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Relationships between fuzzy relations and fuzzy topologies are deeply researched. The concept of fuzzy approximating spaces is
introduced and decision conditions that a fuzzy topological space is a fuzzy approximating space are obtained.

1. Introduction

Rough set theory, proposed by Pawlak [1], is a newmathemat-
ical tool for data reasoning. It may be seen as an extension
of classical set theory and has been successfully applied to
machine learning, intelligent systems, inductive reasoning,
pattern recognition, mereology, image processing, signal
analysis, knowledge discovery, decision analysis, expert sys-
tems, and many other fields [2–5].

The basic structure of rough set theory is an approxima-
tion space. Based on it, lower and upper approximations can
be induced. Using these approximations, knowledge hidden
in information systems may be revealed and expressed in the
form of decision rules. A key notion in Pawlak rough set
model is equivalence relations.The equivalence classes are the
building blocks for the construction of these approximations.
In the real world, the equivalence relation is, however, too
restrictive for many practical applications. To address this
issue, many interesting and meaningful extensions of Pawlak
rough sets have been presented. Equivalence relations can be
replaced by tolerance relations [6], similarity relations [7],
binary relations [8, 9], and so on.

Various fuzzy generalizations of rough approximations
have been proposed [10–14]. The most common fuzzy rough
set is obtained by replacing the crisp relations with fuzzy rela-
tions on the universe and crisp subsetswith fuzzy sets. Dubois
and Prade [10] first proposed the concept of rough fuzzy sets
and fuzzy rough sets and pointed out that a rough fuzzy
set is a special case of a fuzzy rough set. Now, fuzzy rough
sets have been used to solve practical problems such as data

mining [15], approximate reasoning [5], and medical time
series.

An interesting and natural research topic in rough set
theory is to study the relationship between rough sets and
topologies. Many authors studied topological properties of
rough sets [16–21]. It is known that the pair of lower andupper
approximation operators induced by a reflexive and transitive
relation is exactly the pair of interior and closure operators of
a topology [16, 22].

The purpose of this paper is to investigate further topo-
logical properties of fuzzy rough sets.

The remaining part of this paper is organized as follows.
In Section 2, we recall some basic concepts about fuzzy sets
and fuzzy topologies. In Section 3, fuzzy rough approxima-
tion operators are further investigated. In Section 4, relation-
ships between fuzzy approximation spaces and fuzzy topolo-
gies are established. In Section 5, the concept of fuzzy approx-
imating spaces is introduced and decision conditions that a
fuzzy topological space is a fuzzy approximating space are
obtained. Conclusions are in Section 6.

2. Preliminaries

Throughout this paper, 𝑈 denotes a nonempty finite set, 𝐼
denotes [0, 1], and 𝐹(𝑈) denotes the set of all fuzzy sets in
𝑈. For 𝑎 ∈ 𝐼, 𝑎 denotes the constant fuzzy set in 𝑈.

For all 𝐴 ∈ 𝐹(𝑈), we denote

𝑅
𝐴
= {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 : 𝐴 (𝑥) > 𝐴 (𝑦)} . (1)

Obviously, 𝑅
𝐴
= 0 ⇔ 𝐴 = 𝑎 for some 𝜆 ∈ 𝐼.
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A fuzzy set is called a fuzzy point in𝑈, if it takes the value
0 for each 𝑦 ∈ 𝑈 except one, say, 𝑥 ∈ 𝑈. If its value at 𝑥
is 𝜆 (0 < 𝜆 ≤ 1), we denote this fuzzy point by 𝑥

𝜆
, where

the point 𝑥 is called its support and 𝜆 is called its height (see
[23, 24]).

Specially,

𝑥
1
(𝑦) = {

1, 𝑦 = 𝑥,

0, 𝑦 ̸= 𝑥.
(2)

Remark 1. Consider

𝐴 = ⋃

𝑥∈𝑈

(𝐴 (𝑥) 𝑥1) (𝐴 ∈ 𝐹 (𝑈)) . (3)

Definition 2 (see [25]). 𝜏 ⊆ 𝐹(𝑈) is called a fuzzy topology on
𝑈, if

(i) ∀𝑎 ∈ 𝐼, 𝑎 ∈ 𝜏,
(ii) 𝐴, 𝐵 ∈ 𝜏 ⇒ 𝐴 ∩ 𝐵 ∈ 𝜏,
(iii) {𝐴

𝑗
: 𝑗 ∈ 𝐽} ⊆ 𝜏 ⇒ ⋃

𝑗∈𝐽
𝐴
𝑗
∈ 𝜏.

The pair (𝑈, 𝜏) is called a fuzzy topological space. Every
member of 𝜏 is called a fuzzy open set in 𝑈. Its complement
is called a fuzzy closed set in 𝑈.

We denote 𝜏𝑐 = {𝐴 ∈ 𝐹(𝑈) : 𝐴𝑐 ∈ 𝜏}.
It should be pointed out that if (i) in Definition 2 is

replaced [26] by

(i)󸀠 0, 1 ∈ 𝜏,

then 𝜏 is a fuzzy topology in the sense of Chang [26]. We can
see that a fuzzy topology in the sense of Lowenmust be a fuzzy
topology in the sense of Chang. In this paper, we always con-
sider the fuzzy topology in the sense of Lowen.

A fuzzy topology 𝜏 is called Alexandrov [27] if (ii) in
Definition 2 is replaced by

(ii)󸀠 {𝐴
𝑗
: 𝑗 ∈ 𝐽} ⊆ 𝜏 󳨐⇒ ⋂

𝑗∈𝐽
𝐴
𝑗
∈ 𝜏.

Definition 3 (see [28]). Let 𝑅 be a relation on 𝑈. ∀𝑥 ∈ 𝑈,
denote

𝑅
𝑝 (𝑥) = {𝑦 ∈ 𝑈 : (𝑦, 𝑥) ∈ 𝑅} ,

𝑅
𝑠 (𝑥) = {𝑦 ∈ 𝑈 : (𝑥, 𝑦) ∈ 𝑅} .

(4)

Then 𝑅
𝑝
(𝑥) and 𝑅

𝑠
(𝑥) are called the predecessor and succes-

sor neighborhood of 𝑥, respectively.

3. Fuzzy Approximation Spaces and Fuzzy
Rough Approximation Operators

Recall that 𝑅 is called a fuzzy relation on 𝑈 if 𝑅 ∈ 𝐹(𝑈 × 𝑈).

