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We establish the 𝐿
𝑝 boundedness for some commutators of oscillatory singular integrals with the kernel condition which was

introduced by Grafakos and Stefanov. Our theorems contain various conditions on the phase function.

1. Introduction

The homogeneous singular integral operator 𝑇Ω is defined by

𝑇Ω𝑓 (𝑥) = p.v. ∫
R𝑛

Ω(𝑥 − 𝑦)

𝑥 − 𝑦

𝑛 𝑓 (𝑦) 𝑑𝑦, (1)

whereΩ ∈ 𝐿
1
(𝑆
𝑛−1

) satisfies the following conditions.

(a) Ω is homogeneous function of degree zero onR𝑛\{0};
that is,

Ω (𝑡𝑥) = Ω (𝑥) (2)

for any 𝑡 > 0 and 𝑥 ∈ R𝑛 \ {0}.

(b) Ω has mean zero on 𝑆
𝑛−1, the unit sphere in R𝑛; that

is,

∫
𝑆𝑛−1

Ω(𝑥

) 𝑑𝜎 (𝑥


) = 0. (3)

The oscillatory singular integral we will consider here is
defined by

𝑇𝜙𝑓 (𝑥) = p.v. ∫
R𝑛

𝑒
𝑖𝜙(𝑦)Ω(𝑦)

𝑦

𝑛 𝑓 (𝑥 − 𝑦) 𝑑𝑦. (4)

If 𝜙(𝑥) ≡ 0, the operator 𝑇𝜙 becomes the singular integral
operator 𝑇Ω.

When 𝜙(𝑥) = 𝑃(𝑥) is a real polynomial, the 𝐿𝑝 bounded-
ness of 𝑇𝜙 was first studied by Ricci and Stein [1] with Ω ∈

𝐶
1
(𝑆
𝑛−1

), and Hu and Pan [2] obtained the weighted 𝐻
1

boundedness of 𝑇𝜙. When Ω ∈ 𝐿
𝑟
(𝑆
𝑛−1

), 𝑟 > 1, Lu and
Zhang proved the 𝐿𝑝 boundedness [3] and this was extended
to the case ofΩ ∈ 𝐿 ln+𝐿(𝑆𝑛−1) by Ojanen [4] and the case of
Ω ∈ 𝐻

1
(𝑆
𝑛−1

) by Fan and Pan [5].
Grafakos and Stefanov [6] introduced a class of kernel

functions 𝐹𝛼(𝑆
𝑛−1

) which contains all Ω(𝑦) ∈ 𝐿
1
(𝑆
𝑛−1

)

satisfying (3) and

sup
𝜉∈𝑆𝑛−1

∫
𝑆𝑛−1

Ω (𝑦)
 (ln

𝑦 ⋅ 𝜉

−1
)
1+𝛼

𝑑𝜎 (𝑦) < ∞, (5)

where 𝛼 > 0 is a fixed constant. This kernel condition has
been considered by many authors [7–13].

The singular integral along surfaces which is defined by

𝑇𝜙,Ω𝑓 (𝑥, 𝑥𝑛+1) = p.v. ∫
R𝑛

Ω(𝑦)

𝑦

𝑛 𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (

𝑦
)) 𝑑𝑦

(6)

was also studied by many authors [14–18]. Under the condi-
tion Ω ∈ 𝐹𝛼(𝑆

𝑛−1
), Pan et al. [16] established the following

Theorem.

Theorem A (see [16]). Let 𝜙(𝑡) ∈ 𝐶
1
([0,∞)), 𝜙(0) = 𝜙


(0) =

0, and 𝜙
 is a convex increasing function for 𝑡 > 0, Ω ∈

𝐹𝛼(𝑆
𝑛−1

) for some 𝛼 > 0; then, 𝑇𝜙,Ω is bounded on 𝐿
𝑝
(R𝑛+1)

for (2 + 2𝛼)/(1 + 2𝛼) < 𝑝 < 2 + 2𝛼.
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Later, Cheng and Pan [14] improved the result for 𝑛 = 2

by removing the condition 𝜙

(0) = 0.

TheoremB (see [14]). Let𝜙(𝑡) ∈ 𝐶
1
([0,∞)),𝜙(0) = 0, and𝜙

is a convex increasing function for 𝑡 > 0,Ω ∈ 𝐹𝛼(𝑆
𝑛−1

) for some
𝛼 > 0; then, 𝑇𝜙,Ω is bounded on 𝐿𝑝(R3) for (2+2𝛼)/(1+2𝛼) <
𝑝 < 2 + 2𝛼.

It has been proved that the boundedness of 𝑇𝜙 on 𝐿
𝑝
(R𝑛)

can be obtained from the 𝐿𝑝(R𝑛+1) boundedness of 𝑇𝜙,Ω (see
[5]).

For a function 𝑏 ∈ 𝐿 loc(R
𝑛
), let 𝐴 be a linear operator on

somemeasurable function space; the commutator between𝐴
and 𝑏 is defined by [𝑏, 𝐴]𝑓(𝑥) := 𝑏(𝑥)𝐴𝑓(𝑥) − 𝐴(𝑏𝑓)(𝑥).

It has been proved by Hu [19] that Ω ∈ 𝐿(log 𝐿)2(𝑆𝑛−1) is
a sufficient condition for the commutator to be bounded on
𝐿
𝑝
(R𝑛), which is defined by

[𝑏, 𝑇Ω] 𝑓 (𝑥) = p.v. ∫
R𝑛

Ω(𝑥 − 𝑦)

𝑥 − 𝑦

𝑛 (𝑏 (𝑥) − 𝑏 (𝑦)) 𝑓 (𝑦) 𝑑𝑦.

(7)

Recently, Chen and Ding [20] established the 𝐿𝑝 bounded-
ness of the commutator of singular integrals with the kernel
conditionΩ ∈ 𝐹𝛼(𝑆

𝑛−1
).

It is natural to ask whether the similar result holds for
the commutators of oscillatory singular integrals, which is
defined by

[𝑏, 𝑇𝜙] 𝑓 (𝑥) = p.v. ∫
R𝑛

𝑒
𝑖𝜙(𝑦)Ω(𝑦)

𝑦

𝑛 (𝑏 (𝑥) − 𝑏 (𝑥 − 𝑦))

× 𝑓 (𝑥 − 𝑦) 𝑑𝑦.

(8)

In this paper, we will give a positive answer to the above
question by imposing some conditions on 𝜙.

