

󸀠
(

̂

𝑊

𝑡
𝑁

)]

=

(1 + 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ) 𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑐

𝑡
𝑁−𝑛

]

.

(C.6)

Moreover, on the set of {𝜔 : 𝜔 ∈ 𝐴
𝑡
𝑁−𝑛

},

E
𝑡
𝑁−𝑛+1

[𝑈

󸀠

(

̂

𝑊

𝑡
𝑁

)]

E
𝑡
𝑁−𝑛

[𝑈

󸀠
(

̂

𝑊

𝑡
𝑁

)]

=

(1 − 𝑟

𝑐

𝑡
𝑁−𝑛

√

ℎ) 𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

E
𝑡
𝑁−𝑛

[𝑒

−𝛾
𝑡
0

(𝑚
𝐷
𝐷
𝑡
𝑁−𝑛+1

+𝑌̂
𝑡
𝑁−𝑛+1

)

| 𝐴

𝑡
𝑁−𝑛

]

.

(C.7)

Therefore

E
𝑡
𝑁−𝑛+1

[𝑈

󸀠

(

̂

𝑊

𝑡
𝑁

)]

E
𝑁−𝑛

[𝑈

󸀠
(

̂

𝑊

𝑡
𝑁

)]

=

̂

Λ

𝑡
𝑁−𝑛+1

, (C.8)

with ̂Λ
𝑡
𝑁−𝑛+1

defined in (36).
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