Definition 4 (see [14, 29]). Let𝑅be a fuzzy relation on𝑈.Then
𝑅 is called

(1) reflexive, if 𝑅(𝑥, 𝑥) = 1 for any 𝑥 ∈ 𝑈,
(2) symmetric, if 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) for any 𝑥, 𝑦 ∈ 𝑈,

(3) transitive, if 𝑅(𝑥, 𝑧) ≥ 𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑧) for any
𝑥, 𝑦, 𝑧 ∈ 𝑈.

Let 𝑅 be a fuzzy relation on 𝑈. 𝑅 is called preorder if 𝑅 is
reflexive and transitive.𝑅 is called equivalence if𝑅 is reflexive,
symmetric, and transitive.

Definition 5 (see [14, 29]). Let 𝑅 be a fuzzy relation on𝑈. The
pair (𝑈, 𝑅) is called a fuzzy approximation space. Based on
(𝑈, 𝑅), the fuzzy lower and the fuzzy upper approximation
of 𝐴 ∈ 𝐹(𝑈), denoted, respectively, by 𝑅(𝐴) and 𝑅(𝐴), are
defined as follows:

𝑅 (𝐴) (𝑥) = ⋀

𝑦∈𝑈

(𝐴 (𝑦) ∨ (1 − 𝑅 (𝑥, 𝑦))) (𝑥 ∈ 𝑈) ,

𝑅 (𝐴) (𝑥) = ⋁

𝑦∈𝑈

(𝐴 (𝑦) ∧ 𝑅 (𝑥, 𝑦)) (𝑥 ∈ 𝑈) .

(5)

The pair (𝑅(𝐴), 𝑅(𝐴)) is called the fuzzy rough set of 𝐴
with respect to (𝑈, 𝑅).
𝑅 : 𝐹(𝑈) → 𝐹(𝑈) and 𝑅 : 𝐹(𝑈) → 𝐹(𝑈) are called

the fuzzy lower approximation operator and the fuzzy upper
approximation operator, respectively. In general, we refer to𝑅
and 𝑅 as the fuzzy rough approximation operators.

Remark 6. 𝑅(𝑥
1
)(𝑦) = 𝑅(𝑦, 𝑥) and 𝑅((𝑥

1
)
𝑐
)(𝑦) = 1 −

𝑅(𝑦, 𝑥) (𝑥, 𝑦 ∈ 𝑈).

Proposition 7 (see [30]). Let𝑅 be a fuzzy relation on𝑈.Then,
for any 𝐴, 𝐵 ∈ 𝐹(𝑈), {𝐴

𝑗
: 𝑗 ∈ 𝐽} ⊆ 𝐹(𝑈) and 𝜆 ∈ 𝐼,

(1) 𝑅(1) = 1, 𝑅(0) = 0,
(2) 𝐴 ⊆ 𝐵 ⇒ 𝑅(𝐴) ⊆ 𝑅(𝐵), 𝑅(𝐴) ⊆ 𝑅(𝐵),
(3) 𝑅(𝐴𝑐) = (𝑅(𝐴))𝑐, 𝑅(𝐴𝑐) = (𝑅(𝐴))𝑐,
(4) 𝑅(⋂

𝑗∈𝐽
𝐴
𝑗
) = ⋂

𝑗∈𝐽
(𝑅(𝐴
𝑗
)), 𝑅(⋃

𝑗∈𝐽
𝐴
𝑗
) =

⋃
𝑗∈𝐽
(𝑅(𝐴
𝑗
)),

(5) 𝑅(𝜆𝐴) = 𝜆𝑅(𝐴).

Theorem 8 (see [14, 29, 30]). Let 𝑅 be a fuzzy relation on 𝑈.
Then consider the following.

(1) 𝑅 is reflexive⇔ (𝐼𝐿𝑅) ∀𝐴 ∈ 𝐹(𝑈), 𝑅(𝐴) ⊆ 𝐴.

⇔ (𝐼𝑈𝑅) ∀𝐴 ∈ 𝐹(𝑈), 𝐴 ⊆ 𝑅(𝐴).

(2) 𝑅 is symmetric ⇔ (𝐼𝐿𝑆) ∀(𝑥, 𝑦) ∈ 𝑈 × 𝑈,
𝑅((𝑥
1
)
𝑐
)(𝑦) = 𝑅((𝑦

1
)
𝑐
)(𝑥).

⇔ (𝐼𝑈𝑆) ∀(𝑥, 𝑦) ∈ 𝑈×𝑈, 𝑅(𝑥
1
)(𝑦) = 𝑅(𝑦

1
)(𝑥).

(3) 𝑅 is transitive ⇔ (𝐼𝐿𝑇) ∀𝐴 ∈ 𝐹(𝑈), 𝑅(𝐴) ⊆
𝑅(𝑅(𝐴)).

⇔ (𝐼𝑈𝑇) ∀𝐴 ∈ 𝐹(𝑈), 𝑅(𝑅(𝐴)) ⊆ 𝑅(𝐴).

Remark 9. (1) ∀𝑎 ∈ 𝐼, 𝑅(𝑎) ⊆ 𝑎 ⊆ 𝑅(𝑎);
(2) if 𝑅 is reflexive, then ∀𝑎 ∈ 𝐼, 𝑅(𝑎) = 𝑎 = 𝑅(𝑎).
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Theorem 10. Let𝑅 be a fuzzy relation on𝑈 and let 𝜏 be a fuzzy
topology on 𝑈. If one of the following conditions is satisfied,
then 𝑅 is preorder:

(1) 𝑅 is the closure operator of 𝜏,
(2) 𝑅 is the interior operator of 𝜏.