We first prove the boundedness of the commutator of
singular integral along surfaces, which is defined by

[𝑏, 𝑇𝜙,Ω] 𝑓 (𝑥, 𝑥𝑛+1)

= p.v. ∫
R𝑛

Ω(𝑦)

𝑦

𝑛 (𝑏 (𝑥, 𝑥𝑛+1) − 𝑏 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (

𝑦
)))

× 𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
)) 𝑑𝑦.

(9)

Theorem 1. LetΩ be a function in 𝐿
1
(𝑆
𝑛−1

) satisfying (2) and
(3), 𝑏 ∈ 𝐵𝑀𝑂(R𝑛+1), radial function 𝜙 ∈ 𝐶

1
([0,∞)) with

𝜙(0) = 𝜙

(0) = 0, and 𝜙

 is a convex increasing function. If
Ω ∈ 𝐹𝛼(𝑆

𝑛−1
) for some 𝛼 > 1, then [𝑏, 𝑇𝜙,Ω] is bounded on

𝐿
2
(R𝑛+1).

Theorem 2. Let Ω be a function in 𝐿
1
(𝑆
1
) satisfying (2) and

(3), 𝑏 ∈ 𝐵𝑀𝑂(R3), radial function 𝜙(|𝑡|) = |𝑡|. If Ω ∈ 𝐹𝛼(𝑆
1
)

for some 𝛼 > 1, then [𝑏, 𝑇𝜙,Ω] is bounded on 𝐿
𝑝
(R3) for (𝛼 +

1)/𝛼 < 𝑝 < 𝛼 + 1.

Remark 3. However, for 𝑛 ≥ 3, we can not prove the 𝐿𝑝(R𝑛+1)
boundedness of [𝑏, 𝑇𝜙,Ω] by our method using Lemma 11,
since the conditions imposed on 𝜙 inTheorem 1 conflict with
Lemma 11. Only when 𝑛 = 2 by removing the condition
𝜙

(0) = 0 in Theorem 1 can we eliminate the conflict, and

𝜙(|𝑡|) = |𝑡| is a feasible function. Also, by another method,
it is hard to give the boundedness of the maximal operator
defined by

[𝑏,𝑀𝜙,Ω] 𝑓 (𝑥, 𝑥𝑛+1)

= sup
𝑗∈Z



∫
2𝑗<|𝑦|<2𝑗+1

Ω(𝑦)

𝑦

𝑛

× (𝑏 (𝑥, 𝑥𝑛+1) − 𝑏

× (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
)))

× 𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
)) 𝑑𝑦



.

(10)

Then we give the boundedness of the commutators of
oscillatory singular integral [𝑏, 𝑇𝜙].

Let 𝑏(𝑥) ∈ BMO(R𝑛), 𝑥 = (𝑥, 𝑥𝑛+1) ∈ R𝑛+1, 𝐵(𝑥) = 𝑏(𝑥),
and we have the following result.

Theorem 4. If [𝐵, 𝑇𝜙,Ω] is bounded on 𝐿
𝑝
(R𝑛+1) with bound

𝐶‖𝐵‖𝐵𝑀𝑂(R𝑛+1), then [𝑏, 𝑇𝜙] is bounded on 𝐿
𝑝
(R𝑛) with bound

𝐶‖𝑏‖𝐵𝑀𝑂(R𝑛).

Combining Theorem 4 with Theorems 1 and 2, respec-
tively, we can get the following two theorems immediately.

Theorem 5. LetΩ be a function in 𝐿1(𝑆𝑛−1) satisfying (2) and
(3), 𝑏 ∈ 𝐵𝑀𝑂(R𝑛), radial function 𝜙 ∈ 𝐶

1
([0,∞)) with

𝜙(0) = 𝜙

(0) = 0, and 𝜙

 is a convex increasing function.
If Ω ∈ 𝐹𝛼(𝑆

𝑛−1
) for some 𝛼 > 1, then [𝑏, 𝑇𝜙] is bounded on

𝐿
2
(R𝑛).

Theorem 6. Let Ω be a function in 𝐿
1
(𝑆
1
) satisfying (2) and

(3), 𝑏 ∈ 𝐵𝑀𝑂(R2), radial function 𝜙(|𝑡|) = |𝑡|. If Ω ∈ 𝐹𝛼(𝑆
1
)

for some 𝛼 > 1, then [𝑏, 𝑇𝜙] is bounded on 𝐿
𝑝
(R2) for (𝛼 +

1)/𝛼 < 𝑝 < 𝛼 + 1.

In above theorems, the phase functions are radial. But
when Ricci and Stein first studied the oscillatory singular
integral 𝑇𝜙, they take 𝜙(𝑥) = 𝑃(𝑥), apparently nonradial. In
Theorem 7, we will take 𝜙(𝑥) = 𝑃(𝑥) = ∑

𝑚

|𝛼|/2=1
𝑎𝛼𝑥

𝛼, and this
condition was mentioned in [21].

Theorem 7. LetΩ be a function in 𝐿1(𝑆𝑛−1) satisfying (2) and
(3), 𝑏 ∈ 𝐵𝑀𝑂(R𝑛). If Ω ∈ 𝐹𝛼(𝑆

𝑛−1
) is an odd kernel for some

𝛼 > 1, 𝜙(𝑥) = ∑
𝑚

|𝛼|/2=1
𝑎𝛼𝑥

𝛼 is an even phase; then, [𝑏, 𝑇𝜙]
extends to a bounded operator from 𝐿

𝑝
(R𝑛) into itself for (𝛼 +

1)/𝛼 < 𝑝 < 𝛼 + 1.
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2. Lemmas

We give some lemmas which will be used in the proof of
Theorems 1 and 2.

Lemma 8. Let 𝑚𝛿(𝜉) ∈ 𝐶
1
(R𝑛+1) (0 < 𝛿 < ∞) be a family

of multipliers such that supp𝑚𝛿 ⊂ {𝜉 : |𝜉| ≤ 𝛿}, ∇𝜉𝑚𝛿 =

(𝜕𝑚𝛿/𝜕𝜉1, ..., 𝜕𝑚𝛿/𝜕𝜉𝑛), and for some constants 𝐶, 0 < 𝐴 ≤

1/2, and 𝛼 > 0

𝑚𝛿
∞ ≤ 𝐶min {𝐴𝛿, log−(𝛼+1) (2 + 𝛿)} ,


∇𝜉𝑚𝛿

∞
≤ 𝐶.