Proof. (1) Let 𝑥, 𝑦, 𝑧 ∈ 𝑈. Put 𝑐𝑙
𝜏
(𝑧
1
)(𝑦) = 𝜆. Note that 𝑅 is

the interior operator of 𝜏. Then

𝑅 (𝑥, 𝑥) = 𝑅 (𝑥1) (𝑥) = 𝑐𝑙𝜏 (𝑥1) (𝑥) ≥ 𝑥1 (𝑥) = 1. (6)

Thus 𝑅 is reflexive. By Remark 1, Remark 6, and
Proposition 7(5),

𝑅 (𝑥, 𝑦) ∧ 𝑅 (𝑦, 𝑧)

= 𝑅 (𝑦
1
) (𝑥) ∧ 𝑅 (𝑧1) (𝑦) = 𝑅 (𝑦1) (𝑥) ∧ 𝑐𝑙𝜏 (𝑧1) (𝑦)

= 𝑅 (𝑦
1
) (𝑥) ∧ 𝜆 = 𝜆𝑅 (𝑦1) (𝑥) = 𝑅 (𝜆𝑦1) (𝑥)

= 𝑐𝑙
𝜏
(𝜆𝑦
1
) (𝑥) = 𝑐𝑙𝜏 (𝑐𝑙𝜏 (𝑧1) (𝑦) 𝑦1) (𝑥)

≤ 𝑐𝑙
𝜏
(⋃

𝑡∈𝑈

(𝑐𝑙
𝜏
(𝑧
1
) (𝑡) 𝑡1)) (𝑥)

= 𝑐𝑙
𝜏
(𝑐𝑙
𝜏
(𝑧
1
)) (𝑥) = 𝑐𝑙𝜏 (𝑧1) (𝑥) = 𝑅 (𝑥, 𝑧) .

(7)

Then 𝑅 is transitive. Hence 𝑅 is preorder.
(2)The proof is similar to (1).

Proposition 11. Let 𝑅 be a fuzzy relation on𝑈. Then, for each
𝐴 ∈ 𝐹(𝑈) with 𝑅

𝐴
̸= 0, consider the following.

(1) (a) 𝑅(𝐴) ⊇ 𝐴 ⇔ (𝐹𝐿𝑂) ∀(𝑥, 𝑦) ∈ 𝑅
𝐴
, 1 − 𝑅(𝑥, 𝑦) ≥

𝐴(𝑥) ∨ 𝐴(𝑦).

(b) 𝑅(𝐴) ⊆ 𝐴 ⇔ (𝐹𝑈𝑂) ∀(𝑥, 𝑦) ∈ 𝑅
𝐴
, 𝑅(𝑦, 𝑥) ≤

𝐴(𝑥) ∧ 𝐴(𝑦).
(2) If 𝑅 is reflexive, then

(a) 𝑅(𝐴) = 𝐴 ⇔ (𝐹𝐿𝑅) ∀(𝑥, 𝑦) ∈ 𝑅
𝐴
, 1 − 𝑅(𝑥, 𝑦) ≥

𝐴(𝑥) ∨ 𝐴(𝑦).

(b) 𝑅(𝐴) = 𝐴 ⇔ (𝐹𝑈𝑅) ∀(𝑥, 𝑦) ∈ 𝑅
𝐴
, 𝑅(𝑦, 𝑥) ≤

𝐴(𝑥) ∧ 𝐴(𝑦).

Proof. (1) (a) Necessity. Suppose that 𝑅(𝐴) ⊇ 𝐴. Note that
∀𝑥 ∈ 𝑈,

⋀

𝑦∈𝑈

(𝐴 (𝑦) ∨ (1 − 𝑅 (𝑥, 𝑦))) = (𝑅 (𝐴)) (𝑦) ≥ 𝐴 (𝑥) . (8)

Then ∀𝑥, 𝑦 ∈ 𝑈, 𝐴(𝑦) ∨ (1 − 𝑅(𝑥, 𝑦)) ≥ 𝐴(𝑥). Since ∀(𝑥, 𝑦) ∈
𝑅
𝐴
, 𝐴(𝑥) > 𝐴(𝑦), we have

1 − 𝑅 (𝑥, 𝑦) ≥ 𝐴 (𝑥) = 𝐴 (𝑥) ∨ 𝐴 (𝑦) ((𝑥, 𝑦) ∈ 𝑅
𝐴
) . (9)

Sufficiency. Suppose that (𝐹𝐿𝑂) holds. Let 𝑥 ∈ 𝑈.
Consider the following.

(i) If 𝑦 ∈ (𝑅
𝐴
)
𝑠
(𝑥), then

𝐴 (𝑦) ∨ (1 − 𝑅 (𝑥, 𝑦)) ≥ 𝐴 (𝑦) ∨ (𝐴 (𝑥) ∨ 𝐴 (𝑦)) ≥ 𝐴 (𝑥) .

(10)

(ii) If 𝑦 ∉ (𝑅
𝐴
)
𝑠
(𝑥), then 𝐴(𝑦) ≥ 𝐴(𝑥) and so

𝐴 (𝑦) ∨ (1 − 𝑅 (𝑥, 𝑦)) ≥ 𝐴 (𝑦) ≥ 𝐴 (𝑥) . (11)

Hence 𝑅(𝐴)(𝑥) = ⋀
𝑦∈𝑈
(𝐴(𝑦) ∨ (1 − 𝑅(𝑥, 𝑦))) ≥ 𝐴(𝑥).

Thus 𝑅(𝐴) ⊇ 𝐴.
(b) Necessity. Suppose that 𝑅(𝐴) ⊆ 𝐴. Note that ∀𝑦 ∈ 𝑈,

⋁

𝑥∈𝑈

(𝐴 (𝑥) ∧ 𝑅 (𝑦, 𝑥)) = 𝑅 (𝐴) (𝑦) ≤ 𝐴 (𝑦) . (12)

Then ∀𝑥, 𝑦 ∈ 𝑈, 𝐴(𝑥) ∧ 𝑅(𝑦, 𝑥) ≤ 𝐴(𝑦). Since ∀(𝑥, 𝑦) ∈ 𝑅
𝐴
,

𝐴(𝑥) > 𝐴(𝑦), we have

𝑅 (𝑦, 𝑥) ≤ 𝐴 (𝑦) = 𝐴 (𝑥) ∧ 𝐴 (𝑦) ((𝑥, 𝑦) ∈ 𝑅
𝐴
) . (13)

Sufficiency. Suppose that (𝐹𝐿𝑂) holds. Let 𝑦 ∈ 𝑈.
Consider the following.

(i) If 𝑥 ∈ (𝑅
𝐴
)
𝑝
(𝑦), then (𝑥, 𝑦) ∈ 𝑅

𝐴
and so

𝐴 (𝑥) ∨ 𝑅 (𝑦, 𝑥) ≤ 𝐴 (𝑥) ∧ (𝐴 (𝑥) ∧ 𝐴 (𝑦)) ≤ 𝐴 (𝑦) . (14)

(ii) If 𝑥 ∉ (𝑅
𝐴
)
𝑝
(𝑦), then 𝐴(𝑥) ≤ 𝐴(𝑦) and so

𝐴 (𝑥) ∧ 𝑅 (𝑦, 𝑥) ≤ 𝐴 (𝑥) ≤ 𝐴 (𝑦) . (15)

Hence (𝑅(𝐴))(𝑦) = ⋁
𝑥∈𝑈
(𝐴(𝑥) ∧ 𝑅(𝑦, 𝑥)) ≤ 𝐴(𝑦).

Thus 𝑅(𝐴) ⊆ 𝐴.
(2) holds by (1), the reflexivity of 𝑅, and Theorem 8(1).

4. Relationships between Fuzzy Relations and
Fuzzy Topologies

4.1. Fuzzy Topology Induced by Fuzzy Relations. Let 𝑅 be a
fuzzy relation on 𝑈. Denote

𝜎
𝑅
= {𝐴 ∈ 𝐹 (𝑈) : 𝐴 ⊆ 𝑅 (𝐴)} ,

𝜏
𝑅
= {𝐴 ∈ 𝐹 (𝑈) : 𝐴 = 𝑅 (𝐴)} , 𝜃

𝑅
= {𝑅 (𝐴) : 𝐴 ∈ 𝐹 (𝑈)} ;

𝑠
𝑅
= ⋀

𝑥,𝑦∈𝑈,𝑥 ̸= 𝑦

𝑅 (𝑥, 𝑦) , 𝑡
𝑅
= ⋁

𝑥,𝑦∈𝑈,𝑥 ̸= 𝑦

𝑅 (𝑥, 𝑦) .

(16)

Remark 12. Let 𝑅 be a fuzzy relation on𝑈. Then consider the
following.

(1) 𝜏
𝑅
⊆ 𝜎
𝑅
, 𝜏
𝑅
⊆ 𝜃
𝑅
.

(2) If 𝑅 is transitive, then 𝜏
𝑅
⊆ 𝜃
𝑅
⊆ 𝜎
𝑅
.

(3) If 𝑅 is reflexive, then 𝜏
𝑅
= 𝜎
𝑅
.

(4) If 𝑅 is preorder, then 𝜎
𝑅
= 𝜏
𝑅
= 𝜃
𝑅
.
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Theorem 13 (see [30]). Let 𝑅 be a preorder fuzzy relation on
𝑈. Then consider the following.

(1) 𝜃
𝑅
is a fuzzy topology on 𝑈.

(2) 𝑅 is the interior operator of 𝜃
𝑅
.

(3) 𝑅 is the closure operator of 𝜃
𝑅
.

Theorem 14. Let 𝑅 be a fuzzy relation on 𝑈. Then

(1) 𝜎
𝑅
is an Alexandrov fuzzy topology on 𝑈,

(2) if 𝑅 is reflexive, then ∀𝐴 ∈ 𝐹(𝑈),

int
𝜎𝑅
(𝐴) ⊆ 𝑅 (𝐴) ⊆ 𝐴 ⊆ 𝑅 (𝐴) ⊆ 𝑐𝑙𝜎𝑅

(𝐴) . (17)

(3) 𝐴 ∈ (𝜎
𝑅
)
𝑐
⇔ 𝑅(𝐴) ⊆ 𝐴.

(4) ∀𝑎 ∈ 𝐼, 𝑎 ∈ (𝜎
𝑅
)
𝑐.

Proof. (1) By Remark 9(1), 𝑎 ∈ 𝜎
𝑅
(𝑎 ∈ 𝐼).

Let {𝐴
𝑗
: 𝑗 ∈ 𝐽} ⊆ 𝜎

𝑅
. Then ∀𝑗 ∈ 𝐽, 𝐴

𝑗
⊆ 𝑅(𝐴

𝑗
). By

Proposition 7(4),

⋂

𝑗∈𝐽

𝐴
𝑗
⊆ ⋂

𝑗∈𝐽

𝑅 (𝐴
𝑗
) = 𝑅(⋂

𝑗∈𝐽

𝐴
𝑗
) ,

⋃

𝑗∈𝐽

𝐴
𝑗
⊆ ⋃

𝑗∈𝐽

𝑅 (𝐴
𝑗
) ⊆ 𝑅(⋃

𝑗∈𝐽

𝐴
𝑗
) .

(18)

Hence⋂
𝑗∈𝐽
𝐴
𝑗
, ⋃
𝑗∈𝐽
𝐴
𝑗
∈ 𝜎
𝑅
. So 𝜎
𝑅
is Alexandrov.

(2) ∀𝐴 ∈ 𝐹(𝑈), by Proposition 7(2),

int
𝜎𝑅
(𝐴)

= ⋃{𝐵 ∈ 𝜎
𝑅
: 𝐵 ⊆ 𝐴} ⊆ ⋃{𝐵 ∈ 𝜎

𝑅
: 𝑅 (𝐵) ⊆ 𝑅 (𝐴)}

= ⋃{𝐵 ∈ 𝐹 (𝑈) : 𝐵 ⊆ 𝑅 (𝐵) ⊆ 𝑅 (𝐴)} ⊆ 𝑅 (𝐴) .

(19)

By Proposition 7(3),

𝑐𝑙
𝜎𝑅
(𝐴) = (int𝜎𝑅 (𝐴

𝑐
))
𝑐

⊇ (𝑅 (𝐴
𝑐
))
𝑐
= 𝑅 (𝐴) . (20)

By the reflexivity of 𝑅 andTheorem 8(1),

int
𝜎𝑅
(𝐴) ⊆ 𝑅 (𝐴) ⊆ 𝐴 ⊆ 𝑅 (𝐴) ⊆ 𝑐𝑙𝜎𝑅

(𝐴) . (21)

(3) holds by Proposition 7(3).
(4) holds by (3) and Remark 9(1).

Definition 15. Let 𝑅 be a fuzzy relation on 𝑈. 𝜎
𝑅
is called the

fuzzy topology induced by 𝑅 on 𝑈.

Definition 16. Let 𝑅 be a fuzzy relation on 𝑈. 𝑅 is called
pseudoconstant, if there exists 𝑎 ∈ 𝐼 such that, for any 𝑥, 𝑦 ∈
𝑈,

𝑅 (𝑥, 𝑦) = {
1, if 𝑥 = 𝑦,
𝑎, if 𝑥 ̸= 𝑦.