(11)

Let 𝑇𝛿 be the multiplier operator defined by 𝑇𝛿𝑓(𝜉) =

𝑚𝛿(𝜉)𝑓(𝜉), 𝜉 = (𝜉, 𝜉𝑛+1). For 𝑏 ∈ 𝐵𝑀𝑂(R𝑛+1), denote by
[𝑏, 𝑇𝛿] the commutator of 𝑇𝛿. Then for any 0 < ] < 1, there
exists a positive constant 𝐶 = 𝐶(𝑛, ]) such that

[𝑏, 𝑇𝛿] 𝑓
2 ≤ 𝐶‖𝑏‖𝐵𝑀𝑂(R𝑛+1)(𝐴𝛿)

] log( 1

𝐴
)
𝑓

2,

𝑖𝑓 𝛿 <
10

√𝐴
;

[𝑏, 𝑇𝛿] 𝑓
2 ≤ 𝐶‖𝑏‖𝐵𝑀𝑂(R𝑛+1)log

−(𝛼+1)]+1
(2 + 𝛿)

𝑓
2,

𝑖𝑓 𝛿 >
1

√𝐴
.

(12)
Proof. We assume that ‖𝑏‖BMO(R𝑛+1) = 1. Let 𝑥 = (𝑥, 𝑥𝑛+1) and
let Ψ(𝑥) be a radial function such that suppΨ ⊂ {𝑥 : 1/4 ≤

|𝑥| ≤ 4}, and

∑

𝑙∈Z

Ψ(2
−𝑙
𝑥) = 1 (13)

for |𝑥| > 0. Set Ψ0(𝑥) = ∑
0

𝑙=−∞
Ψ(2

−𝑙
𝑥) and Ψ𝑙(𝑥) = Ψ(2

−𝑙
𝑥)

for positive integer 𝑙. Let 𝐾𝛿(𝑥) = 𝑚
∨

𝛿
(𝑥) the inverse Fourier

transform of𝑚𝛿. Split𝐾𝛿 as

𝐾𝛿 (𝑥) = 𝐾𝛿 (𝑥)Ψ0 (𝑥) +

∞

∑

𝑙=1

𝐾𝛿 (𝑥)Ψ𝑙 (𝑥) =

∞

∑

𝑙=0

𝐾𝛿,𝑙 (𝑥) . (14)

Let 𝑇𝛿,𝑙 be the convolution operator whose kernel is 𝐾𝛿,𝑙;
that is, 𝑇𝛿,𝑙𝑓 = 𝐾𝛿,𝑙 ∗ 𝑓. Recall that supp𝑚𝛿 ⊂ {𝜉 : |𝜉| ≤ 𝛿}.
Trivial computation shows that ‖𝐾𝛿,𝑙‖∞ ≤ ‖𝐾𝛿‖∞ ≤ ‖𝑚𝛿‖1 ≤

𝐶𝛿
𝑛+1. This via the Young inequality says that

𝑇𝛿,𝑙𝑓
∞ ≤ 𝐶𝛿

𝑛+1𝑓
1. (15)

Note that ∫
R𝑛+1

Ψ̂(𝜂)𝑑𝜂 = 0. Thus


𝐾𝛿,𝑙

∞
=

∫
R𝑛+1

(𝑚𝛿 (𝜉 − 2
−𝑙
𝜂, 𝜉𝑛+1 − 2

−𝑙
𝜂𝑛+1) − 𝑚𝛿

× (𝜉, 𝜉𝑛+1 − 2
−𝑙
𝜂𝑛+1)) Ψ̂ (𝜂) 𝑑𝜂

∞

≤ 𝐶2
−𝑙

∇𝜉𝑚𝛿
∞

∫
R𝑛+1

𝜂


Ψ̂ (𝜂)


𝑑𝜂

≤ 𝐶2
−𝑙

∇𝜉𝑚𝛿
∞

∫
R𝑛+1

𝜂


Ψ̂ (𝜂)


𝑑𝜂 ≤ 𝐶2

−𝑙
.

(16)

On the other hand, by the Yong inequality, we have

𝐾𝛿,𝑙

∞
≤

𝐾𝛿

∞


Ψ̂𝑙
1

≤ 𝐶min {𝐴𝛿, log−(𝛼+1) (2 + 𝛿)} .

(17)

Then, using the same argument of the proof of Lemma 2 in
[22] we can prove Lemma 8.

Let the measure 𝜎𝑗 on R𝑛+1 be defined by

∫
R𝑛+1

𝑓 (𝑦, 𝑦𝑛+1) 𝑑𝜎𝑗

= ∫
R𝑛

𝑓 (𝑦, 𝜙 (
𝑦
))

Ω (𝑦

)

𝑦

𝑛 𝜒{2𝑗<|𝑦|≤2𝑗+1}𝑑𝑦

(18)

for all 𝑗 ∈ Z. Define the maximal operator in R𝑛+1 by 𝜎∗𝑓 =

sup
𝑗∈Z|𝜎𝑗| ∗ |𝑓|.

Lemma 9 (see [18]). Suppose 𝜎∗ is bounded on 𝐿
𝑞
(R𝑛+1) for

all 1 < 𝑞 < ∞. Then, for arbitrary functions 𝑔𝑗, the following
vector valued inequality:



(∑

𝑗


𝜎𝑗 ∗ 𝑔𝑗



2

)

1/2𝐿𝑞(R𝑛+1)

≤ 𝐶



(∑

𝑗


𝑔𝑗


2

)

1/2𝐿𝑞(R𝑛+1)

(19)

holds with any 1 < 𝑞 < ∞.

Themaximal function in R2 is defined by

(𝑀𝜙𝑓) (𝑥1, 𝑥2) = sup
𝑘∈Z

1

2𝑘
∫

2
𝑘+1

2𝑘

𝑓 (𝑥1 − 𝑡, 𝑥2 − 𝜙 (𝑡))
 𝑑𝑡.

(20)

We know that the 𝐿
𝑞
(R𝑛+1) boundedness of 𝜎∗ is deduced

from the 𝐿𝑞(R2) boundedness of𝑀𝜙 by method of rotations,
and if 𝜙 is as in Theorem 1 or Theorem 2, 𝑀𝜙 is a bounded
operator on 𝐿

𝑞
(R2) for all 1 < 𝑞 < ∞ (see [23, 24]).

Let 𝜑 ∈ S(R𝑛) be a radial function satisfying 0 ≤ 𝜑 ≤ 1

with its support in the unit ball and 𝜑(𝜉) = 1 for |𝜉| ≤

1/2. The function 𝜑0(𝜉) = 𝜑(𝜉/2) − 𝜑(𝜉) ∈ S(R𝑛) satisfies
∑𝑗∈Z 𝜑0(2

−𝑗
𝜉) = 1 for 𝜉 ̸= 0. For 𝑗 ∈ Z, denote by Δ 𝑗 and

𝐺𝑗 the convolution operators whose symbols are𝜑0(2
−𝑗
𝜉) and

𝜑(2
−𝑗
𝜉), respectively.