(22)

We write 𝑅 by 𝑎∗ or 𝑎∗
𝑈×𝑈

.

Obviously, every pseudoconstant fuzzy relation is an
equivalence fuzzy relation.

Remark 17. (1) ∀𝑎, 𝑏 ∈ 𝐼, 𝑎 ≤ 𝑏 implies 𝑎∗ ⊆ 𝑏∗.
(2) ∀𝑎 ∈ 𝐼, 𝜎

𝑎
∗ = 𝜏
𝑎
∗ = 𝜃
𝑎
∗ .

(3) 𝜎
0
∗ = 𝐹(𝑈), 𝜎

1
∗ = {𝑎 : 𝑎 ∈ 𝐼}.

(4) ∀𝑅 ∈ 𝐹(𝑈 × 𝑈), 𝑠∗
𝑅
⊆ 𝑅 ⊆ 𝑡

∗

𝑅
.

The following theorem gives the topological structure of
fuzzy approximation spaces.

Theorem 18. Let (𝑈, 𝑅) be a fuzzy approximation space.Then

(1) 𝜎
𝑅
= 𝜎
1
∗ ∪ {𝐴 ∈ 𝐹(𝑈) : ∀(𝑥, 𝑦) ∈ 𝑅

𝐴
, 𝐴(𝑥) ∨ 𝐴(𝑦) ≤

1 − 𝑅(𝑥, 𝑦)},

(2) 𝜎
𝑡
∗

𝑅

⊆ 𝜎
𝑅
⊆ 𝜎
𝑠
∗

𝑅

.

Proof. (1) holds by Proposition 11(1) and Remark 17(3).
(2) holds by Remark 17(1).

4.2. Fuzzy Relations Induced by Fuzzy Topologies

Definition 19. Let 𝜎 be a fuzzy topology on 𝑈. Define

𝑅
𝜎
(𝑥, 𝑦) = 𝑐𝑙

𝜎
(𝑦
1
) (𝑥) (𝑥, 𝑦 ∈ 𝑈) . (23)

Then 𝑅
𝜎
is called the fuzzy relation induced by 𝜎 on 𝑈.

Theorem 20. Let 𝜎 be a fuzzy topology on𝑈 and let 𝑅
𝜎
be the

fuzzy relation induced by 𝜎 on 𝑈. Then

(1) 𝑅
𝜎
is reflexive,

(2) If 𝑎 ∈ 𝜎𝑐 whenever 𝑎 ∈ 𝐼, then ∀𝐴 ∈ 𝐹(𝑈),

𝑅
𝜎 (𝐴) ⊆ int

𝜎 (𝐴) ⊆ 𝐴 ⊆ 𝑐𝑙𝜎 (𝐴) ⊆ 𝑅𝜎 (𝐴) . (24)

Proof. (1) ∀𝑥 ∈ 𝑈,

𝑅
𝜎 (𝑥, 𝑥) = 𝑐𝑙𝜎 (𝑥1) (𝑥) ≥ (𝑥1) (𝑥) = 1. (25)

Then 𝑅
𝜎
is reflexive.

(2) ∀𝐴 ∈ 𝐹(𝑈), by Remark 1 and Proposition 7(2),

𝑐𝑙
𝜎 (𝐴) = 𝑐𝑙𝜎(⋃

𝑦∈𝑈

(𝐴 (𝑦) 𝑦
1
))

= ⋃

𝑦∈𝑈

𝑐𝑙
𝜎
(𝐴 (𝑦) 𝑦

1
) = ⋃

𝑦∈𝑈

𝑐𝑙
𝜎
(𝐴 (𝑦) ∩ 𝑦

1
)

⊆ ⋃

𝑦∈𝑈

(𝑐𝑙
𝜎
(𝐴 (𝑦)) ∩ 𝑐𝑙

𝜎
(𝑦
1
))

= ⋃

𝑦∈𝑈

(𝐴 (𝑦) ∩ 𝑐𝑙
𝜎
(𝑦
1
)) .

(26)



Journal of Applied Mathematics 5

Then ∀𝑥 ∈ 𝑈,

𝑐𝑙
𝜎 (𝐴) (𝑥) ≤ ⋁

𝑦∈𝑈

(𝐴 (𝑦) (𝑥) ∧ 𝑐𝑙𝜎 (𝑦1) (𝑥))

= ⋁

𝑦∈𝑈

(𝐴 (𝑦) ∧ 𝑅
𝜎
(𝑥, 𝑦)) = 𝑅

𝜎 (𝐴) (𝑥) .

(27)

Hence 𝑐𝑙
𝜎
(𝐴) ⊆ 𝑅

𝜎
(𝐴).

By Proposition 7(3),

int
𝜎 (𝐴) = (𝑐𝑙𝜎 (𝐴

𝑐
))
𝑐
⊇ (𝑅
𝜎
(𝐴
𝑐
))
𝑐

= 𝑅
𝜎 (𝐴) . (28)

So

𝑅
𝜎 (𝐴) ⊆ int

𝜎 (𝐴) ⊆ 𝐴 ⊆ 𝑐𝑙𝜎 (𝐴) ⊆ 𝑅𝜎 (𝐴) . (29)

Theorem 21. Let 𝑅 be a preorder fuzzy relation, let 𝜎
𝑅
be the

fuzzy topology by 𝑅 on 𝑈, and let 𝑅
𝜎𝑅

be the fuzzy relation
induced by 𝜎

𝑅
on 𝑈. Then 𝑅

𝜎𝑅
= 𝑅.

Proof. By Remark 6, Remark 12(4), andTheorem 13(3),

𝑅 (𝑥, 𝑦) = 𝑅 (𝑦
1
) (𝑥) = 𝑐𝑙𝜃𝑅

(𝑦
1
) (𝑥)

= 𝑐𝑙
𝜎𝑅
(𝑦
1
) (𝑥) = 𝑅𝜎𝑅

(𝑥, 𝑦)

(𝑥, 𝑦 ∈ 𝑈) .

(30)

Then 𝑅
𝜎𝑅
= 𝑅.

4.3. (CC) Axiom. The following condition for a fuzzy topol-
ogy 𝜎 on 𝑈 is called (CC) axiom in [31],

(CC) axiom: for any 𝜆 ∈ 𝐼 and 𝐴 ∈ 𝐹(𝑈),

𝑐𝑙
𝜎 (𝜆𝐴) = 𝜆𝑐𝑙𝜎 (𝐴) . (31)

Proposition 22. Let 𝜎 be a fuzzy topology on 𝑈. If 𝜎 satisfied
the (CC) axiom, then

(1) 𝑅
𝜎
is the closure operator of 𝜎,

(2) 𝑅
𝜎
is a preorder fuzzy relation on 𝑈,

(3) ∀𝑎 ∈ 𝐼, 𝑎 ∈ 𝜎,

(4) 𝜎 is Alexandrov.

Proof. (1) ∀𝐴 ∈ 𝐹(𝑈), by Remark 1 and (CC) axiom,

𝑐𝑙
𝜎 (𝐴) = 𝑐𝑙𝜎(⋃

𝑦∈𝑈

(𝐴 (𝑦) 𝑦
1
))

= ⋃

𝑦∈𝑈

𝑐𝑙
𝜎
(𝐴 (𝑦) 𝑦

1
) = ⋃

𝑦∈𝑈

(𝐴 (𝑦) 𝑐𝑙
𝜎
(𝑦
1
)) .

(32)

Then ∀𝑥 ∈ 𝑈,

𝑐𝑙
𝜎 (𝐴) (𝑥) = ⋁

𝑦∈𝑈

(𝐴 (𝑦) (𝑥) ∧ 𝑐𝑙𝜎 (𝑦1) (𝑥))

= ⋁

𝑦∈𝑈

(𝐴 (𝑦) ∧ 𝑅
𝜎
(𝑥, 𝑦)) = 𝑅

𝜎 (𝐴) (𝑥) .

(33)

Thus 𝑅
𝜎
(𝐴) = 𝑐𝑙

𝜎
(𝐴). So 𝑅

𝜎
is the closure operator of 𝜎.

(2) holds by (1) andTheorem 10.
(3) ∀𝑎 ∈ 𝐼, by (2), Proposition 7(3), and Remark 9(2),

int
𝜎 (𝑎) = (𝑐𝑙𝜎 (𝑎

𝑐
))
𝑐
= (𝑅
𝜎
(𝑎
𝑐
))
𝑐

= 𝑅
𝜎 (𝑎) = 𝑎. (34)

Then 𝑎 ∈ 𝜎.
(4) By (1) and Proposition 7(3),𝑅

𝜎
is the interior operator

of 𝜎.
Let {𝐴

𝑗
: 𝑗 ∈ 𝐽} ⊆ 𝜎. Then ∀𝑗 ∈ 𝐽, int(𝐴

𝑗
) = 𝐴

𝑗
. By

Proposition 7(4),

⋂

𝑗∈𝐽

𝐴
𝑗
= ⋂

𝑗∈𝐽

int
𝜎
(𝐴
𝑗
) = ⋂

𝑗∈𝐽

𝑅
𝜎
(𝐴
𝑗
)

= 𝑅
𝜎
(⋂

𝑗∈𝐽

𝐴
𝑗
) = int

𝜎
(⋂

𝑗∈𝐽

𝐴
𝑗
) .

(35)

So⋂
𝑗∈𝐽
𝐴
𝑗
∈ 𝜎. Hence 𝜎 is Alexandrov.

Proposition 23. Let 𝑅 be a preorder fuzzy relation on𝑈. Then
𝜎
𝑅
satisfies (CC) axiom.

Proof. For any 𝜆 ∈ 𝐼 and 𝐴 ∈ 𝐹(𝑈), by Proposition 7(6) and
Proposition 22,

𝑐𝑙
𝜎𝑅
(𝜆𝐴) = 𝑅 (𝜆𝐴) = 𝜆𝑅 (𝐴) = 𝜆𝑐𝑙𝜎𝑅

(𝐴) . (36)

Theorem 24. Let 𝜎 be a fuzzy topology on 𝑈, let 𝑅
𝜎
be the

fuzzy relation induced by 𝜎 on 𝑈, and let 𝜎
𝑅𝜎

be the fuzzy
topology induced by 𝑅

𝜎
on 𝑈. If 𝜎 satisfies (CC) axiom, then

𝜎
𝑅𝜎
= 𝜎.

Proof. By Theorem 20(1), 𝑅
𝜎
is reflexive. ∀𝑥, 𝑦, 𝑧 ∈ 𝑈, put

𝑐𝑙
𝜎
(𝑧
1
)(𝑦) = 𝜆. By (CC) axiom and Remark 1,

𝜆𝑐𝑙
𝜎
(𝑦
1
) = 𝑐𝑙
𝜎
(𝜆𝑦
1
) = 𝑐𝑙
𝜎
(𝑐𝑙
𝜎
(𝑧
1
) (𝑦) 𝑦

1
)

⊆ 𝑐𝑙
𝜎
(⋃

𝑡∈𝑈

(𝑐𝑙
𝜎
(𝑧
1
) (𝑡) 𝑡1))

= 𝑐𝑙
𝜎
(𝑐𝑙
𝜎
(𝑧
1
)) = 𝑐𝑙

𝜎
(𝑧
1
) .

(37)

Then
𝑅
𝜎
(𝑥, 𝑦) ∧ 𝑅

𝜎
(𝑦, 𝑧)

= 𝑐𝑙
𝜎
(𝑦
1
) (𝑥) ∧ 𝑐𝑙𝜎 (𝑧1) (𝑦) = 𝑐𝑙𝜎 (𝑦1) (𝑥) ∧ 𝜆

= 𝜆 ∧ 𝑐𝑙
𝜎
(𝑦
1
) (𝑥) = (𝜆𝑐𝑙𝜎 (𝑦1)) (𝑥)

≤ 𝑐𝑙
𝜎
(𝑧
1
) (𝑥) = 𝑅𝜎 (𝑥, 𝑧) .

(38)

Thus 𝑅
𝜎
is transitive and so 𝑅

𝜎
is preorder.
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∀𝐴 ∈ 𝐹(𝑈), by Remark 12 andTheorem 13(3),

𝑐𝑙
𝜎𝑅𝜎
(𝐴) = 𝑐𝑙𝜃𝑅𝜎

(𝐴) = 𝑅𝜎 (𝐴) . (39)

By (CC) axiom and Proposition 22, 𝑅
𝜎
(𝐴) = 𝑐𝑙

𝜎
(𝐴). So

𝑐𝑙
𝜎𝑅𝜎
(𝐴) = 𝑐𝑙

𝜎
(𝐴). Thus

int
𝜎𝑅𝜎
(𝐴) = (𝑐𝑙𝜎𝑅𝜎

(𝐴
𝑐
))
𝑐

= (𝑐𝑙
𝜎
(𝐴
𝑐
))
𝑐
= int
𝜎 (𝐴) .