Lemma 10 (see [20]). For the multiplier 𝐺𝑘 (𝑘 ∈ Z), 𝑏 ∈

𝐵𝑀𝑂(R𝑛), and any fixed 0 < 𝜏 < 1/2, we have

𝐺𝑘𝑏 (𝑥) − 𝐺𝑘𝑏 (𝑦)
 ≤ 𝐶

2
𝑘𝜏

𝜏

𝑥 − 𝑦

𝜏
‖𝑏‖𝐵𝑀𝑂,

(21)

where 𝐶 is independent of 𝑘 and 𝜏.

Let 𝜉 = (𝜉, 𝜉𝑛+1) ∈ R𝑛+1 and let 𝜓(𝜉) ∈ 𝐶
∞

0
(R𝑛+1) be a

radial function such that 0 ≤ 𝜓 ≤ 1, supp𝜓 ⊂ {1/2 ≤ |𝜉| ≤ 2},
and∑𝑙∈Z 𝜓

3
(2
−𝑙
𝜉) = 1, |𝜉| ̸= 0. Define the multiplier operator

𝑆𝑙 by 𝑆𝑙𝑓(𝜉) = 𝜓(2
−𝑙
|𝜉|)𝑓(𝜉).
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Lemma 11. For any 𝑗 ∈ Z, define the operator 𝑇𝑗 by 𝑇𝑗𝑓 =

𝜎𝑗 ∗ 𝑓, and 𝜙 is monotonic and satisfies condition (1) or (2):

(1) |𝜙(|𝑦|)| ≤ 𝐶|𝑦|;

(2) |𝜙(|𝑦|)| ≥ 𝐶|𝑦|, |𝜙(𝑎)𝜙(𝑏)| ≤ 𝐶|𝜙(𝑎𝑏)| for ∀𝑎, 𝑏 > 0,
and |𝜙(|𝑦|)| ≤ 𝐶|𝑦|

𝑘
1 , 𝑘1 > 1 if |𝑦| > 1, |𝜙(|𝑦|)| ≤

𝐶|𝑦|
𝑘
2 , 0 < 𝑘2 < 1 if |𝑦| ≤ 1.

Let 𝑏 ∈ 𝐵𝑀𝑂(R𝑛+1), and denote by [𝑏, 𝑆𝑙−𝑗𝑇𝑗𝑆
2

𝑙−𝑗
] the

commutator of 𝑆𝑙−𝑗𝑇𝑗𝑆2𝑙−𝑗. SupposeΩ ∈ 𝐿
1
(𝑆
𝑛−1

) satisfying (2).
Then for any fixed 0 < 𝜏 < 1/2, 1 < 𝑝 < ∞,



∑

𝑗∈Z

[𝑏, 𝑆𝑙−𝑗𝑇𝑗𝑆
2

𝑙−𝑗
] 𝑓 (𝑥)

𝐿𝑝

≤ 𝐶‖𝑏‖𝐵𝑀𝑂max{2
𝜏𝑙

𝜏
,
2
𝜏𝑘
1
𝑙

𝜏
,
2
𝜏𝑘
2
𝑙

𝜏
, 2}

𝑓
𝐿𝑝 .

(22)

Proof. We prove it by using arguments which are essentially
the same as those in the proof of Lemma 3.7 in [20]. Two
things must be modified:

(i) instead of Lemma 3.6 in [20], we use Lemma 9;

(ii) In [20], 𝑀1 = ‖∑𝑗∈Z 𝑆𝑙−𝑗[𝜋(𝑇
𝑗
𝑆2
𝑙−𝑗
𝑓)(𝑏) −

𝑇𝑗(𝜋(𝑆2
𝑙−𝑗
𝑓)(𝑏))]‖

𝐿𝑝
, and 𝜋𝑓(𝑔) = ∑𝑗∈Z(Δ 𝑗𝑓)(𝐺𝑗−3𝑔) is

the paraproduct of Bony [25] between two functions
𝑓 and 𝑔. In the estimate of 𝑀1, we will use the
following formulas:


[𝐺𝑖−3𝑏, 𝑇𝑗] (Δ 𝑖𝑆

2

𝑙−𝑗
𝑓) (𝑥, 𝑥𝑛+1)



=

𝐺𝑖−3𝑏 (𝑥, 𝑥𝑛+1) 𝑇𝑗 (Δ 𝑖𝑆

2

𝑙−𝑗
𝑓) (𝑥, 𝑥𝑛+1)

−𝑇𝑗 ((𝐺𝑖−3𝑏) (Δ 𝑖𝑆
2

𝑙−𝑗
𝑓)) (𝑥, 𝑥𝑛+1)



=



∫
2𝑗<|𝑦|≤2𝑗+1

Ω(𝑦)

𝑦

𝑛

× (𝐺𝑖−3𝑏 (𝑥, 𝑥𝑛+1) − 𝐺𝑖−3𝑏

× (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
)))

⋅ Δ 𝑖𝑆
2

𝑙−𝑗
𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (

𝑦
)) 𝑑𝑦



≤ 𝐶∫
2𝑗<|𝑦|≤2𝑗+1

Ω (𝑦)


𝑦

𝑛

×
𝐺𝑖−3𝑏 (𝑥, 𝑥𝑛+1) − 𝐺𝑖−3𝑏

× (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
))



⋅

Δ 𝑖𝑆

2

𝑙−𝑗
𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (

𝑦
))


𝑑𝑦,

(23)

by Lemma 10,

𝐺𝑖−3𝑏 (𝑥, 𝑥𝑛+1) − 𝐺𝑖−3𝑏 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
))



≤ 𝐶
2
𝑖𝜏

𝜏

(𝑦, 𝜙 (
𝑦
))


𝜏
‖𝑏‖BMO

= 𝐶
2
𝑖𝜏

𝜏
√𝑦


2
+ 𝜙2 (

𝑦
)

𝜏

‖𝑏‖BMO.

(24)

If 𝜙 satisfies condition (1), we have

𝐺𝑖−3𝑏 (𝑥, 𝑥𝑛+1) − 𝐺𝑖−3𝑏 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
))



≤ 𝐶
2
𝑖𝜏

𝜏

𝑦

𝜏
‖𝑏‖BMO.

(25)

Thus


[𝐺𝑖−3𝑏, 𝑇𝑗] (Δ 𝑖𝑆

2

𝑙−𝑗
𝑓) (𝑥, 𝑥𝑛+1)



≤ 𝐶
2
𝑖𝜏

𝜏
‖𝑏‖BMO

× ∫
2𝑗<|𝑦|≤2𝑗+1

Ω (𝑦)


𝑦

𝑛

𝑦

𝜏

×

Δ 𝑖𝑆

2

𝑙−𝑗
𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (

𝑦
))


𝑑𝑦

≤ 𝐶
2
(𝑖+𝑗)𝜏

𝜏
‖𝑏‖BMO

× ∫
2𝑗<|𝑦|≤2𝑗+1

Ω (𝑦)


𝑦

𝑛

×

Δ 𝑖𝑆

2

𝑙−𝑗
𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (

𝑦
))


𝑑𝑦

= 𝐶
2
(𝑖+𝑗)𝜏

𝜏
‖𝑏‖BMO𝑇|Ω|,𝑗 (


Δ 𝑖𝑆

2

𝑙−𝑗
𝑓

) (𝑥, 𝑥𝑛+1) .

(26)

If 𝜙 satisfies condition (2), we have

𝐺𝑖−3𝑏 (𝑥, 𝑥𝑛+1) − 𝐺𝑖−3𝑏 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
))



≤ 𝐶
2
𝑖𝜏

𝜏

𝜙
𝜏
(
𝑦
)
 ‖𝑏‖BMO

≤ 𝐶


𝜙
𝜏
(2
𝑖
)


𝜏

𝜙
𝜏
(
𝑦
)
 ‖𝑏‖BMO.

(27)
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Thus if |𝑦| > 1,

[𝐺𝑖−3𝑏, 𝑇𝑗] (Δ 𝑖𝑆

2

𝑙−𝑗
𝑓) (𝑥, 𝑥𝑛+1)



≤ 𝐶


𝜙
𝜏
(2
(𝑖+𝑗)

)


𝜏
‖𝑏‖BMO

× ∫
2𝑗<|𝑦|≤2𝑗+1

Ω (𝑦)


𝑦

𝑛

×

Δ 𝑖𝑆

2

𝑙−𝑗
𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (

𝑦
))


𝑑𝑦

≤ 𝐶
2
(𝑖+𝑗)𝑘

1
𝜏

𝜏
‖𝑏‖BMO𝑇|Ω|,𝑗 (


Δ 𝑖𝑆

2

𝑙−𝑗
𝑓

) (𝑥, 𝑥𝑛+1) ,

(28)

and if |𝑦| ≤ 1,

[𝐺𝑖−3𝑏, 𝑇𝑗] (Δ 𝑖𝑆

2

𝑙−𝑗
𝑓) (𝑥, 𝑥𝑛+1)



≤ 𝐶
2
(𝑖+𝑗)𝑘

2
𝜏

𝜏
‖𝑏‖BMO𝑇|Ω|,𝑗 (


Δ 𝑖𝑆

2

𝑙−𝑗
𝑓

) (𝑥, 𝑥𝑛+1) .

(29)

3. The Proof of Theorems 1 and 2

Proof of Theorem 1. Let 𝜉 = (𝜉, 𝜉𝑛+1) ∈ R𝑛+1 and let 𝜓(𝜉) ∈

𝐶
∞

0
(R𝑛+1) be a radial function such that 0 ≤ 𝜓 ≤ 1, supp𝜓 ⊂

{1/2 ≤ |𝜉| ≤ 2}, and

∑

𝑙∈𝑍

𝜓
3
(2
−𝑙
𝜉) = 1,


𝜉


̸= 0. (30)

Define the multiplier operator 𝑆𝑙 by

𝑆𝑙𝑓 (𝜉) = 𝜓 (2
−𝑙 

𝜉

) 𝑓 (𝜉) . (31)

Let the measure 𝜎𝑗 on R𝑛+1 be defined by

∫
R𝑛+1

𝑓 (𝑦, 𝑦𝑛+1) 𝑑𝜎𝑗

= ∫
R𝑛

𝑓 (𝑦, 𝜙 (
𝑦
))

Ω (𝑦

)

𝑦

𝑛 𝜒{2𝑗<|𝑦|≤2𝑗+1}𝑑𝑦

(32)

for all 𝑗 ∈ Z. Since

𝜎𝑗 ∗ 𝑓 = ∫
R𝑛

𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
))

Ω (𝑦

)

𝑦

𝑛 𝜒{2𝑗<|𝑦|≤2𝑗+1}𝑑𝑦,

𝑇𝜙,Ω𝑓 = ∫
R𝑛

𝑓 (𝑥 − 𝑦, 𝑥𝑛+1 − 𝜙 (
𝑦
))

Ω (𝑦

)

𝑦

𝑛 𝑑𝑦,

(33)

we get

𝑇𝜙,Ω𝑓 = ∑

𝑗∈Z

𝜎𝑗 ∗ 𝑓. (34)

Define the operator𝑇𝑗𝑓(𝑥) = 𝜎𝑗∗𝑓(𝑥), where𝑥 = (𝑥, 𝑥𝑛+1) ∈

R𝑛+1 and the multiplier

̂
𝑇𝑙
𝑗
𝑓 (𝜉) = 𝑇𝑗𝑆𝑙−𝑗𝑓 (𝜉) = 𝜓 (2

𝑗−𝑙 
𝜉

) 𝜎𝑗 (𝜉) 𝑓 (𝜉) . (35)

From the above notation, it is easy to see that

[𝑏, 𝑇𝜙,Ω] 𝑓 (𝑥) = ∑

𝑙∈Z

∑

𝑗∈Z

[𝑏, 𝑆𝑙−𝑗𝑇𝑗𝑆
2

𝑙−𝑗
] 𝑓 (𝑥)

= ∑

𝑙∈Z

∑

𝑗∈Z

[𝑏, 𝑆𝑙−𝑗𝑇
𝑙

𝑗
𝑆𝑙−𝑗] 𝑓 (𝑥)

:= ∑

𝑙∈Z

𝑉𝑙𝑓 (𝑥) ,

(36)

where

𝑉𝑙𝑓 (𝑥) = ∑

𝑗∈Z

[𝑏, 𝑆𝑙−𝑗𝑇
𝑙

𝑗
𝑆𝑙−𝑗] 𝑓 (𝑥) . (37)

Then by the Minkowski inequality, we get

[𝑏, 𝑇𝜙,Ω] 𝑓

𝐿2(R𝑛+1)

≤



[log√2]

∑

𝑙=−∞

𝑉𝑙𝑓

𝐿2(R𝑛+1)

+



∞

∑

𝑙=[log√2]+1

𝑉𝑙𝑓

𝐿2(R𝑛+1)

.