(40)

Hence 𝜎
𝑅𝜎
= 𝜎.

Theorem 25. Let 𝜏 be a fuzzy topology on 𝑈. Then the
following are equivalent.

(1) 𝜏 satisfies (CC) axiom.
(2) There exists a preorder fuzzy relation 𝜌 on 𝑈 such that
𝜌 is the closure operator of 𝜏.

(3) There exists a preorder fuzzy relation 𝜌 on 𝑈 such that
𝜌 is the interior operator of 𝜏.

(4) 𝑅
𝜏
is the closure operator of 𝜏.

(5) 𝑅
𝜏
is the interior operator of 𝜏.

Proof. (1) ⇒ (2). Suppose that 𝜏 satisfies (CC) axiom. Pick
𝜌 = 𝑅

𝜏
. By Proposition 22, 𝜌 is the closure operator of 𝜏. By

Theorem 10, 𝜌 is preorder.
(2)⇒ (3). Let 𝜌 be the closure operator of 𝜏 for some pre-

order fuzzy relation 𝜌 on 𝑈. ∀𝐴 ∈ 𝐹(𝑈), by Proposition 7(3),

𝜌 (𝐴) = (𝜌 (𝐴
𝑐
))
𝑐
= (𝑐𝑙
𝜏
(𝐴
𝑐
))
𝑐
= int
𝜏 (𝐴) . (41)

Thus 𝜌 is the interior operator of 𝜏.
(3) ⇒ (5). Let 𝜌 be the interior operator of 𝜏 for some

preorder fuzzy relation 𝜌 on 𝑈.
By Remark 6,

𝜌 (𝑥, 𝑦) = 1 − 𝜌 ((𝑦
1
)
𝑐
) (𝑥) = 1 − int𝜏 ((𝑦1)

𝑐
) (𝑥)

= 𝑐𝑙
𝜏
(𝑦
1
) (𝑥) = 𝑅𝜏 (𝑥, 𝑦) (𝑥, 𝑦 ∈ 𝑈) .

(42)

Then 𝜌 = 𝑅
𝜏
. Thus 𝑅

𝜏
is the interior operator of 𝜏.

(5)⇒ (4) holds by Proposition 7(3).
(4) ⇒ (1). For any 𝜆 ∈ 𝐼 and 𝐴 ∈ 𝐹(𝑈), by

Proposition 7(6),

𝑐𝑙
𝜏 (𝜆𝐴) = 𝑅𝜏 (𝜆𝐴) = 𝜆𝑅𝜏 (𝐴) = 𝜆𝑐𝑙𝜏 (𝐴) . (43)

Thus 𝜏 satisfies (CC) axiom.

Theorem 26. Let

Σ = {𝑅 : 𝑅 is a preorder fuzzy relation on𝑈} ,

Γ = {𝜎 : 𝜎 is a fuzzy topology on U satisfying (CC) axiom} .
(44)

Then there exists a one-to-one correspondence between Σ and
Γ.

Proof. 𝑓 : Σ → Γ and 𝑔 : Γ → Σ are defined as follows:

𝑓 (𝑅) = 𝜎𝑅 (𝑅 ∈ Σ) ,

𝑔 (𝜎) = 𝑅𝜎 (𝜎 ∈ Γ) .

(45)

ByTheorem 21,

𝑔 ∘ 𝑓 = 𝑖
Σ
, (46)

where 𝑔∘𝑓 is the composition of𝑓 and 𝑔 and 𝑖
Σ
is the identity

mapping on Γ.
By Theorem 24,

𝑓 ∘ 𝑔 = 𝑖
Γ
, (47)

where𝑓∘𝑔 is the composition of 𝑔 and𝑓 and 𝑖
Γ
is the identity

mapping on Σ.
Hence𝑓 and 𝑔 are two one-to-one correspondences.This

proves that there exists a one-to-one correspondence between
Σ and Γ.

5. Fuzzy Approximating Spaces

As can be seen from Section 4, a fuzzy relation yields a fuzzy
topology. In this section, we consider the reverse problem;
that is, when can the given fuzzy topology coincide with the
fuzzy topology induced by some fuzzy relation?

Definition 27. Let (𝑈, 𝜎) be a fuzzy topological space. If there
exists a fuzzy relation on 𝑈 such that 𝜎

𝑅
= 𝜎, then (𝑈, 𝜎) is

called a fuzzy approximating space.

Theorem 28. Let (𝑈, 𝜎) be a fuzzy topological space. If one
of the following conditions is satisfied, then (𝑈, 𝜏) is a fuzzy
approximating space.

(1) 𝜏 satisfies (CC) axiom.
(2) There exists a preorder fuzzy relation 𝜌 on 𝑈 such that
𝜌 is the closure operator of 𝜏.

(3) There exists a preorder fuzzy relation 𝜌 on 𝑈 such that
𝜌 is the interior operator of 𝜏.

(4) 𝑅
𝜏
is the closure operator of 𝜏.

(5) 𝑅
𝜏
is the interior operator of 𝜏.

Proof. These hold byTheorems 24 and 25.

Theorem 29. Let (𝑈, 𝜎) be a fuzzy topological space. Then
(𝑈, 𝜎) is a fuzzy approximating space if and only if there exists
a fuzzy relation 𝑅 such that

𝜎 = 𝜎
1
∗ ∪ {𝐴 ∈ 𝐹 (𝑈) : ∀ (𝑥, 𝑦) ∈ 𝑅𝐴,

𝐴 (𝑥) ∨ 𝐴 (𝑦) ≤ 1 − 𝑅 (𝑥, 𝑦)} .

(48)

Proof. This holds byTheorem 18(1).

Example 30. {𝑎 : 𝑎 ∈ 𝐼} is a fuzzy approximating space.
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6. Conclusions

In this paper, relationships between fuzzy relations and fuzzy
topology were discussed. The fact that there exists a one-to-
one correspondence between the set of all preorder fuzzy
relations and the set of all fuzzy topologies which satisfy
(CC) axiom was proved. We introduced the concept of fuzzy
approximating spaces and gave decision conditions that a
fuzzy topological space is a fuzzy approximating space.