(38)

For ‖∑[log√2]
𝑙=−∞

𝑉𝑙𝑓‖𝐿2(R𝑛+1)
, we recall

𝜎𝑗 (𝜉, 𝜉𝑛+1) = ∫
𝑆𝑛−1

Ω (𝜃) ∫

2
𝑗+1

2𝑗
𝑒
−𝑖(𝑠𝜃⋅𝜉+𝜙(|𝑠|)𝜉

𝑛+1
) 𝑑𝑠

𝑠
𝑑𝜎 (𝜃) .

(39)

By Lemma 2.3 of [16], we have

𝜎𝑗 (𝜉, 𝜉𝑛+1)


≤ 𝐶‖Ω‖𝐿1


2
𝑗
𝜉

. (40)

Denote by ∇𝜉𝜎𝑗 the before 𝑛 components truncation of ∇𝜎𝑗;
that is,

∇𝜉𝜎𝑗 = (
𝜕𝜎𝑗

𝜕𝜉1
, ...,

𝜕𝜎𝑗

𝜕𝜉𝑛
) . (41)

Since

𝜎𝑗 (𝜉, 𝜉𝑛+1) = ∫
R𝑛

Ω(𝑦

)

𝑦

𝑛 𝜒{2𝑗<|𝑦|≤2𝑗+1}𝑒

−𝑖(𝑦⋅𝜉+𝜙(|𝑦|)𝜉
𝑛+1
)
𝑑𝑦,

(42)

we get

∇𝜉𝜎𝑗


≤ 𝐶2

𝑗
‖Ω‖𝐿1 . (43)

Set 𝑚𝑗(𝜉) = 𝜎𝑗(𝜉), 𝑚
𝑙

𝑗
(𝜉) = 𝑚𝑗(𝜉)𝜓(2

𝑗−𝑙
|𝜉|). Recall that 𝑇𝑙

𝑗
by

̂
𝑇𝑙
𝑗
𝑓(𝜉) = 𝑚

𝑙

𝑗
(𝜉)𝑓(𝜉). Straightforward computations lead to


𝑚
𝑙

𝑗
(2
−𝑗
𝜉)
𝐿∞

≤ 𝐶‖Ω‖𝐿12
𝑙
. (44)
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Since

supp {𝑚𝑙
𝑗
(2
−𝑗
𝜉)} ⊂ {


𝜉

≤ 2

𝑙+2
} , (45)

we get

∇𝜉𝑚

𝑙

𝑗
(2
−𝑗
𝜉)
𝐿∞

≤ 𝐶‖Ω‖𝐿1 . (46)

Let �̃�𝑙
𝑗
be the operator defined by ̂̃

𝑇𝑙
𝑗
𝑓(𝜉) = 𝑚

𝑙

𝑗
(2
−𝑗
𝜉)𝑓(𝜉).

Denote by 𝑇
𝑙

𝑗,𝑏,1
𝑓 = [𝑏, 𝑇

𝑙

𝑗
]𝑓 and 𝑇

𝑙

𝑗,𝑏,0
𝑓 = 𝑇

𝑙

𝑗
𝑓. Similarly,

denote by �̃�𝑙
𝑗,𝑏,1

𝑓 = [𝑏, �̃�
𝑙

𝑗
]𝑓 and �̃�

𝑙

𝑗,𝑏,0
𝑓 = �̃�

𝑙

𝑗
𝑓. Thus via the

Plancherel theorem and Lemma 8 it is stated that for any fixed
0 < V < 1, 𝑘 ∈ {0, 1},


�̃�
𝑙

𝑗,𝑏,𝑘
𝑓
𝐿2

≤ 𝐶‖𝑏‖
𝑘

BMO(R𝑛+1)‖Ω‖𝐿12
V𝑙𝑓

𝐿2 ,

𝑙 ≤ [log√2] .

(47)

Dilation-invariance says that

𝑇
𝑙

𝑗,𝑏,𝑘
𝑓
𝐿2

≤ 𝐶‖𝑏‖
𝑘

BMO(R𝑛+1)‖Ω‖𝐿12
V𝑙𝑓

𝐿2 ,

𝑙 ≤ [log√2] .

(48)

By the proof of Theorem 1 in [20], we can get

𝑉𝑙𝑓
𝐿2 ≤ 𝐶‖𝑏‖BMO(R𝑛+1)2

V𝑙
‖Ω‖𝐿1

𝑓
𝐿2 ,

𝑙 ≤ [log√2] .

(49)

So, we have


[log√2]

∑

𝑙=−∞

𝑉𝑙𝑓

𝐿2(R𝑛+1)

≤ 𝐶

[log√2]

∑

𝑙=−∞

2
V𝑙
‖𝑏‖BMO(R𝑛+1)

𝑓
𝐿2(R𝑛+1)

≤ 𝐶‖𝑏‖BMO(R𝑛+1)
𝑓

𝐿2(R𝑛+1).

(50)

For ‖∑
∞

𝑙=1+[log√2] 𝑉𝑙𝑓‖𝐿2(R𝑛+1)
, by Lemma 2.3 of [16], if 𝜙

satisfies the hypotheses in Theorem 1, we have

𝜎𝑗 (𝜉, 𝜉𝑛+1)


≤ 𝐶log−𝛼−1 (2

𝑗
𝜉

+ 2) ,


∇𝜉𝜎𝑗


≤ 𝐶2

𝑗
.

(51)

When 𝜙(|𝑡|) = |𝑡|, if 𝑛 = 2, we also have the above estimates
(see [14]). Set 𝑚𝑗(𝜉) = 𝜎𝑗(𝜉), 𝑚

𝑙

𝑗
(𝜉) = 𝑚𝑗(𝜉)𝜓(2

𝑗−𝑙
|𝜉|). Recall

𝑇
𝑙

𝑗
by ̂

𝑇𝑙
𝑗
𝑓(𝜉) = 𝑚

𝑙

𝑗
(𝜉)𝑓(𝜉). Straightforward computations

lead to

𝑚
𝑙

𝑗
(2
−𝑗
𝜉)
𝐿∞

≤ 𝐶log−𝛼−1 (2 + 2
𝑙
) ,


∇𝜉𝑚

𝑙

𝑗
(2
−𝑗
𝜉)
𝐿∞

≤ 𝐶,

supp {𝑚𝑙
𝑗
(2
−𝑗
𝜉)} ⊂ {


𝜉

≤ 2

𝑙+2
} .

(52)

Let �̃�𝑙
𝑗
be the operator defined by ̂̃

𝑇𝑙
𝑗
𝑓(𝜉) = 𝑚

𝑙

𝑗
(2
−𝑗
𝜉)𝑓(𝜉).