The results of this paper illustrate that fuzzy relations can
be researched by means of topology. We hope that one can
find applications of topological properties of fuzzy rough sets
in information sciences. In future work, we will do similar
exploration of fuzzy neighborhood spaces like this paper.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China (nos. 11261005 and 11161029), the Natural
Science Foundation of Guangxi (no. 2012GXNSFDA276040),
GuangxiUniversity Science andTechnologyResearch Project
(no. 2013ZD061), and the Natural Science Foundation for
Young Scholar of Guangxi Province (2013GXNSFBA019020).

References

[1] Z. Pawlak, “Rough sets,” International Journal of Computer and
Information Sciences, vol. 11, no. 5, pp. 341–356, 1982.

[2] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1991.

[3] Z. Pawlak and A. Skowron, “Rudiments of rough sets,” Informa-
tion Sciences, vol. 177, no. 1, pp. 3–27, 2007.

[4] Z. Pawlak and A. Skowron, “Rough sets: some extensions,”
Information Sciences, vol. 177, no. 1, pp. 28–40, 2007.

[5] Z. Pawlak andA. Skowron, “Rough sets andBoolean reasoning,”
Information Sciences, vol. 177, no. 1, pp. 41–73, 2007.

[6] A. Skowron and J. Stepaniuk, “Tolerance approximation spaces,”
Fundamenta Informaticae, vol. 27, no. 2-3, pp. 245–253, 1996.

[7] R. Slowinski and D. Vanderpooten, “Similarity relation as a
basis for rough approximations,” ICS Research Report 53, 1995.

[8] G. Liu and W. Zhu, “The algebraic structures of generalized
rough set theory,” Information Sciences, vol. 178, no. 21, pp. 4105–
4113, 2008.

[9] Y. Y. Yao, “Constructive and algebraic methods of the theory
of rough sets,” Information Sciences, vol. 109, no. 1–4, pp. 21–47,
1998.

[10] D. Dubois and H. I. Prade, “Rough fuzzy sets and fuzzy rough
sets,” International Journal of General Systems, vol. 17, no. 2-3,
pp. 191–209, 1990.

[11] L. I. Kuncheva, “Fuzzy rough sets: application to feature selec-
tion,” Fuzzy Sets and Systems, vol. 51, no. 2, pp. 147–153, 1992.

[12] S. Nanda, “Fuzzy rough sets,” Fuzzy Sets and Systems, vol. 45, no.
2, pp. 157–160, 1992.

[13] A. M. Radzikowska and E. E. Kerre, “A comparative study of
fuzzy rough sets,” Fuzzy Sets and Systems, vol. 126, no. 2, pp. 137–
155, 2002.

[14] W.-Z. Wu, J.-S. Mi, andW.-X. Zhang, “Generalized fuzzy rough
sets,” Information Sciences, vol. 151, pp. 263–282, 2003.

[15] S. K. Pal, “Soft data mining, computational theory of percep-
tions, and rough-fuzzy approach,” Information Sciences, vol. 163,
no. 1–3, pp. 5–12, 2004.

[16] J. Kortelainen, “On relationship between modified sets, topo-
logical spaces and rough sets,” Fuzzy Sets and Systems, vol. 61,
no. 1, pp. 91–95, 1994.

[17] E. F. Lashin, A. M. Kozae, A. A. Abo Khadra, and T. Medhat,
“Rough set theory for topological spaces,” International Journal
of Approximate Reasoning, vol. 40, no. 1-2, pp. 35–43, 2005.

[18] Z. Li, T. Xie, and Q. Li, “Topological structure for generalized
rough sets,” Computers & Mathematics with Applications, vol.
63, no. 6, pp. 1066–1071, 2012.

[19] Z. Pei, D. Pei, and L. Zheng, “Topology versus generalized rough
sets,” International Journal of Approximate Reasoning, vol. 52,
no. 2, pp. 231–239, 2011.

[20] Q.Wu, T.Wang, Y. Huang, and J. Li, “Topology theory on rough
sets,” IEEE Transactions on Systems, Man, and Cybernetics B:
Cybernetics, vol. 38, no. 1, pp. 68–77, 2008.

[21] L. Yang and L. Xu, “Topological properties of generalized
approximation spaces,” Information Sciences, vol. 181, no. 17, pp.
3570–3580, 2011.

[22] Y. Y. Yao, “Two views of the theory of rough sets in finite uni-
verses,” International Journal of Approximate Reasoning, vol. 15,
no. 4, pp. 291–317, 1996.

[23] Y. Liu andM. Luo, Fuzzy Topology, World Scientific, Singapore,
1998.

[24] P. M. Pu and Y. M. Liu, “Fuzzy topology. I. Neighborhood
structure of a fuzzy point andMoore-Smith convergence,” Jour-
nal of Mathematical Analysis and Applications, vol. 76, no. 2, pp.
571–599, 1980.

[25] R. Lowen, “Fuzzy topological spaces and fuzzy compactness,”
Journal of Mathematical Analysis and Applications, vol. 56, no.
3, pp. 621–633, 1976.

[26] C. L. Chang, “Fuzzy topological spaces,” Journal of Mathemati-
cal Analysis and Applications, vol. 24, pp. 182–190, 1968.

[27] H. Lai and D. Zhang, “Fuzzy preorder and fuzzy topology,”
Fuzzy Sets and Systems, vol. 157, no. 14, pp. 1865–1885, 2006.

[28] Y. Y. Yao, “Relational interpretations of neighborhood operators
and rough set approximation operators,” Information Sciences,
vol. 111, no. 1–4, pp. 239–259, 1998.

[29] J. Mi, W. Wu, and W. Zhang, “Constructive and axiomatic
approaches for the study of the theory of rough sets,” Pattern
Recognition Artificial Intelligence, vol. 15, pp. 280–284, 2002.

[30] K. Qin and Z. Pei, “On the topological properties of fuzzy rough
sets,” Fuzzy Sets and Systems, vol. 151, no. 3, pp. 601–613, 2005.

[31] Y.-H. She and G.-J. Wang, “An axiomatic approach of fuzzy
rough sets based on residuated lattices,” Computers & Mathe-
matics with Applications, vol. 58, no. 1, pp. 189–201, 2009.