Denote by 𝑇
𝑙

𝑗,𝑏,1
𝑓 = [𝑏, 𝑇

𝑙

𝑗
]𝑓 and 𝑇

𝑙

𝑗,𝑏,0
𝑓 = 𝑇

𝑙

𝑗
𝑓. Similarly,

denote by �̃�𝑙
𝑗,𝑏,1

𝑓 = [𝑏, �̃�
𝑙

𝑗
]𝑓 and �̃�

𝑙

𝑗,𝑏,0
𝑓 = �̃�

𝑙

𝑗
𝑓. Thus via the

Plancherel theorem and Lemma 8 it is stated that for any fixed
0 < V < 1, 𝑘 ∈ {0, 1},

�̃�
𝑙

𝑗,𝑏,𝑘
𝑓
𝐿2

≤ 𝐶‖𝑏‖
𝑘

BMO(R𝑛+1)log
(−𝛼−1)V+1

(2 + 2
𝑙
)
𝑓

𝐿2 ,

𝑙 ≥ 1 + [log√2] .

(53)

Dilation-invariance says that

𝑇
𝑙

𝑗,𝑏,𝑘
𝑓
𝐿2

≤ 𝐶‖𝑏‖
𝑘

BMO(R𝑛+1)log
(−𝛼−1)V+1

(2 + 2
𝑙
)
𝑓

𝐿2 ,

𝑙 ≥ 1 + [log√2] .

(54)

By the proof of Theorem 1 in [20], we can get
𝑉𝑙𝑓

𝐿2 ≤ 𝐶‖𝑏‖BMO(R𝑛+1)log
(−𝛼−1)V+1

(2 + 2
𝑙
)
𝑓

𝐿2 ,

𝑙 ≥ 1 + [log√2] .

(55)

So take V → 1, and we have


∞

∑

𝑙=1+[log√2]

𝑉𝑙𝑓

𝐿2(R𝑛+1)

≤ 𝐶‖𝑏‖BMO(R𝑛+1)

∞

∑

𝑙=1+[log√2]

𝑙
(−𝛼−1)V+1𝑓

𝐿2(R𝑛+1)

≤ 𝐶‖𝑏‖BMO(R𝑛+1)
𝑓

𝐿2(R𝑛+1).

(56)

Then, by (50) and (56) we obtainTheorem 1.

Proof of Theorem 2. By (36), we have

[𝑏, 𝑇𝜙,Ω] 𝑓

𝐿𝑝(R3)

≤



[log√2]

∑

𝑙=−∞

𝑉𝑙𝑓

𝐿𝑝(R3)

+



∞

∑

𝑙=[log√2]+1

𝑉𝑙𝑓

𝐿𝑝(R3)

.

(57)

For ‖∑[log√2]
𝑙=−∞

𝑉𝑙𝑓‖𝐿𝑝(R3)
, recall 𝑇𝑙

𝑗
𝑓(𝑥) = 𝑇𝑗𝑆𝑙−𝑗𝑓(𝑥); then,

𝑉𝑙𝑓(𝑥) = ∑𝑗∈Z[𝑏, 𝑆𝑙−𝑗𝑇𝑗𝑆
2

𝑙−𝑗
]𝑓(𝑥). 𝜙(|𝑡|) = |𝑡|, and applying

Lemma 11, we get for 1 < 𝑝 < ∞

𝑉𝑙𝑓
𝐿𝑝 ≤ 𝐶‖𝑏‖BMO(R𝑛+1)

𝑓
𝐿𝑝 , 𝑙 ≤ [log√2] . (58)

Interpolating between (49) and (58) with 𝑛 = 2, as the proof
of Theorem 1 in [20], we can get



[log√2]

∑

𝑙=−∞

𝑉𝑙𝑓

𝐿𝑝(R3)

≤ 𝐶‖𝑏‖BMO(R3)
𝑓

𝐿𝑝(R3). (59)

For ‖∑
∞

𝑙=1+[log√2] 𝑉𝑙𝑓‖𝐿𝑝(R3)
, 𝜙(|𝑡|) = |𝑡|, and applying

Lemma 11, we get for any fixed 0 < 𝜏 < 1/2, 1 < 𝑝 < ∞,

𝑉𝑙𝑓
𝐿𝑝 ≤ 𝐶‖𝑏‖BMO(R𝑛+1)

2
𝜏𝑙

𝜏

𝑓
𝐿𝑝 , 𝑙 ≥ 1 + [log√2] .

(60)
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Take 𝜏 = 1/𝑙; then, we get

𝑉𝑙𝑓
𝐿𝑝 ≤ 𝐶𝑙‖𝑏‖BMO(R𝑛+1)

𝑓
𝐿𝑝 , 𝑙 ≥ 1 + [log√2] . (61)

For 𝜙(|𝑡|) = |𝑡|, (55) can be established only when 𝑛 = 2, so
interpolating between (55) and (61) with 𝑛 = 2, as the proof
of Theorem 1 in [20], we get



∞

∑

𝑙=1+[log√2]

𝑉𝑙𝑓

𝐿𝑝(R3)

≤ 𝐶‖𝑏‖BMO(R3)
𝑓

𝐿𝑝(R3). (62)

Then, by (59) and (62) we obtainTheorem 2.

4. The proof of Theorems 4 and 7

We begin with a lemma, which plays an important role in
provingTheorem 4.

Lemma 12. Let 𝑏(𝑥) ∈ 𝐵𝑀𝑂(R𝑛), 𝑥 = (𝑥, 𝑥𝑛+1) ∈ R𝑛+1, and
𝐵(𝑥) = 𝑏(𝑥); then, 𝐵(𝑥) ∈ 𝐵𝑀𝑂(R𝑛+1) and ‖𝐵‖𝐵𝑀𝑂(R𝑛+1) =

‖𝑏‖𝐵𝑀𝑂(R𝑛).

Proof. We know

‖𝑏‖BMO(R𝑛) = sup
𝑄⊂R𝑛

1

|𝑄|
∫
𝑄

𝑏 (𝑥) − 𝑏𝑄
 𝑑𝑥, (63)

where 𝑏𝑄 = (1/|𝑄|) ∫
𝑄
𝑏(𝑥)𝑑𝑥 and𝑄 is the square inR𝑛whose

edges are parallel to the axis. So

‖ 𝐵‖BMO(R𝑛+1) = sup
�̃�⊂R𝑛+1

1

𝑄


∫
�̃�


𝐵 (𝑥) − 𝐵

�̃�


𝑑𝑥, (64)

where 𝑄 is the square in R𝑛+1 whose edges are parallel to the
axis. Consider

𝐵
�̃�
=

1

𝑄


∫
�̃�

𝐵 (𝑥) 𝑑𝑥

=
1

𝑎 |𝑄|
∫

𝑚+𝑎

𝑚

∫
𝑄

𝑏 (𝑥) 𝑑𝑥 𝑑𝑥𝑛+1

=
1

𝑎 |𝑄|
∫
𝑄

𝑏 (𝑥) 𝑑𝑥∫

𝑚+𝑎

𝑚

𝑑𝑥𝑛+1

=
1

|𝑄|
∫
𝑄

𝑏 (𝑥) 𝑑𝑥 = 𝑏𝑄,

(65)

where 𝑄 is the projection on R𝑛 of 𝑄 and 𝑎 is the side length
of 𝑄. Then

‖𝐵‖BMO(R𝑛+1) = sup
�̃�⊂R𝑛+1

1

𝑄


∫
�̃�


𝐵 (𝑥) − 𝐵

�̃�


𝑑𝑥

= sup
�̃�⊂R𝑛+1

1

𝑎 |𝑄|
∫

𝑚+𝑎

𝑚

∫
𝑄

𝑏 (𝑥) − 𝑏𝑄
 𝑑𝑥 𝑑𝑥𝑛+1

= sup
�̃�⊂R𝑛+1

1

𝑎 |𝑄|
∫
𝑄

𝑏 (𝑥) − 𝑏𝑄
 𝑑𝑥∫

𝑚+𝑎

𝑚

𝑑𝑥𝑛+1

= sup
�̃�⊂R𝑛+1

1

|𝑄|
∫
𝑄

𝑏 (𝑥) − 𝑏𝑄
 𝑑𝑥

= sup
𝑄⊂R𝑛

1

|𝑄|
∫
𝑄

𝑏 (𝑥) − 𝑏𝑄
 𝑑𝑥 = ‖𝑏‖BMO(R𝑛).

(66)

Proof of Theorem 4. By Lemma 12, 𝐵 ∈ BMO(R𝑛+1). Using
the method in [5], for 𝑓 ∈ 𝐿

𝑝
(R𝑛) and 𝑁 ∈ N, let

𝐹𝑁(𝑥, 𝑥𝑛+1) = 𝑓(𝑥)𝑒
−𝑖𝑥
𝑛+1𝜒[−𝑁,𝑁](𝑥𝑛+1). Then by mean value

theorem of integrals and Lemma 12, we have

2𝑁∫
R𝑛



𝑏 (𝑥) ∫
R𝑛

Ω(𝑦)

𝑦

𝑛 𝑓 (𝑥 − 𝑦) 𝑒

𝑖𝜙(|𝑦|)
𝜒[−𝑁,𝑁]

× (𝑥𝑛+1 − 𝜙 (
𝑦
)) 𝑑𝑦

− ∫
R𝑛

Ω(𝑦)

𝑦

𝑛 𝑏 (𝑥 − 𝑦)𝑓 (𝑥 − 𝑦) 𝑒

𝑖𝜙(|𝑦|)

× 𝜒[−𝑁,𝑁] (𝑥𝑛+1 − 𝜙 (
𝑦
)) 𝑑𝑦



𝑝

𝑑𝑥

≤ ∫
R

∫
R𝑛



𝑏 (𝑥) ∫
R𝑛

Ω(𝑦)

𝑦

𝑛 𝑓 (𝑥 − 𝑦) 𝑒

−𝑖(𝑥
𝑛+1
−𝜙(|𝑦|))

× 𝜒[−𝑁,𝑁] (𝑥𝑛+1 − 𝜙 (
𝑦
)) 𝑑𝑦

− ∫
R𝑛

Ω(𝑦)

𝑦

𝑛 𝑏 (𝑥 − 𝑦)𝑓 (𝑥 − 𝑦)

× 𝑒
−𝑖(𝑥
𝑛+1
−𝜙(|𝑦|))

𝜒[−𝑁,𝑁]

× (𝑥𝑛+1 − 𝜙 (
𝑦
)) 𝑑𝑦



𝑝

𝑑𝑥 𝑑𝑥𝑛+1

=

[𝐵, 𝑇𝜙,Ω] 𝐹𝑁



𝑝

𝐿𝑝(R𝑛+1)

≤ 𝐶‖𝐵‖
𝑝

BMO(R𝑛+1)
𝐹𝑁


𝑝

𝐿𝑝(R𝑛+1)

= 𝐶2𝑁‖𝑏‖
𝑝

BMO(R𝑛)
𝑓


𝑝

𝐿𝑝(R𝑛)
.

(67)

Dividing both sides by 2𝑁 and letting𝑁 → ∞, we obtain

[𝑏, 𝑇𝜙] 𝑓

𝐿𝑝(R𝑛)
≤ 𝐶‖𝑏‖BMO(R𝑛)

𝑓
𝐿𝑝(R𝑛). (68)

Thus, we obtainTheorem 4.
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Proof of Theorem 7. Theorem 7 can be proved by using argu-
ments which are essentially the same as the proof ofTheorem
1 in [20]. Only the following two things must be modified.

(i) Instead of𝐾𝑗(𝑥) and 𝑇𝑗𝑓(𝑥), we use

𝐾𝑗,𝜙 (𝑥) = 𝑒
𝑖𝜙(𝑥)Ω (𝑥)

|𝑥|
𝑛 𝜒{2𝑗<|𝑥|≤2𝑗+1},

𝑇𝑗,𝜙𝑓 (𝑥) = 𝐾𝑗,𝜙 ∗ 𝑓 (𝑥)

= ∫
2𝑗<|𝑦|≤2𝑗+1

Ω (𝑥)

|𝑥|
𝑛 𝑒

𝑖𝜙(𝑥)
𝑓 (𝑥 − 𝑦) 𝑑𝑦.

(69)

(ii) Since Ω(𝜃) is odd and 𝜙(𝜃𝑡) is even with respect to 𝜃,
we get Ω(𝜃)𝑒

𝑖𝜙(𝜃𝑡) is odd and ∫
𝑆𝑛−1

Ω(𝜃)𝑒
𝑖𝜙(𝜃𝑡)

𝑑𝜎(𝜃) =

0. So we use the estimates in [21]: Consider

�̂�𝑗,𝜙 (𝜉)


≤ 𝐶‖Ω‖𝐿1


2
𝑗
𝜉

,


�̂�𝑗,𝜙 (𝜉)


≤ 𝐶log−𝛼−1 2

𝑗
𝜉 + 2



(70)

in the proof, and we omit the details.
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